organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

(4R)-Ethyl 4-(4-chloro­phen­yl)-2-hydr­­oxy-5-oxo-2,3,4,5-tetra­hydro­pyrano[3,2-c]chromene-2-carboxyl­ate

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
*Correspondence e-mail: yifengwang108@gmail.com

(Received 21 November 2009; accepted 3 December 2009; online 19 December 2009)

The title compound, C21H17ClO6, is optically pure and adopts an R configuration. It was obtained by an organocatalytic asymmetric Michael addition of 4-hydroxy­coumarin with (E)-ethyl 4-(4-chloro­phen­yl)-2-oxobut-3-enoate. The structure consists of a tetra­hydro­pyran unit fused to the coumarin ring ring system. The hydroxyl and phenyl groups are on the same side of the tetra­hydro­pyrane ring. The benzene ring is almost perpendicular to the coumarin ring [dihedral angle of 72.89 (3)°]. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds are observed. An intra­molecular O—H⋯O contact also occurs.

Related literature

For general background to the use of coumarin derivatives as intermediates in organic and natural product synthesis, see: Fylaktakidou et al., (2004[Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2004). Curr. Pharm. Des. 10, 3813-3833.]); Hoult et al., (1996[Hoult, J. R. S. & Paya, M. (1996). Gen. Pharmacol. 27, 713-722.]). For a related structure, see: Zhang et al. (2009[Zhang, W., Zhang, G., Li, B. & Wang, Y. (2009). Acta Cryst. E65, o1969.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17ClO6

  • Mr = 400.80

  • Monoclinic, P 21

  • a = 5.4818 (3) Å

  • b = 14.8358 (7) Å

  • c = 11.3403 (6) Å

  • β = 94.6807 (15)°

  • V = 919.20 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.37 × 0.31 × 0.08 mm

Data collection
  • Rigaku RAXIS-RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.905, Tmax = 0.981

  • 8978 measured reflections

  • 3606 independent reflections

  • 3027 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.00

  • 3606 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1434 Friedel pairs

  • Flack parameter: 0.07 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 2.27 2.9184 (19) 136
O4—H4⋯O5 0.82 2.19 2.671 (2) 118
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Coumarin derivatives are common found in a variety of natural products, and are used as versatile intermediates in organic and natural product synthesis (Fylaktakidou et al., 2004; Hoult et al., 1996). The title compound could be synthesized through an asymmetric Michael addition of 4-hydroxycoumarin with (E)-ethyl 4-(4-chlorophenyl)-2-oxobut-3-enoate, catalyzed by a tertiary-amine-squaramide catalyst. As part of our study in organocatalysis, the absolute structure of the title compound was determined, which adopts a R configuration. The structure consists of a tetrahydropyrane fused beside the coumarin ring. The hydroxyl and phenyl groups are on the same side of the tetrahydropyrane ring. The benzene ring is almost perpendicular to the coumarin ring with a dihedral angle of 72.89 (3)° between the mean planes. In addition, intermolecular O—H···O hydrogen bonds are observed in the crystal structure.

Related literature top

For general background, see: Fylaktakidou et al., (2004); Hoult et al., (1996). For a related structure, see: Zhang et al. (2009).

Experimental top

A mixture of 4-hydroxycoumarin (0.1 mmol), (E)-ethyl 4-(4-chlorophenyl)-2-oxobut-3-enoate 2 (0.1 mmol) and the catalyst 3-((1S) -(6-methoxyquinolin-4-yl)(8-vinylquinuclidin-2-yl)methylamino) -4-((R)-1-phenylethylamino)cyclobut-3-ene-1,2-dione (0.0025 mmol) in ClCH2CH2Cl (1.0 ml) was stirred at room temperature for 3 h (monitored by TLC). The mixture was purified by column chromatography on silica gel, eluted by petroleum ether/EtOAc (10:1 to 3:1) to give the desired Michael adducts. Suitable crystals of the title compound were obtained by slow evaporation of a mixture solution of CH2Cl2 and iPrOH at room temperature.

Refinement top

All hydrogen atoms were refined in calculated positions with C—H = 0.98 Å(sp), C—H = 0.97 Å (sp2), C—H = 0.96 Å (sp3), C—H = 0.93 Å (aromatic), O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound showing H-bridge interactions.
(4R)-Ethyl 4-(4-chlorophenyl)-2-hydroxy -5-oxo-2,3,4,5-tetrahydropyrano[3,2-c]chromene-2-carboxylate top
Crystal data top
C21H17ClO6F(000) = 416
Mr = 400.80Dx = 1.448 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7553 reflections
a = 5.4818 (3) Åθ = 3.3–27.4°
b = 14.8358 (7) ŵ = 0.25 mm1
c = 11.3403 (6) ÅT = 296 K
β = 94.6807 (15)°Platelet, colorless
V = 919.20 (8) Å30.37 × 0.31 × 0.08 mm
Z = 2
Data collection top
Rigaku RAXIS-RAPID
diffractometer
3606 independent reflections
Radiation source: rolling anode3027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.3°
ω scansh = 76
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1916
Tmin = 0.905, Tmax = 0.981l = 1414
8978 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.110P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.16 e Å3
3606 reflectionsΔρmin = 0.20 e Å3
256 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.014 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1434 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (6)
Crystal data top
C21H17ClO6V = 919.20 (8) Å3
Mr = 400.80Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.4818 (3) ŵ = 0.25 mm1
b = 14.8358 (7) ÅT = 296 K
c = 11.3403 (6) Å0.37 × 0.31 × 0.08 mm
β = 94.6807 (15)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3027 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.981Rint = 0.025
8978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.16 e Å3
S = 1.00Δρmin = 0.20 e Å3
3606 reflectionsAbsolute structure: Flack (1983), 1434 Friedel pairs
256 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C190.7695 (3)0.87640 (13)0.68614 (17)0.0368 (4)
O60.9549 (3)0.87424 (10)0.76723 (12)0.0456 (3)
O50.6200 (3)0.93532 (10)0.67137 (15)0.0542 (4)
C200.9886 (5)0.95257 (18)0.8444 (2)0.0577 (6)
H20A0.85330.95790.89400.069*
H20B0.99651.00720.79780.069*
C211.2228 (5)0.9388 (2)0.9187 (2)0.0677 (7)
H21A1.35640.93800.86900.081*
H21B1.21690.88250.96000.081*
H21C1.24580.98710.97490.081*
Cl10.78443 (13)0.72613 (6)0.01510 (5)0.0714 (2)
O30.6428 (2)0.72598 (9)0.68482 (11)0.0369 (3)
C90.5060 (3)0.57839 (13)0.71703 (16)0.0345 (4)
O40.6019 (2)0.80479 (9)0.50872 (12)0.0396 (3)
H40.52590.85190.51550.047*
C100.6604 (3)0.63786 (12)0.65397 (16)0.0325 (4)
O20.6645 (3)0.45423 (9)0.60916 (14)0.0467 (4)
O10.9452 (3)0.47428 (10)0.48350 (16)0.0577 (5)
C141.0913 (3)0.72144 (15)0.31531 (17)0.0407 (4)
H141.23570.74200.35520.049*
C130.9207 (3)0.67714 (13)0.37856 (16)0.0334 (4)
C20.8067 (3)0.60639 (12)0.57288 (16)0.0335 (4)
C10.9793 (3)0.66573 (12)0.51166 (16)0.0332 (4)
H11.14060.63700.52220.040*
C80.3482 (4)0.60857 (15)0.79984 (18)0.0429 (5)
H80.34030.66950.81840.051*
C151.0524 (4)0.73588 (16)0.19483 (18)0.0459 (5)
H151.16880.76570.15400.055*
C50.3671 (5)0.42524 (15)0.7439 (2)0.0547 (6)
H50.37210.36440.72480.066*
C110.7569 (3)0.79097 (12)0.60903 (16)0.0320 (4)
C60.2158 (5)0.45589 (17)0.8250 (2)0.0603 (7)
H60.11840.41490.86180.072*
C160.8385 (4)0.70536 (14)0.13638 (18)0.0438 (5)
C170.6664 (4)0.65979 (16)0.19587 (19)0.0476 (5)
H170.52320.63880.15540.057*
C30.8158 (4)0.51022 (13)0.54999 (19)0.0421 (5)
C121.0021 (3)0.75658 (12)0.57806 (17)0.0334 (4)
H12A1.10860.74910.65000.040*
H12B1.07630.80070.52890.040*
C40.5140 (4)0.48726 (14)0.69059 (19)0.0414 (5)
C180.7094 (3)0.64567 (14)0.31706 (18)0.0409 (4)
H180.59440.61460.35730.049*
C70.2036 (4)0.54659 (17)0.8539 (2)0.0544 (6)
H70.09880.56580.90930.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C190.0424 (10)0.0289 (9)0.0403 (10)0.0053 (9)0.0112 (8)0.0000 (8)
O60.0582 (8)0.0365 (8)0.0417 (8)0.0048 (7)0.0013 (6)0.0088 (6)
O50.0549 (9)0.0375 (8)0.0713 (11)0.0070 (7)0.0109 (8)0.0129 (7)
C200.0693 (14)0.0498 (14)0.0545 (14)0.0138 (12)0.0078 (11)0.0206 (11)
C210.0677 (15)0.081 (2)0.0540 (15)0.0195 (15)0.0045 (12)0.0199 (14)
Cl10.0961 (5)0.0781 (5)0.0382 (3)0.0081 (4)0.0048 (3)0.0010 (3)
O30.0452 (7)0.0252 (6)0.0418 (7)0.0039 (6)0.0128 (5)0.0007 (6)
C90.0382 (9)0.0321 (10)0.0327 (9)0.0038 (8)0.0006 (7)0.0047 (8)
O40.0399 (7)0.0346 (8)0.0433 (7)0.0059 (6)0.0023 (6)0.0007 (6)
C100.0375 (9)0.0238 (8)0.0355 (9)0.0013 (7)0.0008 (7)0.0009 (7)
O20.0616 (9)0.0260 (7)0.0541 (9)0.0058 (6)0.0140 (7)0.0031 (6)
O10.0745 (11)0.0333 (8)0.0688 (11)0.0064 (8)0.0263 (9)0.0074 (7)
C140.0350 (9)0.0441 (11)0.0432 (10)0.0005 (9)0.0046 (8)0.0034 (10)
C130.0341 (8)0.0285 (9)0.0378 (10)0.0050 (8)0.0046 (7)0.0021 (8)
C20.0368 (9)0.0256 (8)0.0377 (10)0.0003 (8)0.0015 (8)0.0005 (8)
C10.0315 (8)0.0297 (9)0.0383 (10)0.0030 (8)0.0024 (7)0.0011 (8)
C80.0523 (12)0.0357 (10)0.0410 (11)0.0040 (9)0.0060 (9)0.0030 (8)
C150.0470 (11)0.0466 (12)0.0450 (11)0.0027 (10)0.0091 (9)0.0025 (10)
C50.0785 (15)0.0323 (11)0.0547 (14)0.0159 (11)0.0145 (12)0.0029 (10)
C110.0353 (8)0.0246 (9)0.0361 (9)0.0023 (8)0.0028 (7)0.0018 (7)
C60.0808 (17)0.0471 (14)0.0556 (14)0.0241 (12)0.0221 (12)0.0057 (11)
C160.0553 (12)0.0407 (12)0.0353 (10)0.0113 (9)0.0035 (9)0.0019 (8)
C170.0456 (11)0.0477 (13)0.0479 (12)0.0046 (11)0.0057 (9)0.0086 (10)
C30.0492 (12)0.0293 (10)0.0481 (12)0.0005 (9)0.0062 (9)0.0004 (9)
C120.0320 (8)0.0309 (9)0.0374 (10)0.0034 (7)0.0033 (7)0.0021 (7)
C40.0518 (11)0.0322 (10)0.0400 (11)0.0070 (9)0.0027 (9)0.0008 (8)
C180.0377 (10)0.0389 (11)0.0461 (11)0.0004 (9)0.0043 (8)0.0044 (9)
C70.0644 (14)0.0506 (13)0.0506 (13)0.0086 (12)0.0198 (11)0.0060 (10)
Geometric parameters (Å, º) top
C19—O51.201 (3)C14—H140.9300
C19—O61.314 (2)C13—C181.384 (3)
C19—C111.538 (3)C13—C11.527 (3)
O6—C201.457 (3)C2—C31.452 (3)
C20—C211.491 (3)C2—C11.503 (3)
C20—H20A0.9700C1—C121.544 (2)
C20—H20B0.9700C1—H10.9800
C21—H21A0.9600C8—C71.389 (3)
C21—H21B0.9600C8—H80.9300
C21—H21C0.9600C15—C161.376 (3)
Cl1—C161.747 (2)C15—H150.9300
O3—C101.359 (2)C5—C61.366 (4)
O3—C111.466 (2)C5—C41.393 (3)
C9—C41.386 (3)C5—H50.9300
C9—C81.401 (3)C11—C121.506 (2)
C9—C101.451 (3)C6—C71.388 (4)
O4—C111.379 (2)C6—H60.9300
O4—H40.8200C16—C171.381 (3)
C10—C21.352 (3)C17—C181.391 (3)
O2—C41.378 (2)C17—H170.9300
O2—C31.385 (3)C12—H12A0.9700
O1—C31.202 (3)C12—H12B0.9700
C14—C151.382 (3)C18—H180.9300
C14—C131.389 (3)C7—H70.9300
O5—C19—O6126.54 (19)C7—C8—H8120.3
O5—C19—C11121.49 (18)C9—C8—H8120.3
O6—C19—C11111.95 (17)C16—C15—C14118.80 (19)
C19—O6—C20116.98 (18)C16—C15—H15120.6
O6—C20—C21106.9 (2)C14—C15—H15120.6
O6—C20—H20A110.3C6—C5—C4118.5 (2)
C21—C20—H20A110.3C6—C5—H5120.8
O6—C20—H20B110.3C4—C5—H5120.8
C21—C20—H20B110.3O4—C11—O3108.53 (14)
H20A—C20—H20B108.6O4—C11—C12111.09 (15)
C20—C21—H21A109.5O3—C11—C12110.24 (14)
C20—C21—H21B109.5O4—C11—C19110.03 (15)
H21A—C21—H21B109.5O3—C11—C19102.12 (14)
C20—C21—H21C109.5C12—C11—C19114.36 (15)
H21A—C21—H21C109.5C5—C6—C7121.7 (2)
H21B—C21—H21C109.5C5—C6—H6119.2
C10—O3—C11116.05 (14)C7—C6—H6119.2
C4—C9—C8119.26 (17)C15—C16—C17121.02 (19)
C4—C9—C10117.16 (18)C15—C16—Cl1119.04 (17)
C8—C9—C10123.56 (18)C17—C16—Cl1119.94 (16)
C11—O4—H4109.5C16—C17—C18119.28 (18)
C2—C10—O3124.48 (16)C16—C17—H17120.4
C2—C10—C9121.85 (17)C18—C17—H17120.4
O3—C10—C9113.68 (16)O1—C3—O2116.45 (18)
C4—O2—C3121.76 (15)O1—C3—C2125.38 (19)
C15—C14—C13121.85 (17)O2—C3—C2118.17 (17)
C15—C14—H14119.1C11—C12—C1111.80 (14)
C13—C14—H14119.1C11—C12—H12A109.3
C18—C13—C14118.06 (17)C1—C12—H12A109.3
C18—C13—C1124.12 (17)C11—C12—H12B109.3
C14—C13—C1117.82 (15)C1—C12—H12B109.3
C10—C2—C3119.47 (17)H12A—C12—H12B107.9
C10—C2—C1122.87 (17)O2—C4—C9121.55 (17)
C3—C2—C1117.45 (17)O2—C4—C5117.07 (19)
C2—C1—C13115.59 (15)C9—C4—C5121.4 (2)
C2—C1—C12108.35 (15)C13—C18—C17120.96 (19)
C13—C1—C12112.80 (15)C13—C18—H18119.5
C2—C1—H1106.5C17—C18—H18119.5
C13—C1—H1106.5C8—C7—C6119.9 (2)
C12—C1—H1106.5C8—C7—H7120.1
C7—C8—C9119.3 (2)C6—C7—H7120.1
O5—C19—O6—C202.5 (3)O6—C19—C11—O379.70 (17)
C11—C19—O6—C20178.81 (17)O5—C19—C11—C12141.84 (19)
C19—O6—C20—C21173.86 (19)O6—C19—C11—C1239.4 (2)
C11—O3—C10—C211.5 (3)C4—C5—C6—C70.7 (4)
C11—O3—C10—C9168.76 (14)C14—C15—C16—C171.0 (3)
C4—C9—C10—C20.1 (3)C14—C15—C16—Cl1178.24 (17)
C8—C9—C10—C2178.63 (19)C15—C16—C17—C180.8 (3)
C4—C9—C10—O3179.89 (16)Cl1—C16—C17—C18178.46 (16)
C8—C9—C10—O31.6 (3)C4—O2—C3—O1177.8 (2)
C15—C14—C13—C181.2 (3)C4—O2—C3—C22.0 (3)
C15—C14—C13—C1179.16 (19)C10—C2—C3—O1177.1 (2)
O3—C10—C2—C3178.07 (17)C1—C2—C3—O12.2 (3)
C9—C10—C2—C31.7 (3)C10—C2—C3—O22.7 (3)
O3—C10—C2—C13.5 (3)C1—C2—C3—O2177.59 (16)
C9—C10—C2—C1176.26 (16)O4—C11—C12—C160.5 (2)
C10—C2—C1—C13114.25 (19)O3—C11—C12—C159.81 (19)
C3—C2—C1—C1371.1 (2)C19—C11—C12—C1174.18 (15)
C10—C2—C1—C1213.4 (2)C2—C1—C12—C1144.01 (19)
C3—C2—C1—C12161.21 (16)C13—C1—C12—C1185.26 (18)
C18—C13—C1—C27.8 (3)C3—O2—C4—C90.2 (3)
C14—C13—C1—C2171.77 (17)C3—O2—C4—C5179.2 (2)
C18—C13—C1—C12117.64 (19)C8—C9—C4—O2179.47 (18)
C14—C13—C1—C1262.8 (2)C10—C9—C4—O20.9 (3)
C4—C9—C8—C70.1 (3)C8—C9—C4—C50.5 (3)
C10—C9—C8—C7178.6 (2)C10—C9—C4—C5178.09 (19)
C13—C14—C15—C160.0 (3)C6—C5—C4—O2180.0 (2)
C10—O3—C11—O479.38 (18)C6—C5—C4—C90.9 (3)
C10—O3—C11—C1242.5 (2)C14—C13—C18—C171.5 (3)
C10—O3—C11—C19164.42 (14)C1—C13—C18—C17178.97 (18)
O5—C19—C11—O416.0 (2)C16—C17—C18—C130.5 (3)
O6—C19—C11—O4165.19 (15)C9—C8—C7—C60.3 (3)
O5—C19—C11—O399.1 (2)C5—C6—C7—C80.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.822.272.9184 (19)136
O4—H4···O50.822.192.671 (2)118
Symmetry code: (i) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H17ClO6
Mr400.80
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.4818 (3), 14.8358 (7), 11.3403 (6)
β (°) 94.6807 (15)
V3)919.20 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.37 × 0.31 × 0.08
Data collection
DiffractometerRigaku RAXIS-RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.905, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
8978, 3606, 3027
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.00
No. of reflections3606
No. of parameters256
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20
Absolute structureFlack (1983), 1434 Friedel pairs
Absolute structure parameter0.07 (6)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.822.272.9184 (19)136
O4—H4···O50.822.192.671 (2)118
Symmetry code: (i) x+1, y+1/2, z+1.
 

Acknowledgements

We thank Professor Jian-Ming Gu of Zhejiang University for his help.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2004). Curr. Pharm. Des. 10, 3813–3833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHoult, J. R. S. & Paya, M. (1996). Gen. Pharmacol. 27, 713–722.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Zhang, G., Li, B. & Wang, Y. (2009). Acta Cryst. E65, o1969.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds