metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­azido­zinc(II)]-μ-di-4-pyridylamine-κ2N:N′]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825 USA
*Correspondence e-mail: laduca@msu.edu

(Received 29 November 2009; accepted 30 November 2009; online 4 December 2009)

In the title compound, [Zn(N3)2(C10H9N3)]n, tetra­hedrally coordinated ZnII ions with two monodentate azide ligands are linked into zigzag one-dimensional chain motifs by di-4-pyridylamine (dpa) tethers. Individual [Zn(N3)2(dpa)]n chains are connected into supra­molecular layers via N—H⋯N hydrogen bonding between the central amine groups of the dpa ligands and terminal unligated azide N atoms. The azide ligands in one supra­molecular layer penetrate through the neighboring layers above and below, allowing stacking into a three-dimensional structure.

Related literature

For other coordination polymers containing dpa ligands, see: LaDuca (2009[LaDuca, R. L. (2009). Coord. Chem. Rev. 253, 1759-1792.]). For the preparation of dpa, see: Zapf et al. (1998[Zapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. & Zubieta, J. (1998). Inorg. Chem. 37, 3411-3414.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(N3)2(C10H9N3)]

  • Mr = 320.63

  • Monoclinic, P 21 /n

  • a = 6.7988 (2) Å

  • b = 16.0105 (5) Å

  • c = 11.7733 (4) Å

  • β = 99.904 (1)°

  • V = 1262.45 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 173 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.628, Tmax = 0.745

  • 11312 measured reflections

  • 2306 independent reflections

  • 2186 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.056

  • S = 1.11

  • 2306 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8N⋯N3i 0.81 (2) 2.14 (2) 2.938 (2) 172.7 (19)
Symmetry code: (i) [x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years we have been exploring the use of di-4-pyridylamine (dpa) as a neutral dipodal tethering ligand for the construction of divalent metal coordination polymers (LaDuca, 2009). This chemistry was extended into a system with azido ligands, with the synthesis and characterization of a divalent zinc coordination polymer, [Zn(N3)2(dpa)]n.

The asymmetric unit of the title compound contains a ZnII ion, two azido ligands, and one dpa moiety (Fig. 1). Distorted tetrahedral [ZnN4] coordination is observed, with two N donors from two monodentate azido ligands and two pyridyl N donors from two different dpa ligands. The dpa ligands link the ZnII ions into zigzag [Zn(N3)2(dpa)]n one-dimensional coordination polymer chains (Fig. 2), which are oriented parallel to the b crystal direction.

Individual [Zn(N3)2(dpa)]n chains are connected into supramolecular layers via N—H···N hydrogen bonding between the central amine groups of the dpa ligands and terminal unligated azide N atoms (Fig. 3). These layers stack to form the three-dimensional crystal structure of the title compound, with their pendant azido ligands penetrating through the layer above and the layer below (Fig. 4).

Related literature top

For other coordination polymers containing dpa ligands, see: LaDuca (2009). For the preparation of dpa, see: Zapf et al. (1998).

Experimental top

All starting materials were obtained commercially, except for dpa, which was prepared by a published procedure (Zapf et al., 1998). Zinc nitrate hexahydrate (30 mg, 0.10 mmol) was dissolved in 3 mL H2O in a glass vial. A solution of sodium azide (13 mg, 0.20 mmol) in 1.5 mL tetrahydrofuran was carefully layered on top of the aqueous solution, followed by a solution of dpa (17 mg, 0.10 mmol) in 1.5 mL methanol. The reaction mixture was allowed to stand undisturbed at 293 K for 14 days, whereupon colourless crystals of the title compound (23 mg, 72% yield) had precipitated.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atom bound to the dpa amine N atom was found in a difference Fourier map, and refined with Uiso = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the title compound, showing 50% probability ellipsoids and the atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: grey Zn, light blue N, black C. Symmetry code: (i) -x + 3/2, y -1/2, -z + 3/2.
[Figure 2] Fig. 2. A single [Zn(N3)2(dpa)]n chain.
[Figure 3] Fig. 3. Supramolecular layer of [Zn(N3)2(dpa)]n chains. N—H···N hydrogen bonding is shown as dashed lines.
[Figure 4] Fig. 4. Stacking of supramolecular layers in the title compound.
catena-Poly[[diazidozinc(II)]-µ-di-4-pyridylamine- κ2N:N'] top
Crystal data top
[Zn(N3)2(C10H9N3)]F(000) = 648
Mr = 320.63Dx = 1.687 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11312 reflections
a = 6.7988 (2) Åθ = 2.2–25.4°
b = 16.0105 (5) ŵ = 1.95 mm1
c = 11.7733 (4) ÅT = 173 K
β = 99.904 (1)°Block, colourless
V = 1262.45 (7) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2306 independent reflections
Radiation source: fine-focus sealed tube2186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω/ϕ scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.628, Tmax = 0.745k = 1919
11312 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.4475P]
where P = (Fo2 + 2Fc2)/3
2306 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn(N3)2(C10H9N3)]V = 1262.45 (7) Å3
Mr = 320.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7988 (2) ŵ = 1.95 mm1
b = 16.0105 (5) ÅT = 173 K
c = 11.7733 (4) Å0.40 × 0.30 × 0.20 mm
β = 99.904 (1)°
Data collection top
Bruker APEXII
diffractometer
2306 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2186 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.745Rint = 0.021
11312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.28 e Å3
2306 reflectionsΔρmin = 0.30 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.18762 (2)0.669988 (11)0.844834 (15)0.02285 (8)
N10.0205 (2)0.72140 (9)0.72917 (12)0.0298 (3)
N20.1690 (2)0.68678 (9)0.68471 (13)0.0300 (3)
N30.3142 (3)0.65531 (12)0.64086 (16)0.0514 (5)
N40.1421 (2)0.63906 (9)0.99828 (12)0.0313 (3)
N50.0053 (2)0.60474 (8)1.01875 (11)0.0282 (3)
N60.1423 (2)0.57318 (10)1.04586 (15)0.0408 (4)
N70.41836 (19)0.75077 (8)0.87138 (11)0.0243 (3)
N80.9592 (2)0.88055 (8)0.91029 (12)0.0250 (3)
H8N1.029 (3)0.8687 (12)0.9705 (17)0.030*
N91.20751 (19)1.06963 (8)0.73394 (11)0.0244 (3)
C10.5713 (2)0.73558 (10)0.95831 (14)0.0269 (3)
H10.55540.69451.01190.032*
C20.7489 (2)0.77786 (10)0.97125 (14)0.0261 (3)
H20.85070.76511.03220.031*
C30.7764 (2)0.84063 (9)0.89209 (14)0.0225 (3)
C40.6151 (2)0.85951 (10)0.80644 (14)0.0258 (3)
H40.62320.90300.75510.031*
C50.4424 (2)0.81284 (10)0.79843 (14)0.0250 (3)
H50.33710.82510.73930.030*
C61.0598 (2)1.02151 (10)0.67845 (14)0.0273 (3)
H61.01411.03220.60070.033*
C70.9715 (2)0.95715 (10)0.72946 (14)0.0269 (3)
H70.87110.92510.68670.032*
C81.0360 (2)0.94115 (9)0.84654 (13)0.0229 (3)
C91.1960 (2)0.98884 (10)0.90319 (14)0.0245 (3)
H91.24840.97820.98010.029*
C101.2754 (2)1.05127 (10)0.84526 (14)0.0252 (3)
H101.38111.08230.88480.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01842 (12)0.02553 (12)0.02505 (12)0.00136 (6)0.00501 (8)0.00143 (6)
N10.0248 (7)0.0320 (7)0.0307 (7)0.0018 (6)0.0005 (6)0.0007 (6)
N20.0294 (8)0.0338 (7)0.0259 (7)0.0060 (6)0.0018 (6)0.0030 (6)
N30.0444 (11)0.0571 (11)0.0448 (10)0.0097 (8)0.0145 (8)0.0019 (8)
N40.0296 (7)0.0384 (8)0.0265 (7)0.0070 (6)0.0060 (6)0.0012 (6)
N50.0320 (8)0.0277 (7)0.0255 (7)0.0014 (6)0.0065 (6)0.0009 (6)
N60.0387 (9)0.0395 (9)0.0483 (9)0.0061 (7)0.0193 (7)0.0040 (7)
N70.0202 (6)0.0268 (7)0.0266 (7)0.0021 (5)0.0059 (5)0.0020 (5)
N80.0218 (7)0.0269 (7)0.0256 (7)0.0035 (5)0.0020 (5)0.0013 (5)
N90.0226 (6)0.0252 (6)0.0264 (7)0.0006 (5)0.0073 (5)0.0012 (5)
C10.0272 (8)0.0271 (8)0.0266 (8)0.0026 (6)0.0048 (6)0.0027 (6)
C20.0236 (8)0.0274 (8)0.0260 (8)0.0010 (6)0.0007 (6)0.0020 (6)
C30.0212 (8)0.0220 (7)0.0253 (8)0.0001 (6)0.0070 (6)0.0044 (6)
C40.0239 (8)0.0256 (8)0.0285 (8)0.0004 (6)0.0067 (6)0.0041 (6)
C50.0200 (8)0.0290 (8)0.0257 (8)0.0009 (6)0.0032 (6)0.0003 (6)
C60.0257 (8)0.0340 (9)0.0230 (8)0.0024 (7)0.0067 (6)0.0029 (6)
C70.0239 (8)0.0317 (8)0.0257 (8)0.0058 (6)0.0061 (6)0.0069 (6)
C80.0203 (7)0.0219 (7)0.0279 (8)0.0014 (6)0.0079 (6)0.0028 (6)
C90.0218 (7)0.0256 (8)0.0256 (8)0.0001 (6)0.0029 (6)0.0003 (6)
C100.0214 (8)0.0251 (8)0.0288 (8)0.0010 (6)0.0032 (6)0.0025 (6)
Geometric parameters (Å, º) top
Zn1—N41.9486 (14)C1—H10.9300
Zn1—N11.9676 (14)C2—C31.405 (2)
Zn1—N72.0157 (13)C2—H20.9300
Zn1—N9i2.0439 (13)C3—C41.390 (2)
N1—N21.191 (2)C4—C51.381 (2)
N2—N31.149 (2)C4—H40.9300
N4—N51.203 (2)C5—H50.9300
N5—N61.152 (2)C6—C71.381 (2)
N7—C51.342 (2)C6—H60.9300
N7—C11.350 (2)C7—C81.396 (2)
N8—C31.381 (2)C7—H70.9300
N8—C81.383 (2)C8—C91.400 (2)
N8—H8N0.81 (2)C9—C101.372 (2)
N9—C61.343 (2)C9—H90.9300
N9—C101.345 (2)C10—H100.9300
C1—C21.370 (2)
N4—Zn1—N1122.54 (6)N8—C3—C4126.08 (15)
N4—Zn1—N7105.23 (6)N8—C3—C2116.56 (14)
N1—Zn1—N7106.66 (6)C4—C3—C2117.28 (14)
N4—Zn1—N9i110.15 (6)C5—C4—C3119.17 (15)
N1—Zn1—N9i106.28 (6)C5—C4—H4120.4
N7—Zn1—N9i104.59 (5)C3—C4—H4120.4
N2—N1—Zn1124.32 (12)N7—C5—C4123.57 (15)
N3—N2—N1178.26 (19)N7—C5—H5118.2
N5—N4—Zn1124.92 (12)C4—C5—H5118.2
N6—N5—N4175.50 (17)N9—C6—C7124.14 (15)
C5—N7—C1117.13 (13)N9—C6—H6117.9
C5—N7—Zn1123.60 (11)C7—C6—H6117.9
C1—N7—Zn1118.65 (10)C6—C7—C8118.68 (15)
C3—N8—C8130.87 (14)C6—C7—H7120.7
C3—N8—H8N113.9 (14)C8—C7—H7120.7
C8—N8—H8N115.0 (14)N8—C8—C7125.49 (14)
C6—N9—C10116.84 (14)N8—C8—C9117.32 (14)
C6—N9—Zn1ii121.35 (11)C7—C8—C9117.16 (14)
C10—N9—Zn1ii121.73 (11)C10—C9—C8120.02 (15)
N7—C1—C2123.00 (15)C10—C9—H9120.0
N7—C1—H1118.5C8—C9—H9120.0
C2—C1—H1118.5N9—C10—C9123.03 (14)
C1—C2—C3119.69 (15)N9—C10—H10118.5
C1—C2—H2120.2C9—C10—H10118.5
C3—C2—H2120.2
N4—Zn1—N1—N267.03 (16)C1—C2—C3—C43.1 (2)
N7—Zn1—N1—N2171.88 (14)N8—C3—C4—C5179.10 (15)
N9i—Zn1—N1—N260.70 (15)C2—C3—C4—C54.2 (2)
N1—Zn1—N4—N543.33 (17)C1—N7—C5—C41.7 (2)
N7—Zn1—N4—N5165.09 (14)Zn1—N7—C5—C4169.13 (12)
N9i—Zn1—N4—N582.70 (15)C3—C4—C5—N71.9 (2)
N4—Zn1—N7—C5149.52 (12)C10—N9—C6—C72.1 (2)
N1—Zn1—N7—C517.95 (14)Zn1ii—N9—C6—C7174.54 (12)
N9i—Zn1—N7—C594.40 (13)N9—C6—C7—C81.1 (2)
N4—Zn1—N7—C139.83 (13)C3—N8—C8—C722.3 (3)
N1—Zn1—N7—C1171.39 (11)C3—N8—C8—C9159.76 (15)
N9i—Zn1—N7—C176.26 (12)C6—C7—C8—N8178.29 (15)
C5—N7—C1—C22.9 (2)C6—C7—C8—C93.8 (2)
Zn1—N7—C1—C2168.40 (13)N8—C8—C9—C10178.40 (14)
N7—C1—C2—C30.5 (2)C7—C8—C9—C103.5 (2)
C8—N8—C3—C46.7 (3)C6—N9—C10—C92.4 (2)
C8—N8—C3—C2176.62 (15)Zn1ii—N9—C10—C9174.18 (12)
C1—C2—C3—N8179.89 (14)C8—C9—C10—N90.4 (2)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8N···N3iii0.81 (2)2.14 (2)2.938 (2)172.7 (19)
Symmetry code: (iii) x+3/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(N3)2(C10H9N3)]
Mr320.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)6.7988 (2), 16.0105 (5), 11.7733 (4)
β (°) 99.904 (1)
V3)1262.45 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.628, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
11312, 2306, 2186
Rint0.021
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.056, 1.11
No. of reflections2306
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8N···N3i0.81 (2)2.14 (2)2.938 (2)172.7 (19)
Symmetry code: (i) x+3/2, y+3/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLaDuca, R. L. (2009). Coord. Chem. Rev. 253, 1759–1792.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. & Zubieta, J. (1998). Inorg. Chem. 37, 3411–3414.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds