metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m46-m47

(Carbonato-κ2O,O′)bis­­(1,10-phenan­throline-κ2N,N′)cobalt(III) nitrate monohydrate

aOndokuzmayıs Üniversitesi, Fen-Edebiyat Faültesi, Kimya Bölümü, 55200 Atakum, Samsun, Turkey, and bOndokuzmayıs Üniversitesi, Fen-Edebiyat Faültesi, Fizik Bölümü, 55200 Atakum, Samsun, Turkey
*Correspondence e-mail: oandac@omu.edu.tr

(Received 6 December 2009; accepted 8 December 2009; online 12 December 2009)

The crystal structure of the title compound, [Co(CO3)(C12H8N2)2]NO3·H2O, consists of CoIII complex cations, nitrate anions and uncoordinated water mol­ecules. The CoIII cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa­hedral coordination geometry. A three-dimensional supra­molecular structure is formed by O—H⋯O and C—H⋯O hydrogen bonding, C—H⋯π and aromatic ππ stacking [centroid–centroid distance = 3.995 (1)Å] inter­actions.

Related literature

For Co(III) complexes with carbonate and phen ligands, see: Fu et al. (2006[Fu, X.-C., Wang, X.-Y., Li, M.-T., Wang, C.-G. & Deng, X.-T. (2006). Acta Cryst. E62, m1263-m1265.]); Guild et al. (1980[Guild, B. C., Hayden, T. & Brennan, T. F. (1980). Cryst. Struct. Commun. 6, 371-374.]); Hadadzadeh et al. (2007[Hadadzadeh, H., Mansouri, G., Khavasi, H. R., Hoffmann, R.-D., Rodewald, U. Ch. & Pöttgen, R. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x101-x102.]); Hennig et al. (1980[Hennig, H., Sieler, J., Benedix, R., Kaiser, J., Sjolin, L. & Lindqvist, O. (1980). Z. Anorg. Allg. Chem. 464, 151-154.]); McAuliffe et al. (1992[McAuliffe, C. A., Pritchard, R. G., Bermejo, M. R., Garcia-Vazquez, A., Macias, A., Sanmartín, J., Romero, J. & Sousa, A. (1992). Acta Cryst. C48, 1841-1842.]); Niederhoffer et al. (1982[Niederhoffer, E. C., Martell, A. E., Rudolf, P. & Clearfield, A. (1982). Inorg. Chem. 21 , 3734-3741.]); Sharma et al. (2009[Sharma, R. P., Singh, A., Brandao, P., Felix, P. & Venugopalan, P. (2009). J. Mol. Struct. 921, 227-232.]). For a CoII coordination compound with carbonate and phen ligands, see: Li et al. (2004[Li, R. S., Lin, J. L. & Zheng, Y. Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 425-426.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(CO3)(C12H8N2)2]NO3·H2O

  • Mr = 559.37

  • Monoclinic, P 21 /n

  • a = 13.6986 (9) Å

  • b = 10.8583 (5) Å

  • c = 16.1494 (10) Å

  • β = 106.386 (5)°

  • V = 2304.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.41 × 0.26 × 0.15 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.818, Tmax = 0.905

  • 21353 measured reflections

  • 5713 independent reflections

  • 4021 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.02

  • 5713 reflections

  • 349 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O5 0.86 (2) 1.98 (2) 2.830 (3) 168 (5)
O7—H7B⋯O3i 0.81 (5) 2.03 (5) 2.809 (4) 164 (6)
C3—H3⋯O3ii 0.93 2.54 3.362 (3) 148
C5—H5⋯O1ii 0.93 2.56 3.415 (3) 153
C8—H8⋯O7iii 0.93 2.31 3.130 (4) 146
C9—H9⋯O6iv 0.93 2.35 3.234 (3) 158
C15—H15⋯O6v 0.93 2.45 3.370 (3) 170
C17—H17⋯O4v 0.93 2.50 3.416 (3) 167
C1—H1⋯Cg1vi 0.93 2.92 3.705 (3) 143
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF. The combination of cobalt(II) cations, carbonate and phenantroline ligands often results in CoIII-containing products as a result of an autoxidation reaction. CCDC search revealed that several crystal structures of CoIII mixed ligand complexes of phenanthroline and carbonate ligands have been reported (Guild et al., 1980; Fu et al., 2006; Hadadzadeh et al., 2007; McAuliffe et al.,1992; Hennig et al., 1980; Niederhoffer et al., 1982; Sharma et al., 2009). CoII coordination compound with carbonate and phen ligand has also been reported (Li et al., 2004).

In this study, we describe the synthesis and structure of the title compound, (I). The CoIII atom in the discrete [Co(CO3)(phen)2]+ cation (Fig. 1) displays a distorted octahedral geometry, being coordinated by four N atoms of two 1,10-phenanthroline ligands and two O atoms of the bidentate carbonate anion. Both phen ligands are planar with r.m.s. deviation of 0.04 Å and involve in ππ interactions with neighboring phen rings. The carbonate ligand is also planar with r.m.s. deviation of 0.002 Å. The charge-balancing nitrate ion is essencially planar with r.m.s. deviation of 0.0015 Å and exibits slight deviation from D3h symmetry. Non-coordinated water molecule is involved in hydrogen bonding (Table 1) and contrubutes stabilization of the 3 d structure forming. As shown in Fig. 2, the hydrogen bonds are supplemented by aromatic ππ stacking interactions of neighboring phen rings, C–H···O and C–H···π interactions.

Related literature top

For Co(III) complexes with carbonate and phen ligands, see: Fu et al. (2006); Guild et al. (1980); Hadadzadeh et al. (2007); Hennig et al. (1980); McAuliffe et al. (1992); Niederhoffer et al. (1982); Sharma et al. (2009). For a CoII coordination compound with carbonate and phen ligands, see: Li et al. (2004).

Experimental top

Co(NO3)2.6H2O (0.291 g, 1.0 mmol) was added to a solution containing phen (0.396 g, 2.0 mmol) and adenine (0.135 g, 1.0 mmol) in water-ethanol (10:90, 100 ml). The reaction mixture was stirred for 1 h at 343 K. Thereafter, NaHCO3 solution (0.168 g, 2.00 mmol in 10 ml water-ethanole, 10:90) was added to the mixture for adjusting the pH to 7 by using solid-state pH sensor. The resulting solution was cooled to room temperature and filtered. The filtrate was left to stand in air for slow evaporation and red prism single crystals of (I) were obtained after several months.

Refinement top

Water H atoms were located in a difference Fourier map and refined with distance constraints of O—H = 0.83 (3) Å, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP-III drawing of title complex with the atom numbering scheme at 40% ellipsoid.
[Figure 2] Fig. 2. The packing diagram of the complex with hydrogen bonds shown as dashed lines.
(Carbonato-κ2O,O')bis(1,10-phenanthroline- κ2N,N')cobalt(III) nitrate monohydrate top
Crystal data top
[Co(CO3)(C12H8N2)2]NO3·H2OF(000) = 1144
Mr = 559.37Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 23029 reflections
a = 13.6986 (9) Åθ = 1.6–28.4°
b = 10.8583 (5) ŵ = 0.80 mm1
c = 16.1494 (10) ÅT = 296 K
β = 106.386 (5)°Prism, red
V = 2304.6 (2) Å30.41 × 0.26 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
5713 independent reflections
Radiation source: fine-focus sealed tube4021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 6.67 pixels mm-1θmax = 28.3°, θmin = 1.7°
rotation method scansh = 1818
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1414
Tmin = 0.818, Tmax = 0.905l = 2121
21353 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0979P]
where P = (Fo2 + 2Fc2)/3
5713 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.26 e Å3
3 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Co(CO3)(C12H8N2)2]NO3·H2OV = 2304.6 (2) Å3
Mr = 559.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6986 (9) ŵ = 0.80 mm1
b = 10.8583 (5) ÅT = 296 K
c = 16.1494 (10) Å0.41 × 0.26 × 0.15 mm
β = 106.386 (5)°
Data collection top
Stoe IPDS-2
diffractometer
5713 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4021 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.905Rint = 0.045
21353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
5713 reflectionsΔρmin = 0.42 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23394 (19)0.2180 (2)0.81209 (14)0.0555 (5)
H10.17330.17800.78500.067*
C20.2717 (2)0.2124 (2)0.90169 (16)0.0634 (6)
H20.23510.17130.93370.076*
C30.3620 (2)0.2669 (2)0.94241 (15)0.0622 (6)
H30.38810.26071.00200.075*
C40.41549 (18)0.3325 (2)0.89410 (13)0.0517 (5)
C50.50875 (19)0.3963 (2)0.92853 (14)0.0614 (6)
H50.54130.39110.98730.074*
C60.55098 (18)0.4642 (2)0.87781 (15)0.0614 (6)
H60.61060.50760.90260.074*
C70.50573 (17)0.4708 (2)0.78621 (14)0.0519 (5)
C80.54379 (19)0.5401 (2)0.72896 (17)0.0621 (6)
H80.60290.58620.74930.074*
C90.49337 (19)0.5391 (2)0.64327 (16)0.0602 (6)
H90.51750.58580.60500.072*
C100.40593 (17)0.4685 (2)0.61276 (14)0.0513 (5)
H100.37340.46770.55380.062*
C110.41689 (15)0.40448 (19)0.75099 (12)0.0446 (4)
C120.37090 (16)0.33652 (19)0.80467 (12)0.0452 (4)
C130.36955 (17)0.0689 (2)0.68057 (14)0.0530 (5)
H130.37510.08050.73880.064*
C140.41500 (19)0.0337 (2)0.65606 (16)0.0614 (6)
H140.45030.08940.69760.074*
C150.40802 (19)0.0530 (2)0.57096 (17)0.0604 (6)
H150.43800.12200.55420.072*
C160.35541 (17)0.0319 (2)0.50914 (14)0.0522 (5)
C170.3447 (2)0.0247 (2)0.41841 (16)0.0623 (6)
H170.37190.04250.39690.075*
C180.2962 (2)0.1128 (2)0.36378 (15)0.0631 (6)
H180.29190.10620.30540.076*
C190.25118 (18)0.2164 (2)0.39328 (14)0.0522 (5)
C200.1959 (2)0.3097 (2)0.34048 (15)0.0651 (6)
H200.18880.30930.28150.078*
C210.1521 (2)0.4017 (3)0.37623 (15)0.0675 (7)
H210.11440.46310.34140.081*
C220.16433 (19)0.4027 (2)0.46493 (14)0.0570 (5)
H220.13430.46540.48840.068*
C230.25937 (16)0.22439 (18)0.48130 (13)0.0458 (4)
C240.31266 (15)0.13283 (19)0.53936 (12)0.0447 (4)
C250.07886 (18)0.3405 (2)0.63398 (14)0.0563 (5)
N50.57159 (19)0.29524 (19)0.57205 (15)0.0663 (6)
N10.28239 (14)0.27885 (15)0.76449 (11)0.0460 (4)
N20.36749 (13)0.40223 (15)0.66510 (10)0.0434 (4)
N30.31838 (13)0.15092 (16)0.62389 (10)0.0450 (4)
N40.21773 (13)0.31645 (16)0.51679 (10)0.0464 (4)
O10.11556 (12)0.23030 (15)0.62705 (10)0.0545 (4)
O20.15083 (11)0.42331 (14)0.64563 (9)0.0528 (4)
O30.00973 (13)0.3624 (2)0.63088 (13)0.0822 (6)
O40.5792 (2)0.2517 (2)0.64330 (14)0.0981 (7)
O50.64324 (16)0.3479 (3)0.55465 (15)0.0973 (7)
O60.48923 (17)0.2860 (2)0.51406 (14)0.0837 (6)
O70.8229 (2)0.2576 (4)0.6729 (2)0.1344 (11)
H7A0.764 (2)0.284 (5)0.643 (3)0.202*
H7B0.863 (3)0.289 (5)0.651 (4)0.202*
Co10.24569 (2)0.29966 (2)0.640409 (16)0.04249 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0660 (14)0.0558 (13)0.0496 (12)0.0034 (10)0.0241 (11)0.0011 (9)
C20.0807 (17)0.0649 (15)0.0516 (13)0.0025 (13)0.0299 (13)0.0099 (11)
C30.0823 (18)0.0644 (15)0.0393 (11)0.0122 (13)0.0163 (12)0.0072 (10)
C40.0601 (13)0.0547 (12)0.0383 (10)0.0106 (10)0.0108 (9)0.0004 (9)
C50.0639 (14)0.0688 (15)0.0420 (11)0.0113 (12)0.0006 (10)0.0074 (10)
C60.0499 (13)0.0686 (15)0.0570 (13)0.0003 (11)0.0008 (11)0.0126 (11)
C70.0487 (12)0.0522 (11)0.0531 (11)0.0026 (10)0.0117 (10)0.0065 (9)
C80.0556 (13)0.0582 (13)0.0737 (16)0.0091 (11)0.0206 (12)0.0069 (12)
C90.0657 (15)0.0568 (13)0.0637 (14)0.0037 (11)0.0274 (12)0.0056 (11)
C100.0575 (13)0.0523 (12)0.0475 (11)0.0017 (10)0.0203 (10)0.0024 (9)
C110.0455 (10)0.0467 (10)0.0404 (10)0.0039 (9)0.0101 (8)0.0026 (8)
C120.0510 (12)0.0463 (10)0.0373 (9)0.0059 (9)0.0109 (9)0.0014 (8)
C130.0607 (13)0.0512 (11)0.0486 (11)0.0065 (10)0.0180 (10)0.0064 (9)
C140.0679 (15)0.0517 (12)0.0663 (14)0.0127 (11)0.0216 (12)0.0101 (11)
C150.0640 (14)0.0489 (12)0.0729 (15)0.0079 (11)0.0269 (12)0.0029 (11)
C160.0529 (12)0.0516 (12)0.0561 (12)0.0000 (10)0.0220 (10)0.0062 (10)
C170.0688 (15)0.0632 (14)0.0605 (14)0.0023 (12)0.0273 (12)0.0154 (12)
C180.0727 (15)0.0740 (16)0.0475 (12)0.0024 (13)0.0253 (12)0.0130 (11)
C190.0563 (12)0.0597 (13)0.0401 (10)0.0035 (10)0.0126 (9)0.0060 (9)
C200.0786 (17)0.0763 (16)0.0381 (11)0.0016 (14)0.0126 (11)0.0002 (11)
C210.0809 (17)0.0702 (15)0.0446 (12)0.0139 (14)0.0065 (12)0.0069 (11)
C220.0643 (14)0.0577 (13)0.0431 (11)0.0109 (11)0.0054 (10)0.0003 (10)
C230.0470 (11)0.0506 (11)0.0391 (10)0.0018 (9)0.0112 (8)0.0049 (8)
C240.0453 (11)0.0479 (11)0.0421 (10)0.0015 (9)0.0142 (9)0.0031 (8)
C250.0484 (12)0.0756 (15)0.0433 (11)0.0041 (11)0.0104 (9)0.0088 (10)
N50.0804 (16)0.0622 (12)0.0615 (12)0.0192 (12)0.0284 (12)0.0051 (10)
N10.0511 (10)0.0473 (9)0.0407 (8)0.0017 (7)0.0148 (8)0.0011 (7)
N20.0482 (9)0.0455 (8)0.0373 (8)0.0039 (7)0.0131 (7)0.0007 (7)
N30.0481 (9)0.0459 (9)0.0415 (8)0.0012 (8)0.0134 (7)0.0008 (7)
N40.0495 (10)0.0496 (9)0.0380 (8)0.0045 (8)0.0086 (7)0.0035 (7)
O10.0517 (8)0.0618 (9)0.0496 (8)0.0056 (7)0.0135 (7)0.0104 (7)
O20.0521 (8)0.0571 (9)0.0488 (8)0.0060 (7)0.0136 (7)0.0076 (7)
O30.0494 (10)0.1140 (16)0.0828 (13)0.0074 (10)0.0181 (9)0.0190 (12)
O40.130 (2)0.1037 (15)0.0671 (13)0.0381 (15)0.0386 (13)0.0315 (12)
O50.0698 (13)0.1280 (19)0.0965 (16)0.0040 (13)0.0278 (12)0.0277 (14)
O60.0788 (13)0.0934 (15)0.0770 (13)0.0005 (11)0.0190 (11)0.0041 (11)
O70.0868 (17)0.166 (3)0.151 (3)0.030 (2)0.0343 (19)0.085 (2)
Co10.04562 (16)0.04603 (15)0.03554 (14)0.00165 (12)0.01098 (11)0.00324 (11)
Geometric parameters (Å, º) top
C1—N11.325 (3)C16—C171.433 (3)
C1—C21.394 (3)C17—C181.343 (4)
C1—H10.9300C17—H170.9300
C2—C31.361 (4)C18—C191.428 (3)
C2—H20.9300C18—H180.9300
C3—C41.406 (3)C19—C231.397 (3)
C3—H30.9300C19—C201.401 (3)
C4—C121.401 (3)C20—C211.373 (4)
C4—C51.421 (3)C20—H200.9300
C5—C61.348 (4)C21—C221.394 (3)
C5—H50.9300C21—H210.9300
C6—C71.435 (3)C22—N41.330 (3)
C6—H60.9300C22—H220.9300
C7—C111.390 (3)C23—N41.356 (3)
C7—C81.401 (3)C23—C241.419 (3)
C8—C91.361 (3)C24—N31.359 (2)
C8—H80.9300C25—O31.224 (3)
C9—C101.390 (3)C25—O21.308 (3)
C9—H90.9300C25—O11.315 (3)
C10—N21.327 (3)C25—Co12.301 (2)
C10—H100.9300N5—O41.221 (3)
C11—N21.361 (2)N5—O51.235 (3)
C11—C121.415 (3)N5—O61.251 (3)
C12—N11.356 (3)N1—Co11.9367 (17)
C13—N31.327 (3)N2—Co11.9513 (17)
C13—C141.387 (3)N3—Co11.9548 (17)
C13—H130.9300N4—Co11.9324 (16)
C14—C151.367 (3)O1—Co11.8907 (16)
C14—H140.9300O2—Co11.8869 (15)
C15—C161.400 (3)O7—H7A0.86 (2)
C15—H150.9300O7—H7B0.81 (5)
C16—C241.394 (3)
N1—C1—C2121.6 (2)C19—C20—H20120.2
N1—C1—H1119.2C20—C21—C22119.8 (2)
C2—C1—H1119.2C20—C21—H21120.1
C3—C2—C1120.2 (2)C22—C21—H21120.1
C3—C2—H2119.9N4—C22—C21121.8 (2)
C1—C2—H2119.9N4—C22—H22119.1
C2—C3—C4119.8 (2)C21—C22—H22119.1
C2—C3—H3120.1N4—C23—C19123.6 (2)
C4—C3—H3120.1N4—C23—C24115.89 (17)
C12—C4—C3116.4 (2)C19—C23—C24120.52 (19)
C12—C4—C5118.1 (2)N3—C24—C16123.66 (19)
C3—C4—C5125.6 (2)N3—C24—C23115.81 (17)
C6—C5—C4121.4 (2)C16—C24—C23120.53 (18)
C6—C5—H5119.3O3—C25—O2124.8 (2)
C4—C5—H5119.3O3—C25—O1124.9 (2)
C5—C6—C7121.3 (2)O2—C25—O1110.31 (19)
C5—C6—H6119.4O3—C25—Co1179.7 (2)
C7—C6—H6119.4O2—C25—Co155.07 (10)
C11—C7—C8117.0 (2)O1—C25—Co155.24 (10)
C11—C7—C6118.0 (2)O4—N5—O5122.1 (3)
C8—C7—C6125.0 (2)O4—N5—O6119.6 (3)
C9—C8—C7119.3 (2)O5—N5—O6118.3 (2)
C9—C8—H8120.3C1—N1—C12118.63 (19)
C7—C8—H8120.3C1—N1—Co1129.21 (16)
C8—C9—C10120.3 (2)C12—N1—Co1112.16 (13)
C8—C9—H9119.9C10—N2—C11117.83 (18)
C10—C9—H9119.9C10—N2—Co1130.49 (15)
N2—C10—C9122.0 (2)C11—N2—Co1111.66 (13)
N2—C10—H10119.0C13—N3—C24117.73 (18)
C9—C10—H10119.0C13—N3—Co1130.61 (14)
N2—C11—C7123.53 (19)C24—N3—Co1111.66 (13)
N2—C11—C12115.83 (18)C22—N4—C23118.39 (18)
C7—C11—C12120.62 (19)C22—N4—Co1129.10 (15)
N1—C12—C4123.3 (2)C23—N4—Co1112.51 (14)
N1—C12—C11116.12 (17)C25—O1—Co189.92 (13)
C4—C12—C11120.5 (2)C25—O2—Co190.28 (13)
N3—C13—C14122.3 (2)H7A—O7—H7B105 (3)
N3—C13—H13118.8O2—Co1—O169.48 (7)
C14—C13—H13118.8O2—Co1—N492.34 (7)
C15—C14—C13120.0 (2)O1—Co1—N490.80 (7)
C15—C14—H14120.0O2—Co1—N191.02 (7)
C13—C14—H14120.0O1—Co1—N191.88 (7)
C14—C15—C16119.5 (2)N4—Co1—N1176.28 (7)
C14—C15—H15120.3O2—Co1—N298.32 (7)
C16—C15—H15120.3O1—Co1—N2167.16 (7)
C24—C16—C15116.8 (2)N4—Co1—N293.79 (7)
C24—C16—C17118.0 (2)N1—Co1—N284.13 (7)
C15—C16—C17125.2 (2)O2—Co1—N3167.90 (7)
C18—C17—C16121.4 (2)O1—Co1—N398.94 (7)
C18—C17—H17119.3N4—Co1—N384.09 (7)
C16—C17—H17119.3N1—Co1—N392.94 (7)
C17—C18—C19121.5 (2)N2—Co1—N393.46 (7)
C17—C18—H18119.3O2—Co1—C2534.65 (8)
C19—C18—H18119.3O1—Co1—C2534.84 (8)
C23—C19—C20116.7 (2)N4—Co1—C2591.74 (8)
C23—C19—C18118.0 (2)N1—Co1—C2591.94 (8)
C20—C19—C18125.2 (2)N2—Co1—C25132.87 (8)
C21—C20—C19119.7 (2)N3—Co1—C25133.67 (8)
C21—C20—H20120.2
N1—C1—C2—C32.1 (4)C24—C23—N4—C22178.0 (2)
C1—C2—C3—C42.1 (4)C19—C23—N4—Co1179.14 (17)
C2—C3—C4—C120.4 (3)C24—C23—N4—Co11.4 (2)
C2—C3—C4—C5178.2 (2)O3—C25—O1—Co1179.7 (2)
C12—C4—C5—C63.4 (3)O2—C25—O1—Co10.44 (17)
C3—C4—C5—C6175.2 (2)O3—C25—O2—Co1179.7 (2)
C4—C5—C6—C72.6 (4)O1—C25—O2—Co10.44 (17)
C5—C6—C7—C110.3 (3)C25—O2—Co1—O10.31 (12)
C5—C6—C7—C8179.3 (2)C25—O2—Co1—N489.67 (13)
C11—C7—C8—C90.1 (3)C25—O2—Co1—N191.93 (13)
C6—C7—C8—C9179.7 (2)C25—O2—Co1—N2176.15 (12)
C7—C8—C9—C101.0 (4)C25—O2—Co1—N317.2 (4)
C8—C9—C10—N21.3 (4)C25—O1—Co1—O20.30 (12)
C8—C7—C11—N21.2 (3)C25—O1—Co1—N491.89 (12)
C6—C7—C11—N2179.23 (19)C25—O1—Co1—N190.69 (13)
C8—C7—C11—C12177.2 (2)C25—O1—Co1—N219.1 (4)
C6—C7—C11—C122.4 (3)C25—O1—Co1—N3176.04 (12)
C3—C4—C12—N11.6 (3)C22—N4—Co1—O210.6 (2)
C5—C4—C12—N1179.7 (2)C23—N4—Co1—O2168.73 (15)
C3—C4—C12—C11177.4 (2)C22—N4—Co1—O180.1 (2)
C5—C4—C12—C111.3 (3)C23—N4—Co1—O199.24 (15)
N2—C11—C12—N11.0 (3)C22—N4—Co1—N287.9 (2)
C7—C11—C12—N1177.51 (18)C23—N4—Co1—N292.76 (15)
N2—C11—C12—C4179.92 (18)C22—N4—Co1—N3179.0 (2)
C7—C11—C12—C41.6 (3)C23—N4—Co1—N30.33 (15)
N3—C13—C14—C150.0 (4)C22—N4—Co1—C2545.3 (2)
C13—C14—C15—C160.5 (4)C23—N4—Co1—C25134.07 (16)
C14—C15—C16—C240.0 (3)C1—N1—Co1—O279.12 (19)
C14—C15—C16—C17178.2 (2)C12—N1—Co1—O2101.04 (14)
C24—C16—C17—C180.8 (4)C1—N1—Co1—O19.62 (19)
C15—C16—C17—C18177.4 (3)C12—N1—Co1—O1170.55 (14)
C16—C17—C18—C191.4 (4)C1—N1—Co1—N2177.38 (19)
C17—C18—C19—C230.4 (4)C12—N1—Co1—N22.78 (14)
C17—C18—C19—C20177.3 (3)C1—N1—Co1—N389.44 (19)
C23—C19—C20—C210.8 (4)C12—N1—Co1—N390.40 (14)
C18—C19—C20—C21176.9 (3)C1—N1—Co1—C2544.5 (2)
C19—C20—C21—C221.0 (4)C12—N1—Co1—C25135.69 (15)
C20—C21—C22—N40.0 (4)C10—N2—Co1—O286.24 (18)
C20—C19—C23—N40.4 (3)C11—N2—Co1—O292.43 (13)
C18—C19—C23—N4178.3 (2)C10—N2—Co1—O1104.0 (3)
C20—C19—C23—C24179.0 (2)C11—N2—Co1—O174.6 (3)
C18—C19—C23—C241.1 (3)C10—N2—Co1—N46.68 (19)
C15—C16—C24—N31.0 (3)C11—N2—Co1—N4174.65 (13)
C17—C16—C24—N3179.3 (2)C10—N2—Co1—N1176.42 (19)
C15—C16—C24—C23179.0 (2)C11—N2—Co1—N12.25 (13)
C17—C16—C24—C230.7 (3)C10—N2—Co1—N390.98 (18)
N4—C23—C24—N32.2 (3)C11—N2—Co1—N390.35 (13)
C19—C23—C24—N3178.36 (19)C10—N2—Co1—C2589.2 (2)
N4—C23—C24—C16177.82 (19)C11—N2—Co1—C2589.44 (16)
C19—C23—C24—C161.7 (3)C13—N3—Co1—O2107.1 (3)
C2—C1—N1—C120.1 (3)C24—N3—Co1—O272.5 (3)
C2—C1—N1—Co1179.97 (17)C13—N3—Co1—O190.6 (2)
C4—C12—N1—C11.7 (3)C24—N3—Co1—O189.07 (14)
C11—C12—N1—C1177.32 (18)C13—N3—Co1—N4179.5 (2)
C4—C12—N1—Co1178.11 (16)C24—N3—Co1—N40.81 (14)
C11—C12—N1—Co12.8 (2)C13—N3—Co1—N11.8 (2)
C9—C10—N2—C110.3 (3)C24—N3—Co1—N1178.57 (14)
C9—C10—N2—Co1178.26 (16)C13—N3—Co1—N286.1 (2)
C7—C11—N2—C100.9 (3)C24—N3—Co1—N294.28 (14)
C12—C11—N2—C10177.51 (18)C13—N3—Co1—C2593.7 (2)
C7—C11—N2—Co1179.79 (16)C24—N3—Co1—C2585.94 (16)
C12—C11—N2—Co11.3 (2)O1—C25—Co1—O2179.50 (19)
C14—C13—N3—C241.0 (3)O2—C25—Co1—O1179.50 (19)
C14—C13—N3—Co1178.63 (17)O2—C25—Co1—N491.60 (12)
C16—C24—N3—C131.5 (3)O1—C25—Co1—N488.90 (12)
C23—C24—N3—C13178.5 (2)O2—C25—Co1—N188.99 (12)
C16—C24—N3—Co1178.18 (17)O1—C25—Co1—N190.51 (12)
C23—C24—N3—Co11.8 (2)O2—C25—Co1—N25.21 (17)
C21—C22—N4—C231.2 (4)O1—C25—Co1—N2174.29 (11)
C21—C22—N4—Co1179.49 (19)O2—C25—Co1—N3175.08 (10)
C19—C23—N4—C221.5 (3)O1—C25—Co1—N35.42 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O50.86 (2)1.98 (2)2.830 (3)168 (5)
O7—H7B···O3i0.81 (5)2.03 (5)2.809 (4)164 (6)
C3—H3···O3ii0.932.543.362 (3)148
C5—H5···O1ii0.932.563.415 (3)153
C8—H8···O7iii0.932.313.130 (4)146
C9—H9···O6iv0.932.353.234 (3)158
C15—H15···O6v0.932.453.370 (3)170
C17—H17···O4v0.932.503.416 (3)167
C1—H1···Cg1vi0.932.923.705 (3)143
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(CO3)(C12H8N2)2]NO3·H2O
Mr559.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.6986 (9), 10.8583 (5), 16.1494 (10)
β (°) 106.386 (5)
V3)2304.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.41 × 0.26 × 0.15
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.818, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
21353, 5713, 4021
Rint0.045
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.02
No. of reflections5713
No. of parameters349
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.42

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O50.86 (2)1.98 (2)2.830 (3)168 (5)
O7—H7B···O3i0.81 (5)2.03 (5)2.809 (4)164 (6)
C3—H3···O3ii0.932.543.362 (3)148.2
C5—H5···O1ii0.932.563.415 (3)152.5
C8—H8···O7iii0.932.313.130 (4)146.2
C9—H9···O6iv0.932.353.234 (3)157.9
C15—H15···O6v0.932.453.370 (3)170.1
C17—H17···O4v0.932.503.416 (3)166.5
C1—H1···Cg1vi0.932.923.705 (3)143
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We would like to thank the Research Foundation of Ondokuz Mayis University for financial support to this work under the Project number F474.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, X.-C., Wang, X.-Y., Li, M.-T., Wang, C.-G. & Deng, X.-T. (2006). Acta Cryst. E62, m1263–m1265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuild, B. C., Hayden, T. & Brennan, T. F. (1980). Cryst. Struct. Commun. 6, 371–374.  Google Scholar
First citationHadadzadeh, H., Mansouri, G., Khavasi, H. R., Hoffmann, R.-D., Rodewald, U. Ch. & Pöttgen, R. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x101–x102.  CSD CrossRef CAS Google Scholar
First citationHennig, H., Sieler, J., Benedix, R., Kaiser, J., Sjolin, L. & Lindqvist, O. (1980). Z. Anorg. Allg. Chem. 464, 151–154.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, R. S., Lin, J. L. & Zheng, Y. Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 425–426.  CAS Google Scholar
First citationMcAuliffe, C. A., Pritchard, R. G., Bermejo, M. R., Garcia-Vazquez, A., Macias, A., Sanmartín, J., Romero, J. & Sousa, A. (1992). Acta Cryst. C48, 1841–1842.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNiederhoffer, E. C., Martell, A. E., Rudolf, P. & Clearfield, A. (1982). Inorg. Chem. 21 , 3734–3741.  CSD CrossRef CAS Web of Science Google Scholar
First citationSharma, R. P., Singh, A., Brandao, P., Felix, P. & Venugopalan, P. (2009). J. Mol. Struct. 921, 227–232.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m46-m47
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds