organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyrimidinium nitrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 December 2009; accepted 5 December 2009; online 12 December 2009)

In the title compound, C4H6N3+·NO3, the cation is coplanar with the anion (r.m.s. deviation = 0.048 Å), and links to the anion via an N—H⋯O hydrogen bond, forming an ion pair. In the crystal, adjacent ion pairs are further linked by N—H⋯O hydrogen bonds into linear chains running along the b axis.

Related literature

For the crystal structures of the 2-amino­pyrimidinium salts of other mineral acids, see: Czupiński et al. (2005[Czupiński, O., Wojtaś, M., Ciunik, Z. & Jakubas, R. (2005). Solid State Sci. 8, 86-96.]); Lee et al. (2003[Lee, J.-H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425-1442.]); Ye et al. (2002[Ye, M.-D., Hu, M.-L. & Ye, C.-P. (2002). Z. Kristallogr. New Cryst. Struct. 217, 501-502.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3+·NO3

  • Mr = 158.13

  • Monoclinic, C 2/c

  • a = 12.632 (2) Å

  • b = 6.2160 (8) Å

  • c = 17.727 (2) Å

  • β = 99.009 (3)°

  • V = 1374.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.981

  • 5139 measured reflections

  • 1210 independent reflections

  • 823 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.120

  • S = 0.99

  • 1210 reflections

  • 124 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 1.87 (1) 2.742 (2) 177 (2)
N3—H11⋯O1 0.86 (1) 1.99 (1) 2.850 (3) 178 (2)
N3—H12⋯O2i 0.85 (1) 2.05 (1) 2.901 (2) 178 (2)
Symmetry code: (i) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structures of the 2-aminopyrimidinium salts of other mineral acids, see: Czupiński et al. (2005); Lee et al. (2003); Ye et al. (2002).

Experimental top

To an aqueous solution of 2-aminopyrimidine (0.19 g, 2 mmol) was added chromium nitrate nonahydrate (0.80 g, 2 mmol). The pale green solution was set aside for several days. Colorless crystals of the organic salt were isolated.

Refinement top

Carbon-bound H-atoms generated geometrically [C–H 0.93 Å, U(H) 1.2Ueq(C)]. The nitrogen-bound H-atoms were refined with a distance restraint of N–H 0.86±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C4H6N4][NO3] at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Aminopyrimidinium nitrate top
Crystal data top
C4H6N3+·NO3F(000) = 656
Mr = 158.13Dx = 1.528 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3773 reflections
a = 12.632 (2) Åθ = 3.3–27.5°
b = 6.2160 (8) ŵ = 0.13 mm1
c = 17.727 (2) ÅT = 293 K
β = 99.009 (3)°Prism, colorless
V = 1374.8 (3) Å30.25 × 0.20 × 0.15 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1210 independent reflections
Radiation source: fine-focus sealed tube823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scanθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.968, Tmax = 0.981k = 77
5139 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0773P)2]
where P = (Fo2 + 2Fc2)/3
1210 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.19 e Å3
6 restraintsΔρmin = 0.15 e Å3
Crystal data top
C4H6N3+·NO3V = 1374.8 (3) Å3
Mr = 158.13Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.632 (2) ŵ = 0.13 mm1
b = 6.2160 (8) ÅT = 293 K
c = 17.727 (2) Å0.25 × 0.20 × 0.15 mm
β = 99.009 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1210 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
823 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.028
5139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.19 e Å3
1210 reflectionsΔρmin = 0.15 e Å3
124 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61627 (16)1.0844 (3)0.47003 (8)0.0892 (6)
O20.63012 (12)1.3264 (2)0.38605 (8)0.0711 (5)
O30.61420 (14)0.9926 (3)0.35358 (9)0.0797 (5)
N10.62478 (13)0.3594 (3)0.59174 (10)0.0568 (5)
N20.62700 (13)0.7155 (3)0.63460 (9)0.0575 (5)
N30.62544 (15)0.6380 (3)0.50731 (10)0.0633 (5)
N40.62009 (13)1.1341 (3)0.40181 (9)0.0560 (5)
C10.62639 (15)0.5716 (3)0.57800 (10)0.0501 (5)
C20.62721 (17)0.6376 (4)0.70374 (12)0.0616 (6)
C30.62702 (18)0.4200 (4)0.72104 (13)0.0669 (6)
C40.62560 (17)0.2810 (4)0.66282 (13)0.0638 (6)
H10.6222 (17)0.268 (3)0.5539 (10)0.074 (7)*
H110.6213 (19)0.7733 (19)0.4964 (16)0.083 (8)*
H120.6282 (16)0.547 (3)0.4718 (9)0.068 (7)*
H20.6222 (18)0.749 (3)0.7401 (13)0.079 (7)*
H30.628 (2)0.378 (4)0.7724 (10)0.087 (7)*
H40.6234 (17)0.130 (3)0.6655 (12)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1669 (17)0.0547 (10)0.0505 (9)0.0094 (10)0.0311 (9)0.0031 (7)
O20.1061 (12)0.0523 (10)0.0576 (9)0.0043 (8)0.0217 (8)0.0025 (7)
O30.1178 (13)0.0620 (11)0.0620 (9)0.0010 (9)0.0227 (8)0.0182 (8)
N10.0695 (11)0.0435 (11)0.0575 (10)0.0026 (7)0.0104 (8)0.0033 (8)
N20.0713 (11)0.0478 (10)0.0543 (9)0.0030 (8)0.0126 (8)0.0039 (8)
N30.0928 (13)0.0486 (13)0.0504 (10)0.0032 (9)0.0174 (9)0.0014 (8)
N40.0677 (10)0.0512 (11)0.0506 (10)0.0046 (8)0.0144 (8)0.0020 (8)
C10.0535 (11)0.0447 (12)0.0520 (10)0.0022 (8)0.0077 (8)0.0022 (8)
C20.0742 (14)0.0584 (15)0.0533 (12)0.0030 (10)0.0131 (10)0.0047 (10)
C30.0787 (15)0.0674 (15)0.0559 (12)0.0022 (11)0.0146 (11)0.0062 (12)
C40.0736 (14)0.0500 (14)0.0676 (13)0.0011 (10)0.0104 (11)0.0089 (11)
Geometric parameters (Å, º) top
O1—N41.257 (2)N3—C11.318 (3)
O2—N41.239 (2)N3—H110.86 (1)
O3—N41.221 (2)N3—H120.85 (1)
N1—C11.342 (2)C2—C31.387 (3)
N1—C41.350 (3)C2—H20.953 (16)
N1—H10.87 (1)C3—C41.344 (3)
N2—C21.318 (3)C3—H30.944 (17)
N2—C11.344 (2)C4—H40.942 (16)
C1—N1—C4121.76 (19)N3—C1—N2119.96 (19)
C1—N1—H1119.8 (16)N1—C1—N2121.17 (18)
C4—N1—H1118.4 (17)N2—C2—C3124.4 (2)
C2—N2—C1116.65 (18)N2—C2—H2111.8 (15)
C1—N3—H11120.6 (19)C3—C2—H2123.6 (15)
C1—N3—H12120.0 (16)C4—C3—C2117.2 (2)
H11—N3—H12119 (3)C4—C3—H3123.9 (16)
O3—N4—O2122.31 (17)C2—C3—H3118.9 (15)
O3—N4—O1119.30 (18)C3—C4—N1118.8 (2)
O2—N4—O1118.39 (16)C3—C4—H4126.9 (13)
N3—C1—N1118.86 (18)N1—C4—H4114.3 (13)
C4—N1—C1—N3179.98 (18)C1—N2—C2—C30.1 (3)
C4—N1—C1—N21.2 (3)N2—C2—C3—C40.6 (3)
C2—N2—C1—N3179.55 (19)C2—C3—C4—N10.2 (3)
C2—N2—C1—N10.8 (3)C1—N1—C4—C30.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)1.87 (1)2.742 (2)177 (2)
N3—H11···O10.86 (1)1.99 (1)2.850 (3)178 (2)
N3—H12···O2i0.85 (1)2.05 (1)2.901 (2)178 (2)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC4H6N3+·NO3
Mr158.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.632 (2), 6.2160 (8), 17.727 (2)
β (°) 99.009 (3)
V3)1374.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
5139, 1210, 823
Rint0.028
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.120, 0.99
No. of reflections1210
No. of parameters124
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)1.87 (1)2.742 (2)177 (2)
N3—H11···O10.86 (1)1.99 (1)2.850 (3)178 (2)
N3—H12···O2i0.85 (1)2.05 (1)2.901 (2)178 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCzupiński, O., Wojtaś, M., Ciunik, Z. & Jakubas, R. (2005). Solid State Sci. 8, 86–96.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLee, J.-H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425–1442.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYe, M.-D., Hu, M.-L. & Ye, C.-P. (2002). Z. Kristallogr. New Cryst. Struct. 217, 501–502.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds