organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­chloro-N-(2-methyl­but-3-yn-2-yl)benzamide

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: aywgx@yahoo.com.cn

(Received 24 November 2009; accepted 27 November 2009; online 4 December 2009)

In the title compound, C12H11Cl2NO, the amide group is twisted by a dihedral angle of 31.98 (2)° with respect to the benzene ring. In the crystal structure, mol­ecules are linked via N—H⋯O hydrogen bonds, forming one-dimensional supra­molecular chains.

Related literature

For the chemistry of halogenated aromatic amide derivatives, see: Cirilli et al. (1997[Cirilli, R., Gaparrini, F., Villani, C., Gavuzzo, E. & Cirilli, M. (1997). Acta Cryst. C53, 1937-1939.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11Cl2NO

  • Mr = 256.12

  • Monoclinic, P 21 /c

  • a = 12.227 (2) Å

  • b = 10.898 (2) Å

  • c = 10.170 (2) Å

  • β = 111.08 (3)°

  • V = 1264.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 298 K

  • 0.4 × 0.35 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.881, Tmax = 0.940

  • 12803 measured reflections

  • 2890 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.103

  • S = 1.07

  • 2890 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.86 2.21 3.051 (3) 168
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogenated aromatic amide derivatives are an important class of chemical raw materials, which have found wide range of applications in agriculture as herbicides, in medicine as drugs, in coordination chemistry as ligand, and which are also used in industry. Recently, a series of halogenated aromatic amide compounds have been reported (Cirilli et al., 1997). As an extension of these work on the structural characterization, we report here the crystal structure of the title compound 3,5-dichloro-N-(2-methylbut-3-yn-2-yl)benzamide.

The crystal data show that in the title compound (Fig. 1), the amide group is rotated by 31.98 (2)° out of the plane of the benzene ring. All the bond length are within the normal range. The crystal packing is stabilized by N—H···O hydrogen bonds to form an infinite one-dimensional chain parallel to the c axis (Table 1).

Related literature top

For the chemistry of halogenated aromatic amide derivatives, see: Cirilli et al. (1997).

Experimental top

The purchased 3,5-dichloro-N-(2-methylbut-3-yn-2-yl)benzamide (3 mmol, 768 mg) was dissolved in chloroform (20 ml) and evaporated in the air, single crystals of the compound suitable for X-ray analysis were obtained from the solution.

Refinement top

The acetylene H atom was located in a difference Fourier map and refined as riding in as-found relative position with Uiso(H) = 1.2Ueq(C). Other H atoms were placed in calculated positions and refined in riding mode with C–H = 0.93 (aromatic), 0.96 Å (methyl) and N–H = 0.86 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
3,5-Dichloro-N-(2-methylbut-3-yn-2-yl)benzamide top
Crystal data top
C12H11Cl2NOF(000) = 528
Mr = 256.12Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2308 reflections
a = 12.227 (2) Åθ = 3.6–27.5°
b = 10.898 (2) ŵ = 0.49 mm1
c = 10.170 (2) ÅT = 298 K
β = 111.08 (3)°Block, colourless
V = 1264.5 (4) Å30.4 × 0.35 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2890 independent reflections
Radiation source: fine-focus sealed tube2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.6°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.881, Tmax = 0.940l = 1313
12803 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.5464P]
where P = (Fo2 + 2Fc2)/3
2890 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C12H11Cl2NOV = 1264.5 (4) Å3
Mr = 256.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.227 (2) ŵ = 0.49 mm1
b = 10.898 (2) ÅT = 298 K
c = 10.170 (2) Å0.4 × 0.35 × 0.2 mm
β = 111.08 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2890 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2308 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.940Rint = 0.031
12803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
2890 reflectionsΔρmin = 0.29 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50021 (8)0.45984 (9)0.16860 (9)0.0697 (3)
Cl20.35913 (8)0.74552 (7)0.50663 (10)0.0644 (3)
O10.20562 (18)0.29208 (18)0.52618 (18)0.0477 (5)
C10.2939 (2)0.5093 (2)0.4506 (3)0.0376 (6)
H1A0.25320.51950.51150.045*
C70.2183 (2)0.2973 (2)0.4121 (2)0.0349 (5)
C50.3539 (2)0.3825 (2)0.2953 (3)0.0387 (6)
H5A0.35240.30810.24990.046*
C60.2908 (2)0.3977 (2)0.3837 (2)0.0334 (5)
N10.1679 (2)0.2190 (2)0.3067 (2)0.0420 (5)
H1B0.18300.22710.23080.050*
C30.4220 (2)0.5918 (3)0.3399 (3)0.0433 (6)
H3A0.46600.65650.32530.052*
C20.3579 (2)0.6049 (2)0.4260 (3)0.0399 (6)
C40.4190 (2)0.4799 (3)0.2760 (3)0.0415 (6)
C80.0882 (3)0.1195 (2)0.3123 (3)0.0444 (6)
C110.0141 (3)0.1721 (3)0.3361 (3)0.0543 (8)
C100.0456 (3)0.0569 (3)0.1680 (3)0.0680 (10)
H10A0.00710.11600.09630.102*
H10B0.00830.00750.16670.102*
H10C0.11140.02280.15030.102*
C120.0996 (4)0.2091 (4)0.3488 (5)0.0849 (12)
H120.17100.25300.36030.102*
C90.1506 (3)0.0267 (3)0.4266 (4)0.0707 (10)
H9A0.17260.06530.51730.106*
H9B0.21940.00290.41240.106*
H9C0.09900.04090.42220.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0835 (6)0.0804 (6)0.0687 (5)0.0018 (5)0.0559 (5)0.0028 (4)
Cl20.0809 (6)0.0369 (4)0.0803 (6)0.0041 (4)0.0351 (5)0.0126 (4)
O10.0674 (13)0.0510 (11)0.0302 (9)0.0099 (10)0.0240 (9)0.0033 (8)
C10.0375 (14)0.0413 (14)0.0341 (13)0.0005 (11)0.0129 (11)0.0027 (10)
C70.0394 (13)0.0373 (13)0.0280 (12)0.0003 (10)0.0119 (10)0.0009 (10)
C50.0443 (14)0.0413 (14)0.0314 (12)0.0004 (11)0.0147 (11)0.0025 (10)
C60.0329 (12)0.0388 (13)0.0259 (11)0.0012 (10)0.0074 (9)0.0004 (10)
N10.0537 (14)0.0465 (13)0.0299 (11)0.0158 (10)0.0199 (10)0.0063 (9)
C30.0435 (15)0.0432 (15)0.0422 (14)0.0038 (12)0.0143 (12)0.0073 (12)
C20.0427 (14)0.0345 (13)0.0397 (14)0.0020 (11)0.0114 (11)0.0016 (10)
C40.0428 (15)0.0511 (16)0.0343 (13)0.0021 (12)0.0186 (11)0.0052 (11)
C80.0569 (17)0.0405 (15)0.0376 (14)0.0128 (12)0.0193 (13)0.0036 (11)
C110.060 (2)0.0516 (18)0.0552 (18)0.0166 (15)0.0249 (15)0.0028 (14)
C100.091 (3)0.066 (2)0.0528 (19)0.0371 (19)0.0325 (18)0.0231 (16)
C120.070 (3)0.078 (3)0.114 (3)0.013 (2)0.042 (2)0.013 (2)
C90.089 (3)0.0462 (19)0.070 (2)0.0042 (17)0.020 (2)0.0103 (16)
Geometric parameters (Å, º) top
Cl1—C41.734 (3)C3—C21.377 (4)
Cl2—C21.736 (3)C3—H3A0.9300
O1—C71.226 (3)C8—C111.472 (4)
C1—C21.380 (4)C8—C91.522 (4)
C1—C61.387 (3)C8—C101.531 (4)
C1—H1A0.9300C11—C121.171 (5)
C7—N11.335 (3)C10—H10A0.9600
C7—C61.500 (3)C10—H10B0.9600
C5—C41.383 (4)C10—H10C0.9600
C5—C61.390 (3)C12—H121.0386
C5—H5A0.9300C9—H9A0.9600
N1—C81.473 (3)C9—H9B0.9600
N1—H1B0.8600C9—H9C0.9600
C3—C41.375 (4)
C2—C1—C6119.3 (2)C3—C4—Cl1119.0 (2)
C2—C1—H1A120.3C5—C4—Cl1118.8 (2)
C6—C1—H1A120.3C11—C8—N1109.4 (2)
O1—C7—N1123.5 (2)C11—C8—C9110.8 (3)
O1—C7—C6120.1 (2)N1—C8—C9111.2 (2)
N1—C7—C6116.5 (2)C11—C8—C10108.4 (3)
C4—C5—C6118.8 (2)N1—C8—C10107.0 (2)
C4—C5—H5A120.6C9—C8—C10109.9 (3)
C6—C5—H5A120.6C12—C11—C8175.9 (4)
C1—C6—C5119.9 (2)C8—C10—H10A109.5
C1—C6—C7117.3 (2)C8—C10—H10B109.5
C5—C6—C7122.8 (2)H10A—C10—H10B109.5
C7—N1—C8124.0 (2)C8—C10—H10C109.5
C7—N1—H1B118.0H10A—C10—H10C109.5
C8—N1—H1B118.0H10B—C10—H10C109.5
C4—C3—C2117.9 (2)C11—C12—H12172.7
C4—C3—H3A121.0C8—C9—H9A109.5
C2—C3—H3A121.0C8—C9—H9B109.5
C3—C2—C1121.8 (2)H9A—C9—H9B109.5
C3—C2—Cl2118.9 (2)C8—C9—H9C109.5
C1—C2—Cl2119.3 (2)H9A—C9—H9C109.5
C3—C4—C5122.2 (2)H9B—C9—H9C109.5
C2—C1—C6—C51.4 (4)C4—C3—C2—Cl2179.4 (2)
C2—C1—C6—C7179.0 (2)C6—C1—C2—C32.0 (4)
C4—C5—C6—C10.0 (4)C6—C1—C2—Cl2178.54 (19)
C4—C5—C6—C7179.6 (2)C2—C3—C4—C50.3 (4)
O1—C7—C6—C130.5 (4)C2—C3—C4—Cl1179.2 (2)
N1—C7—C6—C1147.8 (2)C6—C5—C4—C30.9 (4)
O1—C7—C6—C5149.1 (2)C6—C5—C4—Cl1178.65 (19)
N1—C7—C6—C532.6 (4)C7—N1—C8—C1159.8 (4)
O1—C7—N1—C82.1 (4)C7—N1—C8—C963.0 (4)
C6—C7—N1—C8176.2 (2)C7—N1—C8—C10177.0 (3)
C4—C3—C2—C11.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.862.213.051 (3)168
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H11Cl2NO
Mr256.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.227 (2), 10.898 (2), 10.170 (2)
β (°) 111.08 (3)
V3)1264.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.4 × 0.35 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.881, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
12803, 2890, 2308
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.07
No. of reflections2890
No. of parameters147
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.862.213.051 (3)167.7
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology, China.

References

First citationCirilli, R., Gaparrini, F., Villani, C., Gavuzzo, E. & Cirilli, M. (1997). Acta Cryst. C53, 1937–1939.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds