metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(2,3-di­methyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-9-olato)nickel(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bSchool of Chemistry and Biology, Yancheng Institute of Technology, Yancheng 224003, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 19 November 2009; accepted 30 November 2009; online 4 December 2009)

In the crystal structure of the mononuclear title complex, [Ni(C10H9N2O2)2(H2O)], the NiII ion is five-coordinated in a distorted square-pyramidal geometry by two N atoms and two O atoms from 2,3-dimethyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligands and one O atom from a water mol­ecule. O—H⋯O hydrogen bonds between the coordinated water mol­ecule and the ligand connect adjacent mol­ecules, forming a ribbon parallel to the b axis.

Related literature

For the design and synthesis of self-assembling systems with organic ligands containing N and O donors, see: Wei et al. (2009[Wei, Y.-F., Li, Z.-S., Zhang, H.-H. & Wang, Y.-H. (2009). Acta Cryst. E65, m91.]); Sun et al. (2008[Sun, Y., Jiang, X.-D. & Li, X.-B. (2008). Acta Cryst. E64, m801.]); Bayot et al. (2006[Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390-1394.]); Chen et al. (2007[Chen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.]). For structures of quinolin-8-ol complexes, see: Wu et al. (2006[Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281-m282.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H9N2O2)2(H2O)]

  • Mr = 455.11

  • Monoclinic, P 21 /c

  • a = 13.4032 (14) Å

  • b = 12.1313 (12) Å

  • c = 12.4631 (11) Å

  • β = 99.386 (1)°

  • V = 1999.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Rigaku SCXmini CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.751, Tmax = 0.888

  • 10283 measured reflections

  • 3520 independent reflections

  • 2242 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.132

  • S = 1.03

  • 3520 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2i 0.85 1.83 2.672 (5) 173
O5—H5B⋯O4ii 0.85 1.85 2.669 (5) 162
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been paid to the design and synthesis of complexes with organic ligands containing N and O donors (Wei et al., 2009; Sun et al., 2008; Bayot et al., 2006; Chen, et al., 2007). Quinolin-8-ol is one such ligand and several crystal structures of complexes containing it have been reported (Wu et al., 2006). We report here the synthesis and crystal structure of the title complex (I) (Fig. 1). In (I), the Ni atom is five-coordinated by two pyridine nitrogen atoms and two oxygen atoms from the hydroxy groups and one oxygen atom from a water molecule (Fig. 1). Intermolecular O—H···O hydrogen bonds (Fig.2 and Table 1) connecting the molecules of (I) define the crystal packing.

Related literature top

For the design and synthesis of self-assembling systems with organic ligands containing N and O donors, see: Wei et al. (2009); Sun et al. (2008); Bayot et al. (2006); Chen et al. (2007). For structures of quinolin-8-ol complexes, see: Wu et al. (2006).

Experimental top

All chemicals used (reagent grade) were commercially available. An aqueous solution (5 ml) of Ni(Ac)2.4H2O (24.9 mg, 0.1 mmol) was added to an ethanol solution (10 ml) containing 2,3-dimethyl-9-hydroxylpyrido[1,2-a]pyrimidin-4-one (38.0 mg, 0.2 mmol) then filtered off. The resulting solution was continuously stirred for about 30 min and then filtered. The filtrate was slowly evaporated at room temperature over several days and colorless prism crystals suitable for X-ray analysis were obtained.

Refinement top

The H atoms bound to carbon were placed in geometrical positions and refined using a riding model, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The H atoms of the coordinated water were located from the Fourier difference map and refined with a distance restraint of O–H = 0.85 Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule and the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of compound (I). Hydrogen bonds are shown as dashed lines.
Aquabis(2,3-dimethyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-9- olato)nickel(II) top
Crystal data top
[Ni(C10H9N2O2)2(H2O)]F(000) = 944
Mr = 455.11Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2294 reflections
a = 13.4032 (14) Åθ = 2.3–23.7°
b = 12.1313 (12) ŵ = 1.01 mm1
c = 12.4631 (11) ÅT = 298 K
β = 99.386 (1)°Prism, colorless
V = 1999.3 (3) Å30.30 × 0.20 × 0.12 mm
Z = 4
Data collection top
Rigaku SCXmini CCD area-detector
diffractometer
3520 independent reflections
Radiation source: fine-focus sealed tube2242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 200)
h = 1515
Tmin = 0.751, Tmax = 0.888k = 1314
10283 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0496P)2 + 2.7285P]
where P = (Fo2 + 2Fc2)/3
3520 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ni(C10H9N2O2)2(H2O)]V = 1999.3 (3) Å3
Mr = 455.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4032 (14) ŵ = 1.01 mm1
b = 12.1313 (12) ÅT = 298 K
c = 12.4631 (11) Å0.30 × 0.20 × 0.12 mm
β = 99.386 (1)°
Data collection top
Rigaku SCXmini CCD area-detector
diffractometer
3520 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 200)
2242 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.888Rint = 0.045
10283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
3520 reflectionsΔρmin = 0.41 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.79535 (4)0.41721 (5)0.19800 (5)0.0428 (2)
N10.6831 (2)0.4337 (3)0.0534 (3)0.0351 (9)
N20.5489 (3)0.3281 (3)0.0425 (3)0.0413 (10)
N30.9220 (2)0.3915 (3)0.3261 (3)0.0334 (8)
N41.0960 (3)0.4366 (3)0.3602 (3)0.0348 (9)
O10.7277 (2)0.2737 (3)0.1993 (2)0.0460 (8)
O20.4536 (3)0.3929 (3)0.1970 (3)0.0690 (12)
O30.9049 (2)0.4701 (3)0.1247 (2)0.0460 (8)
O41.1941 (2)0.3960 (3)0.5228 (3)0.0536 (9)
O50.7303 (2)0.5312 (3)0.2785 (3)0.0679 (11)
H5A0.66970.55140.25620.082*
H5B0.75500.56740.33500.082*
C10.6639 (3)0.5152 (4)0.0221 (4)0.0404 (11)
C20.5870 (4)0.5058 (4)0.1098 (4)0.0475 (13)
C30.5254 (3)0.4119 (5)0.1233 (4)0.0479 (13)
C40.6274 (3)0.3425 (4)0.0416 (3)0.0337 (10)
C50.6514 (3)0.2575 (4)0.1225 (4)0.0373 (11)
C60.5915 (4)0.1653 (4)0.1126 (4)0.0504 (13)
H60.60500.10890.16340.061*
C70.5104 (4)0.1549 (5)0.0275 (5)0.0621 (15)
H70.47000.09220.02310.075*
C80.4899 (4)0.2337 (5)0.0480 (5)0.0586 (15)
H80.43580.22520.10450.070*
C90.7298 (4)0.6146 (4)0.0027 (4)0.0582 (14)
H9A0.76610.61300.07030.087*
H9B0.68870.67980.01300.087*
H9C0.77690.61490.05300.087*
C100.5654 (4)0.5939 (5)0.1961 (4)0.0653 (16)
H10A0.56960.66520.16220.098*
H10B0.49870.58340.23650.098*
H10C0.61420.58910.24450.098*
C110.9307 (3)0.3468 (4)0.4274 (3)0.0352 (10)
C121.0208 (3)0.3451 (4)0.4981 (3)0.0362 (10)
C131.1084 (3)0.3907 (4)0.4675 (4)0.0378 (11)
C141.0038 (3)0.4335 (3)0.2942 (3)0.0311 (10)
C150.9932 (3)0.4783 (4)0.1855 (3)0.0360 (10)
C161.0767 (4)0.5258 (4)0.1534 (4)0.0466 (12)
H161.07210.55580.08410.056*
C171.1679 (4)0.5290 (4)0.2247 (4)0.0527 (13)
H171.22340.56230.20210.063*
C181.1788 (3)0.4855 (4)0.3254 (4)0.0480 (13)
H181.24100.48830.37110.058*
C190.8349 (3)0.3004 (4)0.4571 (4)0.0484 (13)
H19A0.81310.34560.51210.073*
H19B0.84700.22680.48420.073*
H19C0.78330.29930.39380.073*
C201.0318 (4)0.2944 (4)0.6096 (4)0.0551 (14)
H20A0.97030.30430.63840.083*
H20B1.08660.32930.65660.083*
H20C1.04570.21700.60480.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0354 (3)0.0546 (4)0.0368 (4)0.0007 (3)0.0008 (3)0.0014 (3)
N10.0296 (19)0.045 (2)0.029 (2)0.0054 (17)0.0013 (15)0.0004 (17)
N20.034 (2)0.052 (3)0.035 (2)0.0108 (19)0.0008 (17)0.0133 (18)
N30.0277 (19)0.043 (2)0.029 (2)0.0016 (16)0.0040 (15)0.0005 (16)
N40.0308 (19)0.042 (2)0.030 (2)0.0009 (16)0.0009 (16)0.0070 (16)
O10.0438 (19)0.053 (2)0.0376 (19)0.0011 (15)0.0052 (15)0.0100 (15)
O20.051 (2)0.105 (3)0.044 (2)0.028 (2)0.0141 (18)0.015 (2)
O30.0358 (18)0.067 (2)0.0329 (18)0.0040 (16)0.0014 (14)0.0100 (16)
O40.042 (2)0.075 (3)0.038 (2)0.0039 (17)0.0102 (16)0.0068 (16)
O50.048 (2)0.098 (3)0.048 (2)0.028 (2)0.0204 (16)0.032 (2)
C10.042 (3)0.046 (3)0.035 (3)0.012 (2)0.011 (2)0.007 (2)
C20.052 (3)0.057 (3)0.034 (3)0.024 (3)0.009 (2)0.005 (2)
C30.037 (3)0.072 (4)0.032 (3)0.025 (3)0.004 (2)0.010 (3)
C40.028 (2)0.043 (3)0.029 (2)0.004 (2)0.0021 (19)0.006 (2)
C50.034 (3)0.039 (3)0.040 (3)0.003 (2)0.008 (2)0.002 (2)
C60.049 (3)0.042 (3)0.062 (4)0.002 (2)0.014 (3)0.003 (2)
C70.049 (3)0.043 (3)0.092 (5)0.005 (3)0.005 (3)0.017 (3)
C80.037 (3)0.066 (4)0.068 (4)0.004 (3)0.006 (3)0.031 (3)
C90.062 (3)0.052 (3)0.062 (4)0.005 (3)0.013 (3)0.017 (3)
C100.071 (4)0.078 (4)0.046 (3)0.034 (3)0.006 (3)0.018 (3)
C110.040 (3)0.038 (3)0.028 (3)0.003 (2)0.008 (2)0.002 (2)
C120.047 (3)0.035 (3)0.026 (2)0.004 (2)0.002 (2)0.0003 (19)
C130.041 (3)0.038 (3)0.030 (3)0.006 (2)0.004 (2)0.008 (2)
C140.029 (2)0.037 (2)0.027 (2)0.0029 (19)0.0013 (18)0.0050 (18)
C150.037 (3)0.042 (3)0.028 (3)0.001 (2)0.004 (2)0.004 (2)
C160.050 (3)0.060 (3)0.031 (3)0.011 (2)0.010 (2)0.000 (2)
C170.047 (3)0.067 (4)0.046 (3)0.014 (3)0.015 (3)0.007 (3)
C180.029 (3)0.067 (3)0.047 (3)0.010 (2)0.005 (2)0.008 (3)
C190.046 (3)0.061 (3)0.040 (3)0.004 (2)0.012 (2)0.004 (2)
C200.064 (3)0.060 (3)0.037 (3)0.002 (3)0.004 (3)0.007 (2)
Geometric parameters (Å, º) top
Ni1—O31.959 (3)C6—H60.9300
Ni1—O11.964 (3)C7—C81.338 (8)
Ni1—O51.991 (3)C7—H70.9300
Ni1—N32.155 (3)C8—H80.9300
Ni1—N12.160 (3)C9—H9A0.9600
N1—C41.329 (5)C9—H9B0.9600
N1—C11.360 (5)C9—H9C0.9600
N2—C41.370 (5)C10—H10A0.9600
N2—C81.387 (6)C10—H10B0.9600
N2—C31.429 (6)C10—H10C0.9600
N3—C141.327 (5)C11—C121.374 (6)
N3—C111.361 (5)C11—C191.503 (6)
N4—C141.368 (5)C12—C131.406 (6)
N4—C181.389 (5)C12—C201.505 (6)
N4—C131.433 (6)C14—C151.445 (6)
O1—C51.297 (5)C15—C161.374 (6)
O2—C31.239 (5)C16—C171.390 (7)
O3—C151.301 (5)C16—H160.9300
O4—C131.241 (5)C17—C181.347 (7)
O5—H5A0.8499C17—H170.9300
O5—H5B0.8499C18—H180.9300
C1—C21.379 (6)C19—H19A0.9600
C1—C91.491 (7)C19—H19B0.9600
C2—C31.401 (7)C19—H19C0.9600
C2—C101.511 (7)C20—H20A0.9600
C4—C51.442 (6)C20—H20B0.9600
C5—C61.370 (6)C20—H20C0.9600
C6—C71.395 (7)
O3—Ni1—O1132.53 (14)N2—C8—H8119.8
O3—Ni1—O5115.52 (16)C1—C9—H9A109.5
O1—Ni1—O5111.75 (15)C1—C9—H9B109.5
O3—Ni1—N380.38 (12)H9A—C9—H9B109.5
O1—Ni1—N3100.05 (13)C1—C9—H9C109.5
O5—Ni1—N394.82 (13)H9A—C9—H9C109.5
O3—Ni1—N193.07 (13)H9B—C9—H9C109.5
O1—Ni1—N180.18 (13)C2—C10—H10A109.5
O5—Ni1—N193.07 (13)C2—C10—H10B109.5
N3—Ni1—N1171.37 (13)H10A—C10—H10B109.5
C4—N1—C1119.3 (4)C2—C10—H10C109.5
C4—N1—Ni1108.5 (3)H10A—C10—H10C109.5
C1—N1—Ni1132.2 (3)H10B—C10—H10C109.5
C4—N2—C8120.3 (4)N3—C11—C12122.3 (4)
C4—N2—C3120.1 (4)N3—C11—C19115.5 (4)
C8—N2—C3119.6 (4)C12—C11—C19122.2 (4)
C14—N3—C11118.7 (3)C11—C12—C13120.4 (4)
C14—N3—Ni1108.2 (3)C11—C12—C20122.8 (4)
C11—N3—Ni1133.0 (3)C13—C12—C20116.8 (4)
C14—N4—C18120.9 (4)O4—C13—C12127.5 (4)
C14—N4—C13120.4 (4)O4—C13—N4117.0 (4)
C18—N4—C13118.7 (4)C12—C13—N4115.5 (4)
C5—O1—Ni1116.0 (3)N3—C14—N4122.7 (4)
C15—O3—Ni1115.7 (3)N3—C14—C15117.7 (4)
Ni1—O5—H5A120.6N4—C14—C15119.6 (4)
Ni1—O5—H5B129.2O3—C15—C16124.7 (4)
H5A—O5—H5B110.1O3—C15—C14117.3 (4)
N1—C1—C2121.4 (4)C16—C15—C14118.0 (4)
N1—C1—C9115.8 (4)C15—C16—C17119.9 (4)
C2—C1—C9122.8 (4)C15—C16—H16120.0
C1—C2—C3120.8 (4)C17—C16—H16120.0
C1—C2—C10122.5 (5)C18—C17—C16122.4 (5)
C3—C2—C10116.7 (5)C18—C17—H17118.8
O2—C3—C2127.7 (5)C16—C17—H17118.8
O2—C3—N2116.4 (5)C17—C18—N4119.1 (4)
C2—C3—N2115.9 (4)C17—C18—H18120.4
N1—C4—N2122.6 (4)N4—C18—H18120.4
N1—C4—C5117.4 (4)C11—C19—H19A109.5
N2—C4—C5120.0 (4)C11—C19—H19B109.5
O1—C5—C6124.8 (4)H19A—C19—H19B109.5
O1—C5—C4117.8 (4)C11—C19—H19C109.5
C6—C5—C4117.4 (4)H19A—C19—H19C109.5
C5—C6—C7121.0 (5)H19B—C19—H19C109.5
C5—C6—H6119.5C12—C20—H20A109.5
C7—C6—H6119.5C12—C20—H20B109.5
C8—C7—C6121.0 (5)H20A—C20—H20B109.5
C8—C7—H7119.5C12—C20—H20C109.5
C6—C7—H7119.5H20A—C20—H20C109.5
C7—C8—N2120.3 (5)H20B—C20—H20C109.5
C7—C8—H8119.8
O3—Ni1—N1—C4133.7 (3)N1—C4—C5—O12.3 (6)
O1—Ni1—N1—C41.0 (3)N2—C4—C5—O1178.5 (4)
O5—Ni1—N1—C4110.5 (3)N1—C4—C5—C6177.6 (4)
O3—Ni1—N1—C144.8 (4)N2—C4—C5—C61.6 (6)
O1—Ni1—N1—C1177.5 (4)O1—C5—C6—C7179.7 (4)
O5—Ni1—N1—C171.0 (4)C4—C5—C6—C70.1 (7)
O3—Ni1—N3—C146.0 (3)C5—C6—C7—C81.1 (8)
O1—Ni1—N3—C14137.8 (3)C6—C7—C8—N20.4 (8)
O5—Ni1—N3—C14109.1 (3)C4—N2—C8—C71.4 (7)
O3—Ni1—N3—C11176.6 (4)C3—N2—C8—C7179.5 (5)
O1—Ni1—N3—C1144.9 (4)C14—N3—C11—C121.0 (6)
O5—Ni1—N3—C1168.3 (4)Ni1—N3—C11—C12176.2 (3)
O3—Ni1—O1—C587.5 (3)C14—N3—C11—C19179.6 (4)
O5—Ni1—O1—C587.0 (3)Ni1—N3—C11—C193.3 (6)
N3—Ni1—O1—C5173.6 (3)N3—C11—C12—C130.2 (7)
N1—Ni1—O1—C52.4 (3)C19—C11—C12—C13179.2 (4)
O1—Ni1—O3—C15102.8 (3)N3—C11—C12—C20179.0 (4)
O5—Ni1—O3—C1582.8 (3)C19—C11—C12—C201.7 (7)
N3—Ni1—O3—C158.0 (3)C11—C12—C13—O4179.3 (4)
N1—Ni1—O3—C15177.7 (3)C20—C12—C13—O41.6 (7)
C4—N1—C1—C20.9 (6)C11—C12—C13—N40.3 (6)
Ni1—N1—C1—C2179.3 (3)C20—C12—C13—N4178.9 (4)
C4—N1—C1—C9179.9 (4)C14—N4—C13—O4179.8 (4)
Ni1—N1—C1—C91.7 (6)C18—N4—C13—O41.2 (6)
N1—C1—C2—C30.5 (7)C14—N4—C13—C120.6 (6)
C9—C1—C2—C3178.4 (4)C18—N4—C13—C12178.4 (4)
N1—C1—C2—C10178.7 (4)C11—N3—C14—N42.0 (6)
C9—C1—C2—C102.4 (7)Ni1—N3—C14—N4175.8 (3)
C1—C2—C3—O2179.4 (4)C11—N3—C14—C15178.7 (4)
C10—C2—C3—O21.4 (7)Ni1—N3—C14—C153.5 (4)
C1—C2—C3—N20.9 (6)C18—N4—C14—N3177.2 (4)
C10—C2—C3—N2178.3 (4)C13—N4—C14—N31.8 (6)
C4—N2—C3—O2179.7 (4)C18—N4—C14—C152.2 (6)
C8—N2—C3—O22.1 (6)C13—N4—C14—C15178.8 (4)
C4—N2—C3—C20.0 (6)Ni1—O3—C15—C16171.8 (4)
C8—N2—C3—C2178.2 (4)Ni1—O3—C15—C148.5 (5)
C1—N1—C4—N21.9 (6)N3—C14—C15—O32.9 (6)
Ni1—N1—C4—N2179.4 (3)N4—C14—C15—O3177.8 (4)
C1—N1—C4—C5179.0 (4)N3—C14—C15—C16177.5 (4)
Ni1—N1—C4—C50.3 (4)N4—C14—C15—C161.9 (6)
C8—N2—C4—N1176.8 (4)O3—C15—C16—C17179.2 (4)
C3—N2—C4—N11.4 (6)C14—C15—C16—C170.4 (7)
C8—N2—C4—C52.3 (6)C15—C16—C17—C180.8 (8)
C3—N2—C4—C5179.5 (4)C16—C17—C18—N40.6 (8)
Ni1—O1—C5—C6176.6 (3)C14—N4—C18—C170.9 (7)
Ni1—O1—C5—C43.3 (5)C13—N4—C18—C17179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.851.832.672 (5)173
O5—H5B···O4ii0.851.852.669 (5)162
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C10H9N2O2)2(H2O)]
Mr455.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.4032 (14), 12.1313 (12), 12.4631 (11)
β (°) 99.386 (1)
V3)1999.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.30 × 0.20 × 0.12
Data collection
DiffractometerRigaku SCXmini CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 200)
Tmin, Tmax0.751, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
10283, 3520, 2242
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.03
No. of reflections3520
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.851.832.672 (5)173
O5—H5B···O4ii0.851.852.669 (5)162
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.
 

References

First citationBayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390–1394.  CAS Google Scholar
First citationChen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Jiang, X.-D. & Li, X.-B. (2008). Acta Cryst. E64, m801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, Y.-F., Li, Z.-S., Zhang, H.-H. & Wang, Y.-H. (2009). Acta Cryst. E65, m91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds