organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-chloro-3,5-di­nitro­benzoate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: liuyaling158@163.com

(Received 26 November 2009; accepted 1 December 2009; online 4 December 2009)

In the mol­ecule of the title compound, C8H5ClN2O6, the two nitro groups and the ester group make dihedral angles of 29.6 (1)°, 82.3 (1)° and 13.7 (1)°, respectively, with the benzene ring. In the crystal structure weak C—H⋯O inter­actions are present.

Related literature

For the use of the title compound as a herbicide, see: Akira et al. (1978[Akira, S., Shoji, K. & Kenichi, S. (1978). Japan Patent No. 53101528]); Ferenc et al. (1984[Ferenc, B., Gyoery, K. & Mihaly, N. (1984). German Patent No. 3410566]).

[Scheme 1]

Experimental

Crystal data
  • C8H5ClN2O6

  • Mr = 260.59

  • Triclinic, [P \overline 1]

  • a = 4.8579 (10) Å

  • b = 9.4438 (19) Å

  • c = 11.369 (2) Å

  • α = 73.36 (3)°

  • β = 88.09 (3)°

  • γ = 87.47 (3)°

  • V = 499.14 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 93 K

  • 0.50 × 0.33 × 0.17 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.824, Tmax = 0.936

  • 3935 measured reflections

  • 2193 independent reflections

  • 1607 reflections with I > 2σ(I)

  • Rint = 0.029

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.142

  • S = 1.02

  • 2193 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.51 3.329 (3) 145
C5—H5⋯O6ii 0.95 2.34 3.143 (3) 142
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z.

Data collection: RAPID-AUTO (Rigaku 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (Fig.1) is useful as a herbicide (Akira et al.,1978; Ferenc et al., 1984). It give good result as seed-dressing fungicide for sunflower, corn and flax. We report here the crystal structure of the title compound. Two nitro groups (O1/N1/O2 and O3/N2/O4) attached at C2 and C4, the ester group(O5/C7/O6) attached at C6 form dihedral angles of 150.4 (1)°, 97.7 (1)° and 166.3 (1)° with the mean plane of the C1-benzene ring, respectively. In the crystal structure, adjacent molecules are linked through weak C—H···O hydrogen interactions (Table 1).

Related literature top

For the use of the title compound as a herbicide, see: Akira et al. (1978); Ferenc et al. (1984).

Experimental top

A sample of commercial methyl 4-chloro-3,5-dinitrobenzoate (Aldrich) was crystalized by slow evaporation of a solution in methanol: colourless chunk-shaped crystals were formed after several days.

Refinement top

H atoms are positioned geometrically, with C—H = 0.95 and 0.98 Å for benzene and methyl H atoms respectively, and are allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) fot the aromatic H atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO (Rigaku 2004); data reduction: RAPID-AUTO (Rigaku 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
methyl 4-chloro-3,5-dinitrobenzoate top
Crystal data top
C8H5ClN2O6Z = 2
Mr = 260.59F(000) = 264
Triclinic, P1Dx = 1.734 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8579 (10) ÅCell parameters from 1306 reflections
b = 9.4438 (19) Åθ = 3.7–27.5°
c = 11.369 (2) ŵ = 0.40 mm1
α = 73.36 (3)°T = 93 K
β = 88.09 (3)°Chunk, colorless
γ = 87.47 (3)°0.50 × 0.33 × 0.17 mm
V = 499.14 (18) Å3
Data collection top
Rigaku SPIDER
diffractometer
2193 independent reflections
Radiation source: Rotating Anode1607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(North et al., 1968)
h = 66
Tmin = 0.824, Tmax = 0.936k = 912
3935 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0772P)2]
where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C8H5ClN2O6γ = 87.47 (3)°
Mr = 260.59V = 499.14 (18) Å3
Triclinic, P1Z = 2
a = 4.8579 (10) ÅMo Kα radiation
b = 9.4438 (19) ŵ = 0.40 mm1
c = 11.369 (2) ÅT = 93 K
α = 73.36 (3)°0.50 × 0.33 × 0.17 mm
β = 88.09 (3)°
Data collection top
Rigaku SPIDER
diffractometer
2193 independent reflections
Absorption correction: multi-scan
(North et al., 1968)
1607 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.936Rint = 0.029
3935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.02Δρmax = 0.85 e Å3
2193 reflectionsΔρmin = 0.32 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.27729 (13)1.05900 (7)0.37558 (6)0.0216 (2)
O10.9997 (5)0.6244 (2)0.56066 (17)0.0317 (5)
O21.3643 (4)0.7546 (2)0.51374 (19)0.0345 (5)
O31.1854 (4)1.2028 (2)0.07808 (17)0.0249 (5)
O40.8170 (4)1.2738 (2)0.16400 (18)0.0278 (5)
O50.4877 (4)0.58546 (19)0.21655 (17)0.0220 (4)
O60.3199 (4)0.79731 (19)0.08858 (15)0.0194 (4)
N11.1375 (5)0.7234 (2)0.4913 (2)0.0222 (5)
N20.9797 (5)1.1792 (2)0.1458 (2)0.0191 (5)
C10.8221 (5)0.7323 (3)0.3272 (2)0.0172 (5)
H10.78810.63150.36720.021*
C21.0070 (5)0.8080 (3)0.3755 (2)0.0175 (5)
C31.0622 (5)0.9551 (3)0.3184 (2)0.0164 (5)
C40.9246 (5)1.0237 (3)0.2102 (2)0.0172 (5)
C50.7370 (5)0.9523 (3)0.1612 (2)0.0171 (5)
H50.64321.00330.08840.021*
C60.6874 (5)0.8061 (3)0.2193 (2)0.0168 (5)
C70.4771 (5)0.7304 (3)0.1662 (2)0.0168 (5)
C80.2922 (6)0.5029 (3)0.1694 (3)0.0244 (6)
H8A0.10360.53460.18600.037*
H8B0.31960.39690.21000.037*
H8C0.32210.52190.08070.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0217 (4)0.0228 (4)0.0222 (4)0.0051 (3)0.0061 (3)0.0083 (3)
O10.0396 (13)0.0269 (11)0.0254 (11)0.0063 (9)0.0043 (9)0.0013 (9)
O20.0279 (12)0.0400 (13)0.0325 (12)0.0039 (10)0.0142 (10)0.0035 (10)
O30.0229 (10)0.0239 (10)0.0253 (10)0.0084 (8)0.0037 (8)0.0025 (8)
O40.0286 (11)0.0177 (10)0.0380 (12)0.0006 (8)0.0006 (9)0.0093 (9)
O50.0251 (10)0.0143 (9)0.0260 (10)0.0062 (7)0.0078 (8)0.0035 (8)
O60.0213 (10)0.0192 (9)0.0165 (9)0.0052 (7)0.0055 (8)0.0017 (8)
N10.0279 (13)0.0192 (12)0.0189 (12)0.0012 (10)0.0085 (10)0.0037 (10)
N20.0213 (12)0.0165 (11)0.0196 (11)0.0053 (9)0.0058 (9)0.0042 (9)
C10.0209 (13)0.0150 (12)0.0145 (13)0.0007 (10)0.0014 (10)0.0020 (10)
C20.0191 (13)0.0188 (13)0.0148 (13)0.0025 (10)0.0032 (10)0.0053 (10)
C30.0145 (12)0.0191 (13)0.0174 (13)0.0022 (10)0.0033 (10)0.0074 (11)
C40.0173 (13)0.0136 (12)0.0192 (13)0.0030 (10)0.0014 (10)0.0022 (10)
C50.0159 (12)0.0168 (12)0.0179 (13)0.0018 (10)0.0025 (10)0.0035 (10)
C60.0167 (12)0.0152 (12)0.0177 (13)0.0015 (10)0.0013 (10)0.0034 (10)
C70.0166 (12)0.0152 (12)0.0167 (13)0.0039 (10)0.0009 (11)0.0012 (10)
C80.0252 (15)0.0154 (13)0.0345 (16)0.0085 (11)0.0045 (12)0.0082 (12)
Geometric parameters (Å, º) top
Cl1—C31.725 (3)C1—C61.393 (4)
O1—N11.242 (3)C1—H10.9500
O2—N11.207 (3)C2—C31.388 (4)
O3—N21.229 (3)C3—C41.393 (4)
O4—N21.224 (3)C4—C51.377 (3)
O5—C71.323 (3)C5—C61.378 (3)
O5—C81.461 (3)C5—H50.9500
O6—C71.202 (3)C6—C71.507 (3)
N1—C21.477 (3)C8—H8A0.9800
N2—C41.473 (3)C8—H8B0.9800
C1—C21.390 (3)C8—H8C0.9800
C7—O5—C8115.43 (19)C5—C4—N2118.5 (2)
O2—N1—O1124.3 (2)C3—C4—N2118.8 (2)
O2—N1—C2119.4 (2)C4—C5—C6119.1 (2)
O1—N1—C2116.3 (2)C4—C5—H5120.4
O4—N2—O3125.6 (2)C6—C5—H5120.4
O4—N2—C4117.4 (2)C5—C6—C1120.3 (2)
O3—N2—C4117.0 (2)C5—C6—C7118.5 (2)
C2—C1—C6119.2 (2)C1—C6—C7121.1 (2)
C2—C1—H1120.4O6—C7—O5125.7 (2)
C6—C1—H1120.4O6—C7—C6122.5 (2)
C3—C2—C1121.6 (2)O5—C7—C6111.8 (2)
C3—C2—N1122.3 (2)O5—C8—H8A109.5
C1—C2—N1116.1 (2)O5—C8—H8B109.5
C2—C3—C4117.0 (2)H8A—C8—H8B109.5
C2—C3—Cl1124.5 (2)O5—C8—H8C109.5
C4—C3—Cl1118.43 (19)H8A—C8—H8C109.5
C5—C4—C3122.7 (2)H8B—C8—H8C109.5
C6—C1—C2—C30.5 (4)O3—N2—C4—C598.0 (3)
C6—C1—C2—N1178.8 (2)O4—N2—C4—C397.7 (3)
O2—N1—C2—C329.5 (4)O3—N2—C4—C382.5 (3)
O1—N1—C2—C3149.4 (3)C3—C4—C5—C61.7 (4)
O2—N1—C2—C1151.2 (3)N2—C4—C5—C6178.8 (2)
O1—N1—C2—C129.9 (3)C4—C5—C6—C11.0 (4)
C1—C2—C3—C40.1 (4)C4—C5—C6—C7178.7 (2)
N1—C2—C3—C4179.4 (2)C2—C1—C6—C50.1 (4)
C1—C2—C3—Cl1177.2 (2)C2—C1—C6—C7177.6 (2)
N1—C2—C3—Cl12.1 (4)C8—O5—C7—O61.4 (4)
C2—C3—C4—C51.3 (4)C8—O5—C7—C6179.4 (2)
Cl1—C3—C4—C5176.2 (2)C5—C6—C7—O612.6 (4)
C2—C3—C4—N2179.3 (2)C1—C6—C7—O6165.0 (2)
Cl1—C3—C4—N23.2 (3)C5—C6—C7—O5168.2 (2)
O4—N2—C4—C581.8 (3)C1—C6—C7—O514.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.513.329 (3)145
C5—H5···O6ii0.952.343.143 (3)142
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC8H5ClN2O6
Mr260.59
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)4.8579 (10), 9.4438 (19), 11.369 (2)
α, β, γ (°)73.36 (3), 88.09 (3), 87.47 (3)
V3)499.14 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.50 × 0.33 × 0.17
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correctionMulti-scan
(North et al., 1968)
Tmin, Tmax0.824, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
3935, 2193, 1607
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.142, 1.02
No. of reflections2193
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.32

Computer programs: RAPID-AUTO (Rigaku 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.51003.329 (3)145
C5—H5···O6ii0.952.34003.143 (3)142
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine, China.

References

First citationAkira, S., Shoji, K. & Kenichi, S. (1978). Japan Patent No. 53101528  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerenc, B., Gyoery, K. & Mihaly, N. (1984). German Patent No. 3410566  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds