organic compounds
1-[2-(2,6-Dichlorobenzyloxy)-2-(2-furyl)ethyl]-1H-1,2,4-triazole
aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, Southampton SO17 1BJ, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the molecule of the title compound, C15H13Cl2N3O2, the triazole ring is oriented at dihedral angles of 2.54 (13) and 44.43 (12)°, respectively with respect to the furan and dichlorobenzene rings. The dihedral angle between the dichlorobenzene and furan rings is 46.75 (12)°. In the intermolecular C—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers and π–π contacts between dichlorobenzene rings [centroid–centroid distance = 3.583 (2) Å] may further stabilize the structure. Intermolecular C—H⋯π contacts between the triazole and furan rings also occur.
Related literature
For general background to antifungal agents, see: Caira et al. (2004); Godefroi et al. (1969); Özel Güven et al. (2007a,b); Paulvannan et al. (2001); Peeters et al. (1996); Wahbi et al. (1995). For related structures, see: Freer et al. (1986); Özel Güven et al. (2008a,b,c,d,e,f); Özel Güven et al. (2009); Peeters et al. (1979).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536809052568/xu2704sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052568/xu2704Isup2.hkl
The title compound was synthesized by the reaction of 1-(furan-2-yl)-2-(1H-1,2,4-triazol-1-yl)ethanol (unpublished results) with NaH and appropriate benzyl halide. To a solution of alcohol (500 mg, 2.791 mmol) in DMF (4 ml) was added NaH (112 mg, 2.791 mmol) in small fractions. The appropriate benzyl halide (669 mg, 2.791 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h, and excess hydride was decomposed with methyl alcohol (5 ml). After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by
on a silica-gel column using chloroform as Crystals suitable for X-ray analysis were obtained by the recrystallization of the ether from isopropanol solution (yield; 500 mg, 53%).H atoms were positioned geometrically, with C–H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C15H13Cl2N3O2 | F(000) = 696 |
Mr = 338.18 | Dx = 1.482 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 23020 reflections |
a = 10.5853 (3) Å | θ = 2.9–27.5° |
b = 12.4960 (2) Å | µ = 0.44 mm−1 |
c = 12.5850 (3) Å | T = 120 K |
β = 114.455 (1)° | Plate, colorless |
V = 1515.32 (6) Å3 | 0.40 × 0.40 × 0.10 mm |
Z = 4 |
Bruker–Nonius KappaCCD diffractometer | 3438 independent reflections |
Radiation source: fine-focus sealed tube | 2775 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | h = −13→13 |
Tmin = 0.837, Tmax = 0.955 | k = −14→15 |
33067 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.180 | w = 1/[σ2(Fo2) + (0.0984P)2 + 1.9705P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3438 reflections | Δρmax = 1.20 e Å−3 |
200 parameters | Δρmin = −0.76 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.051 (5) |
C15H13Cl2N3O2 | V = 1515.32 (6) Å3 |
Mr = 338.18 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.5853 (3) Å | µ = 0.44 mm−1 |
b = 12.4960 (2) Å | T = 120 K |
c = 12.5850 (3) Å | 0.40 × 0.40 × 0.10 mm |
β = 114.455 (1)° |
Bruker–Nonius KappaCCD diffractometer | 3438 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 2775 reflections with I > 2σ(I) |
Tmin = 0.837, Tmax = 0.955 | Rint = 0.058 |
33067 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.20 e Å−3 |
3438 reflections | Δρmin = −0.76 e Å−3 |
200 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.32066 (8) | 0.66344 (7) | 1.08482 (8) | 0.0470 (3) | |
Cl2 | 0.29005 (8) | 0.31220 (7) | 0.82358 (9) | 0.0497 (3) | |
O1 | 0.07950 (17) | 0.54757 (14) | 0.86960 (15) | 0.0231 (4) | |
O2 | −0.1088 (3) | 0.5914 (2) | 0.5685 (2) | 0.0483 (6) | |
N1 | −0.0576 (2) | 0.71549 (17) | 0.93071 (19) | 0.0226 (5) | |
N2 | −0.0121 (2) | 0.81516 (18) | 0.9183 (2) | 0.0284 (5) | |
N3 | 0.0458 (2) | 0.7770 (2) | 1.1089 (2) | 0.0298 (5) | |
C1 | 0.0483 (3) | 0.8475 (2) | 1.0282 (3) | 0.0300 (6) | |
H1 | 0.0898 | 0.9144 | 1.0487 | 0.036* | |
C2 | −0.0207 (3) | 0.6947 (2) | 1.0435 (2) | 0.0255 (5) | |
H2 | −0.0393 | 0.6309 | 1.0724 | 0.031* | |
C3 | −0.1260 (3) | 0.6463 (2) | 0.8301 (2) | 0.0248 (5) | |
H3A | −0.2023 | 0.6846 | 0.7706 | 0.030* | |
H3B | −0.1638 | 0.5842 | 0.8530 | 0.030* | |
C4 | −0.0241 (2) | 0.6098 (2) | 0.7800 (2) | 0.0228 (5) | |
H4 | 0.0197 | 0.6727 | 0.7628 | 0.027* | |
C5 | −0.0952 (3) | 0.5454 (2) | 0.6705 (2) | 0.0250 (5) | |
C6 | −0.1805 (4) | 0.5198 (4) | 0.4817 (3) | 0.0582 (11) | |
H6 | −0.2048 | 0.5311 | 0.4026 | 0.070* | |
C7 | −0.2101 (3) | 0.4328 (3) | 0.5259 (3) | 0.0457 (9) | |
H7 | −0.2564 | 0.3726 | 0.4847 | 0.055* | |
C8 | −0.1574 (3) | 0.4484 (3) | 0.6500 (3) | 0.0429 (8) | |
H8 | −0.1646 | 0.4016 | 0.7047 | 0.051* | |
C9 | 0.2081 (3) | 0.5444 (2) | 0.8579 (2) | 0.0244 (5) | |
H9A | 0.2416 | 0.6164 | 0.8565 | 0.029* | |
H9B | 0.1961 | 0.5086 | 0.7859 | 0.029* | |
C10 | 0.3091 (2) | 0.4839 (2) | 0.9611 (2) | 0.0224 (5) | |
C11 | 0.3640 (3) | 0.5315 (2) | 1.0718 (2) | 0.0283 (6) | |
C12 | 0.4517 (3) | 0.4781 (3) | 1.1713 (3) | 0.0424 (8) | |
H12 | 0.4849 | 0.5122 | 1.2435 | 0.051* | |
C13 | 0.4890 (3) | 0.3753 (3) | 1.1629 (3) | 0.0459 (9) | |
H13 | 0.5469 | 0.3388 | 1.2297 | 0.055* | |
C14 | 0.4416 (3) | 0.3250 (2) | 1.0558 (4) | 0.0427 (9) | |
H14 | 0.4695 | 0.2555 | 1.0500 | 0.051* | |
C15 | 0.3507 (3) | 0.3794 (2) | 0.9559 (3) | 0.0304 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0272 (4) | 0.0521 (5) | 0.0535 (5) | 0.0023 (3) | 0.0085 (3) | −0.0273 (4) |
Cl2 | 0.0340 (4) | 0.0412 (5) | 0.0711 (6) | −0.0067 (3) | 0.0191 (4) | −0.0283 (4) |
O1 | 0.0144 (8) | 0.0260 (9) | 0.0257 (9) | 0.0012 (6) | 0.0052 (7) | 0.0068 (7) |
O2 | 0.0633 (16) | 0.0525 (15) | 0.0306 (12) | −0.0134 (12) | 0.0208 (11) | −0.0054 (10) |
N1 | 0.0183 (10) | 0.0227 (11) | 0.0247 (11) | −0.0008 (8) | 0.0069 (8) | 0.0013 (8) |
N2 | 0.0284 (12) | 0.0243 (12) | 0.0289 (12) | −0.0032 (9) | 0.0082 (9) | 0.0016 (9) |
N3 | 0.0262 (11) | 0.0356 (13) | 0.0269 (12) | 0.0010 (10) | 0.0105 (9) | −0.0031 (9) |
C1 | 0.0244 (13) | 0.0283 (14) | 0.0341 (15) | −0.0025 (10) | 0.0089 (11) | −0.0028 (11) |
C2 | 0.0228 (12) | 0.0282 (13) | 0.0282 (13) | 0.0003 (10) | 0.0131 (11) | 0.0020 (10) |
C3 | 0.0172 (11) | 0.0250 (13) | 0.0271 (13) | −0.0020 (9) | 0.0041 (10) | −0.0012 (10) |
C4 | 0.0168 (11) | 0.0230 (12) | 0.0233 (12) | 0.0005 (9) | 0.0032 (9) | 0.0040 (9) |
C5 | 0.0201 (12) | 0.0264 (13) | 0.0247 (13) | 0.0046 (9) | 0.0057 (10) | 0.0000 (10) |
C6 | 0.065 (3) | 0.077 (3) | 0.0307 (17) | −0.009 (2) | 0.0176 (17) | −0.0201 (17) |
C7 | 0.0299 (15) | 0.0392 (18) | 0.051 (2) | 0.0080 (13) | −0.0004 (14) | −0.0203 (15) |
C8 | 0.0333 (16) | 0.0322 (16) | 0.0470 (19) | −0.0052 (12) | 0.0004 (14) | 0.0062 (13) |
C9 | 0.0177 (11) | 0.0308 (13) | 0.0254 (13) | 0.0016 (9) | 0.0096 (10) | 0.0038 (10) |
C10 | 0.0152 (11) | 0.0240 (12) | 0.0286 (13) | 0.0001 (9) | 0.0095 (10) | 0.0050 (10) |
C11 | 0.0165 (11) | 0.0400 (15) | 0.0289 (14) | 0.0013 (10) | 0.0098 (10) | 0.0039 (11) |
C12 | 0.0208 (13) | 0.080 (3) | 0.0261 (15) | 0.0038 (14) | 0.0098 (12) | 0.0119 (15) |
C13 | 0.0222 (14) | 0.068 (2) | 0.0461 (19) | 0.0056 (14) | 0.0131 (13) | 0.0354 (17) |
C14 | 0.0233 (14) | 0.0281 (15) | 0.080 (3) | 0.0056 (11) | 0.0243 (16) | 0.0228 (15) |
C15 | 0.0190 (12) | 0.0248 (13) | 0.0472 (17) | −0.0040 (10) | 0.0134 (12) | −0.0008 (11) |
N1—N2 | 1.367 (3) | C7—C8 | 1.438 (5) |
C1—N2 | 1.324 (4) | C7—H7 | 0.9300 |
C1—N3 | 1.352 (4) | C8—H8 | 0.9300 |
C1—H1 | 0.9300 | C9—O1 | 1.429 (3) |
C2—N3 | 1.323 (4) | C9—H9A | 0.9700 |
C2—N1 | 1.333 (3) | C9—H9B | 0.9700 |
C2—H2 | 0.9300 | C10—C9 | 1.501 (3) |
C3—N1 | 1.455 (3) | C10—C11 | 1.401 (4) |
C3—H3A | 0.9700 | C10—C15 | 1.389 (4) |
C3—H3B | 0.9700 | C11—Cl1 | 1.737 (3) |
C4—O1 | 1.434 (3) | C11—C12 | 1.383 (4) |
C4—C3 | 1.527 (4) | C12—C13 | 1.361 (6) |
C4—C5 | 1.501 (4) | C12—H12 | 0.9300 |
C4—H4 | 0.9800 | C13—C14 | 1.380 (6) |
C5—O2 | 1.359 (4) | C13—H13 | 0.9300 |
C5—C8 | 1.352 (4) | C14—C15 | 1.403 (4) |
C6—O2 | 1.373 (4) | C14—H14 | 0.9300 |
C6—C7 | 1.317 (6) | C15—Cl2 | 1.733 (3) |
C6—H6 | 0.9300 | ||
C9—O1—C4 | 112.62 (18) | C6—C7—C8 | 107.1 (3) |
C5—O2—C6 | 106.5 (3) | C6—C7—H7 | 126.5 |
N2—N1—C3 | 120.9 (2) | C8—C7—H7 | 126.5 |
C2—N1—N2 | 109.7 (2) | C5—C8—C7 | 105.6 (3) |
C2—N1—C3 | 129.2 (2) | C5—C8—H8 | 127.2 |
C1—N2—N1 | 101.5 (2) | C7—C8—H8 | 127.2 |
C2—N3—C1 | 102.1 (2) | O1—C9—C10 | 107.01 (19) |
N2—C1—N3 | 115.7 (2) | O1—C9—H9A | 110.3 |
N2—C1—H1 | 122.1 | O1—C9—H9B | 110.3 |
N3—C1—H1 | 122.1 | C10—C9—H9A | 110.3 |
N1—C2—H2 | 124.5 | C10—C9—H9B | 110.3 |
N3—C2—N1 | 110.9 (2) | H9A—C9—H9B | 108.6 |
N3—C2—H2 | 124.5 | C11—C10—C9 | 120.1 (2) |
N1—C3—C4 | 110.8 (2) | C15—C10—C9 | 124.0 (2) |
N1—C3—H3A | 109.5 | C15—C10—C11 | 115.9 (2) |
N1—C3—H3B | 109.5 | C10—C11—Cl1 | 118.7 (2) |
C4—C3—H3A | 109.5 | C12—C11—C10 | 122.9 (3) |
C4—C3—H3B | 109.5 | C12—C11—Cl1 | 118.5 (3) |
H3A—C3—H3B | 108.1 | C11—C12—H12 | 120.3 |
O1—C4—C3 | 106.1 (2) | C13—C12—C11 | 119.5 (3) |
O1—C4—C5 | 111.1 (2) | C13—C12—H12 | 120.3 |
O1—C4—H4 | 109.3 | C12—C13—C14 | 120.5 (3) |
C3—C4—H4 | 109.3 | C12—C13—H13 | 119.8 |
C5—C4—C3 | 111.5 (2) | C14—C13—H13 | 119.8 |
C5—C4—H4 | 109.3 | C13—C14—C15 | 119.5 (3) |
O2—C5—C4 | 117.2 (2) | C13—C14—H14 | 120.3 |
C8—C5—O2 | 110.3 (3) | C15—C14—H14 | 120.3 |
C8—C5—C4 | 132.5 (3) | C10—C15—Cl2 | 120.2 (2) |
O2—C6—H6 | 124.7 | C10—C15—C14 | 121.8 (3) |
C7—C6—O2 | 110.6 (3) | C14—C15—Cl2 | 118.1 (2) |
C7—C6—H6 | 124.7 | ||
C2—N1—N2—C1 | −1.0 (3) | C7—C6—O2—C5 | −0.4 (4) |
C3—N1—N2—C1 | −176.9 (2) | O2—C6—C7—C8 | 1.3 (4) |
N3—C1—N2—N1 | 0.4 (3) | C6—C7—C8—C5 | −1.7 (4) |
N2—C1—N3—C2 | 0.3 (3) | C10—C9—O1—C4 | 176.0 (2) |
N3—C2—N1—N2 | 1.3 (3) | C11—C10—C9—O1 | −73.1 (3) |
N3—C2—N1—C3 | 176.7 (2) | C15—C10—C9—O1 | 104.8 (3) |
N1—C2—N3—C1 | −1.0 (3) | C9—C10—C11—Cl1 | −3.8 (3) |
C4—C3—N1—C2 | −107.0 (3) | C9—C10—C11—C12 | 176.5 (2) |
C4—C3—N1—N2 | 68.0 (3) | C15—C10—C11—Cl1 | 178.21 (19) |
C3—C4—O1—C9 | −156.0 (2) | C15—C10—C11—C12 | −1.5 (4) |
C5—C4—O1—C9 | 82.6 (3) | C9—C10—C15—Cl2 | 2.2 (3) |
O1—C4—C3—N1 | 63.3 (3) | C9—C10—C15—C14 | −177.5 (2) |
C5—C4—C3—N1 | −175.5 (2) | C11—C10—C15—Cl2 | −179.85 (19) |
O1—C4—C5—O2 | −132.0 (2) | C11—C10—C15—C14 | 0.4 (4) |
O1—C4—C5—C8 | 51.7 (4) | C10—C11—C12—C13 | 0.9 (4) |
C3—C4—C5—O2 | 109.7 (3) | Cl1—C11—C12—C13 | −178.8 (2) |
C3—C4—C5—C8 | −66.6 (4) | C11—C12—C13—C14 | 0.9 (4) |
C4—C5—O2—C6 | −177.9 (3) | C12—C13—C14—C15 | −2.0 (4) |
C8—C5—O2—C6 | −0.8 (4) | C13—C14—C15—Cl2 | −178.4 (2) |
O2—C5—C8—C7 | 1.5 (4) | C13—C14—C15—C10 | 1.3 (4) |
C4—C5—C8—C7 | 178.0 (3) |
Cg1 and Cg2 are the centroids of the N1–N3/C1/C2 and O2/C5–C8 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.44 | 3.363 (3) | 173 |
C9—H9B···Cl2 | 0.97 | 2.62 | 3.109 (3) | 112 |
C1—H1···Cg2ii | 0.93 | 2.79 | 3.488 (4) | 133 |
C7—H7···Cg1iii | 0.93 | 2.93 | 3.570 (4) | 127 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−3/2, −y−1/2, z−3/2; (iii) −x+3/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C15H13Cl2N3O2 |
Mr | 338.18 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 10.5853 (3), 12.4960 (2), 12.5850 (3) |
β (°) | 114.455 (1) |
V (Å3) | 1515.32 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.40 × 0.40 × 0.10 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.837, 0.955 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33067, 3438, 2775 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.180, 1.04 |
No. of reflections | 3438 |
No. of parameters | 200 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.20, −0.76 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cg1 and Cg2 are the centroids of the N1–N3/C1/C2 and O2/C5–C8 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.44 | 3.363 (3) | 173 |
C9—H9B···Cl2 | 0.97 | 2.62 | 3.109 (3) | 112 |
C1—H1···Cg2ii | 0.93 | 2.79 | 3.488 (4) | 133 |
C7—H7···Cg1iii | 0.93 | 2.93 | 3.570 (4) | 127 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−3/2, −y−1/2, z−3/2; (iii) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
The authors acknowledge Zonguldak Karaelmas University Research Fund (project No. 2008–13–02–06) for financial support.
References
Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem. 12, 784–791. CrossRef CAS PubMed Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236. Web of Science PubMed Google Scholar
Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734. Google Scholar
Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008e). Acta Cryst. E64, o1914–o1915. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2009). Acta Cryst. E65, o2868–o2869. Web of Science CrossRef IUCr Journals Google Scholar
Özel Güven, Ö., Tahtacı, H., Tahir, M. N. & Hökelek, T. (2008f). Acta Cryst. E64, o2465. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682. Web of Science CrossRef CAS Google Scholar
Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem. 30, 955–962. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, among antifungal agents, azole derivatives still have an important place in the class of systemic antifungal drugs. Some ether structures containing 1H-imidazole ring like micozanole, ecozanole and sulconazole have been synthesized and developed for clinical uses as antifungal agents (Godefroi et al., 1969). The crystal structures of these ether derivatives like miconazole (Peeters et al., 1979), econazole (Freer et al., 1986) have been reported previously. Also, antifungal activity of aromatic ethers possessing 1H-1,2,4-triazole ring have been reported (Wahbi et al., 1995). Itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) are 1H-1,2,4-triazole ring containing azole derivatives. 1,2,4-Triazoles are biologically interesting molecules and their chemistry is receiving considerable attention due to antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001). Ether structures possessing 1H-benzimidazole ring have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). The crystal structures of 1H-benzimidazole ring containing ether derivatives (Özel Güven et al., 2008a,b,c,d) and also,1H-1,2,4-triazole ring containing ether derivatives have been reported recently (Özel Güven et al., 2008e,f; Özel Güven et al., 2009). Now, we report herein the crystal structure of 2,6-dichloro- derivative of 1H-1,2,4-triazole and furyl rings containing ether structure.
In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar triazole ring is oriented with respect to the furan and dichlorobenzene rings at dihedral angles of 2.54 (13)° and 44.43 (12)°, respectively. Atoms C3, C4 and C9 are -0.064 (3), 0.039 (3) and -0.073 (3) Å away from the planes of the triazole, furan and dichlorobenzene, respectively. So, they are nearly coplanar with the adjacent rings. The dichlorobenzene ring is oriented with respect to the furan ring at a dihedral angle of 46.75 (12)°. An intramolecular C—H···Cl hydrogen bond (Table 1) results in the formation of a five-membered ring (Cl2/H9B/C9/C10/C15) adopting envelope conformation with H9B atom displaced by 0.210 (1) Å from the plane of the other ring atoms.
In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the dichlorobenzene rings, Cg3—Cg3i [symmetry code: (i) -x, -y, 1 - z, where Cg3 is centroid of the ring (C10-C15)] may further stabilize the structure, with centroid-centroid distance of 3.583 (2) Å. Intermolecular C—H···π interactions (Table 1) are also observed between the triazole and furan rings.