metal-organic compounds
Aqua[4-chloro-2-(2-pyridylmethyliminomethyl)phenolato]copper(II) nitrate monohydrate
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn
In the title mononuclear complex, [Cu(C13H10ClN2O)(H2O)]NO3·H2O, the CuII atom is four-coordinated by two N atoms and one O atom of the tridentate Schiff base ligand and one O atom from the coordinated water molecule in a slightly distorted square-planar configuration. The nitrate ion interacts with the copper center [Cu1⋯O3 = 2.579 (4) Å]. In the crystal, the cations, anions and water molecules are linked by O—H⋯O and O—H⋯N hydrogen bonds.
Related literature
For the role of copper proteins in fundamental biological processes, see: Arnesano et al. (2004). For the chemistry of copper compounds, see: Bosnich (1968); Costes et al. (1995); Downing & Urbach (1969); Ganeshpure et al. (1996). For related structures, see: Sun et al. (2005); You et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809052350/zq2021sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052350/zq2021Isup2.hkl
2-Aminomethylpyridine (0.1 mmol, 10.8 mg) and 5-chloro-salicylaldehyde (0.1 mmol, 15.6 mg) were dissolved in methanol (10 ml). The mixture was stirred for 1 h to give a clear yellow solution. To this solution was added a water solution (10 ml) of Cu(NO3)2.3H2O (0.1 mmol, 24.2 mg), with stirring. The mixture was stirred for 10 min to give a deep green solution, which was allowed to evaporate slowly in the open at room temperature. After 5 days, deep blue block-shaped crystals suitable for an X-ray diffraction study were formed at the bottom of the vessel.
The hydrogen atoms bound to carbon atoms were placed in geometrical positions and refined using a riding model, with C—H = 0.94 Å and Uiso(H) =1.2Ueq(C). The hydrogens of the water molecules were located in Fourier difference maps and refined with a distance restraint of 0.85 Å.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C13H10ClN2O)(H2O)]NO3·H2O | Z = 2 |
Mr = 407.26 | F(000) = 414 |
Triclinic, P1 | Dx = 1.729 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.892 (2) Å | Cell parameters from 13380 reflections |
b = 8.9741 (12) Å | θ = 1.8–25.0° |
c = 11.8929 (15) Å | µ = 1.60 mm−1 |
α = 106.841 (2)° | T = 298 K |
β = 102.198 (1)° | Prism, dark blue |
γ = 92.897 (1)° | 0.47 × 0.41 × 0.30 mm |
V = 782.3 (2) Å3 |
Rigaku SCXmini diffractometer | 2714 independent reflections |
Radiation source: Rotating Anode | 2280 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 8.192 pixels mm-1 | θmax = 25.0°, θmin = 1.8° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −8→10 |
Tmin = 0.520, Tmax = 0.645 | l = −13→14 |
4114 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0271P)2 + 0.5072P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2714 reflections | Δρmax = 0.40 e Å−3 |
218 parameters | Δρmin = −0.39 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0320 (19) |
[Cu(C13H10ClN2O)(H2O)]NO3·H2O | γ = 92.897 (1)° |
Mr = 407.26 | V = 782.3 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.892 (2) Å | Mo Kα radiation |
b = 8.9741 (12) Å | µ = 1.60 mm−1 |
c = 11.8929 (15) Å | T = 298 K |
α = 106.841 (2)° | 0.47 × 0.41 × 0.30 mm |
β = 102.198 (1)° |
Rigaku SCXmini diffractometer | 2714 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2280 reflections with I > 2σ(I) |
Tmin = 0.520, Tmax = 0.645 | Rint = 0.016 |
4114 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 1 restraint |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.40 e Å−3 |
2714 reflections | Δρmin = −0.39 e Å−3 |
218 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.19716 (5) | 0.40689 (4) | 0.59865 (3) | 0.03271 (17) | |
Cl1 | 0.01878 (15) | 0.28462 (12) | −0.04586 (8) | 0.0556 (3) | |
N1 | 0.2799 (3) | 0.5546 (3) | 0.5259 (2) | 0.0322 (6) | |
N2 | 0.3181 (3) | 0.5696 (3) | 0.7513 (2) | 0.0329 (6) | |
N3 | 0.4694 (4) | 0.1517 (4) | 0.6974 (3) | 0.0448 (7) | |
O1 | 0.0888 (3) | 0.2574 (2) | 0.44856 (19) | 0.0391 (6) | |
O2 | 0.0886 (3) | 0.2783 (3) | 0.6801 (2) | 0.0380 (6) | |
H2A | 0.1681 | 0.2270 | 0.7049 | 0.046* | |
H2B | 0.0040 | 0.2104 | 0.6350 | 0.046* | |
O3 | 0.4553 (4) | 0.2453 (3) | 0.6385 (3) | 0.0632 (8) | |
O4 | 0.5942 (5) | 0.0744 (5) | 0.6999 (4) | 0.0921 (12) | |
O5 | 0.3572 (3) | 0.1310 (3) | 0.7528 (2) | 0.0513 (7) | |
O6 | 0.8275 (3) | 0.0554 (3) | 0.5520 (2) | 0.0496 (7) | |
H6A | 0.8662 | −0.0326 | 0.5462 | 0.059* | |
H6B | 0.7557 | 0.0650 | 0.5970 | 0.059* | |
C1 | 0.2497 (4) | 0.5376 (4) | 0.4119 (3) | 0.0322 (7) | |
H1 | 0.2942 | 0.6191 | 0.3888 | 0.039* | |
C2 | 0.1531 (4) | 0.4032 (4) | 0.3176 (3) | 0.0304 (7) | |
C3 | 0.0765 (4) | 0.2710 (4) | 0.3398 (3) | 0.0323 (7) | |
C4 | −0.0198 (5) | 0.1487 (4) | 0.2394 (3) | 0.0381 (8) | |
H4 | −0.0726 | 0.0618 | 0.2520 | 0.046* | |
C5 | −0.0380 (5) | 0.1543 (4) | 0.1237 (3) | 0.0395 (8) | |
H5 | −0.1028 | 0.0722 | 0.0589 | 0.047* | |
C6 | 0.0411 (5) | 0.2835 (4) | 0.1032 (3) | 0.0375 (8) | |
C7 | 0.1338 (4) | 0.4054 (4) | 0.1972 (3) | 0.0377 (8) | |
H7 | 0.1850 | 0.4911 | 0.1822 | 0.045* | |
C8 | 0.3778 (5) | 0.7018 (4) | 0.6111 (3) | 0.0382 (8) | |
H8A | 0.3138 | 0.7891 | 0.6030 | 0.046* | |
H8B | 0.4901 | 0.7184 | 0.5928 | 0.046* | |
C9 | 0.4047 (4) | 0.6945 (4) | 0.7380 (3) | 0.0328 (7) | |
C10 | 0.5091 (5) | 0.8088 (4) | 0.8357 (3) | 0.0420 (9) | |
H10 | 0.5697 | 0.8927 | 0.8243 | 0.050* | |
C11 | 0.5229 (5) | 0.7975 (4) | 0.9502 (3) | 0.0455 (9) | |
H11 | 0.5938 | 0.8729 | 1.0171 | 0.055* | |
C12 | 0.4294 (5) | 0.6720 (4) | 0.9639 (3) | 0.0458 (9) | |
H12 | 0.4340 | 0.6634 | 1.0405 | 0.055* | |
C13 | 0.3297 (5) | 0.5603 (4) | 0.8633 (3) | 0.0417 (9) | |
H13 | 0.2682 | 0.4755 | 0.8730 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0408 (3) | 0.0262 (2) | 0.0313 (2) | −0.00137 (16) | 0.00910 (17) | 0.00954 (17) |
Cl1 | 0.0840 (8) | 0.0510 (6) | 0.0315 (5) | 0.0041 (5) | 0.0125 (5) | 0.0137 (4) |
N1 | 0.0379 (16) | 0.0245 (14) | 0.0342 (15) | −0.0011 (11) | 0.0080 (12) | 0.0102 (12) |
N2 | 0.0406 (16) | 0.0255 (14) | 0.0325 (15) | 0.0042 (12) | 0.0070 (12) | 0.0101 (12) |
N3 | 0.0422 (19) | 0.0434 (18) | 0.0477 (19) | −0.0011 (15) | 0.0108 (15) | 0.0134 (15) |
O1 | 0.0565 (15) | 0.0288 (12) | 0.0320 (13) | −0.0077 (11) | 0.0110 (11) | 0.0112 (10) |
O2 | 0.0428 (14) | 0.0348 (13) | 0.0371 (13) | −0.0023 (10) | 0.0100 (10) | 0.0131 (11) |
O3 | 0.0651 (19) | 0.0525 (17) | 0.093 (2) | 0.0078 (14) | 0.0379 (17) | 0.0412 (17) |
O4 | 0.071 (2) | 0.121 (3) | 0.132 (3) | 0.050 (2) | 0.055 (2) | 0.083 (3) |
O5 | 0.0485 (16) | 0.0679 (18) | 0.0474 (15) | 0.0065 (13) | 0.0170 (13) | 0.0288 (14) |
O6 | 0.0546 (16) | 0.0384 (14) | 0.0572 (16) | −0.0014 (12) | 0.0160 (13) | 0.0162 (13) |
C1 | 0.0331 (18) | 0.0297 (17) | 0.0395 (19) | 0.0029 (14) | 0.0115 (14) | 0.0174 (15) |
C2 | 0.0323 (17) | 0.0266 (16) | 0.0342 (17) | 0.0037 (13) | 0.0081 (14) | 0.0119 (14) |
C3 | 0.0364 (18) | 0.0289 (17) | 0.0338 (18) | 0.0060 (14) | 0.0105 (14) | 0.0111 (14) |
C4 | 0.046 (2) | 0.0278 (18) | 0.0387 (19) | −0.0032 (15) | 0.0114 (16) | 0.0083 (15) |
C5 | 0.044 (2) | 0.0333 (19) | 0.0356 (19) | 0.0023 (16) | 0.0081 (15) | 0.0043 (15) |
C6 | 0.045 (2) | 0.0371 (19) | 0.0306 (18) | 0.0078 (16) | 0.0102 (15) | 0.0099 (16) |
C7 | 0.042 (2) | 0.0374 (19) | 0.0407 (19) | 0.0049 (16) | 0.0134 (15) | 0.0194 (16) |
C8 | 0.045 (2) | 0.0274 (17) | 0.0402 (19) | −0.0051 (15) | 0.0077 (16) | 0.0113 (15) |
C9 | 0.0339 (18) | 0.0261 (17) | 0.0377 (18) | 0.0064 (14) | 0.0072 (14) | 0.0091 (15) |
C10 | 0.043 (2) | 0.0322 (19) | 0.046 (2) | −0.0008 (16) | 0.0046 (16) | 0.0095 (17) |
C11 | 0.051 (2) | 0.037 (2) | 0.038 (2) | 0.0044 (17) | −0.0016 (17) | 0.0046 (17) |
C12 | 0.062 (3) | 0.039 (2) | 0.0327 (19) | 0.0069 (18) | 0.0041 (17) | 0.0095 (17) |
C13 | 0.054 (2) | 0.0351 (19) | 0.0377 (19) | 0.0024 (17) | 0.0105 (17) | 0.0140 (16) |
Cu1—O1 | 1.889 (2) | C2—C3 | 1.421 (4) |
Cu1—N1 | 1.936 (3) | C3—C4 | 1.407 (4) |
Cu1—O2 | 1.975 (2) | C4—C5 | 1.368 (5) |
Cu1—N2 | 1.982 (3) | C4—H4 | 0.9300 |
Cl1—C6 | 1.747 (3) | C5—C6 | 1.396 (5) |
N1—C1 | 1.288 (4) | C5—H5 | 0.9300 |
N1—C8 | 1.469 (4) | C6—C7 | 1.359 (5) |
N2—C13 | 1.343 (4) | C7—H7 | 0.9300 |
N2—C9 | 1.349 (4) | C8—C9 | 1.500 (4) |
N3—O4 | 1.233 (4) | C8—H8A | 0.9700 |
N3—O3 | 1.236 (4) | C8—H8B | 0.9700 |
N3—O5 | 1.247 (4) | C9—C10 | 1.379 (4) |
O1—C3 | 1.318 (4) | C10—C11 | 1.376 (5) |
O2—H2A | 0.8500 | C10—H10 | 0.9300 |
O2—H2B | 0.8500 | C11—C12 | 1.383 (5) |
O6—H6A | 0.8500 | C11—H11 | 0.9300 |
O6—H6B | 0.8499 | C12—C13 | 1.372 (5) |
C1—C2 | 1.433 (4) | C12—H12 | 0.9300 |
C1—H1 | 0.9300 | C13—H13 | 0.9300 |
C2—C7 | 1.414 (4) | ||
O1—Cu1—N1 | 93.94 (10) | C3—C4—H4 | 119.1 |
O1—Cu1—O2 | 88.85 (9) | C4—C5—C6 | 119.9 (3) |
N1—Cu1—O2 | 171.60 (10) | C4—C5—H5 | 120.1 |
O1—Cu1—N2 | 176.81 (10) | C6—C5—H5 | 120.1 |
N1—Cu1—N2 | 82.98 (11) | C7—C6—C5 | 120.6 (3) |
O2—Cu1—N2 | 94.32 (10) | C7—C6—Cl1 | 120.8 (3) |
C1—N1—C8 | 118.5 (3) | C5—C6—Cl1 | 118.5 (3) |
C1—N1—Cu1 | 125.9 (2) | C6—C7—C2 | 120.6 (3) |
C8—N1—Cu1 | 115.6 (2) | C6—C7—H7 | 119.7 |
C13—N2—C9 | 118.7 (3) | C2—C7—H7 | 119.7 |
C13—N2—Cu1 | 125.8 (2) | N1—C8—C9 | 109.7 (3) |
C9—N2—Cu1 | 115.3 (2) | N1—C8—H8A | 109.7 |
O4—N3—O3 | 120.0 (3) | C9—C8—H8A | 109.7 |
O4—N3—O5 | 118.9 (3) | N1—C8—H8B | 109.7 |
O3—N3—O5 | 121.1 (3) | C9—C8—H8B | 109.7 |
C3—O1—Cu1 | 127.6 (2) | H8A—C8—H8B | 108.2 |
Cu1—O2—H2A | 105.5 | N2—C9—C10 | 121.7 (3) |
Cu1—O2—H2B | 115.4 | N2—C9—C8 | 115.8 (3) |
H2A—O2—H2B | 106.1 | C10—C9—C8 | 122.5 (3) |
H6A—O6—H6B | 107.8 | C11—C10—C9 | 119.5 (3) |
N1—C1—C2 | 125.3 (3) | C11—C10—H10 | 120.3 |
N1—C1—H1 | 117.3 | C9—C10—H10 | 120.3 |
C2—C1—H1 | 117.3 | C10—C11—C12 | 118.7 (3) |
C7—C2—C3 | 119.4 (3) | C10—C11—H11 | 120.6 |
C7—C2—C1 | 117.3 (3) | C12—C11—H11 | 120.6 |
C3—C2—C1 | 123.4 (3) | C13—C12—C11 | 119.4 (3) |
O1—C3—C4 | 118.5 (3) | C13—C12—H12 | 120.3 |
O1—C3—C2 | 123.8 (3) | C11—C12—H12 | 120.3 |
C4—C3—C2 | 117.7 (3) | N2—C13—C12 | 122.1 (3) |
C5—C4—C3 | 121.8 (3) | N2—C13—H13 | 119.0 |
C5—C4—H4 | 119.1 | C12—C13—H13 | 119.0 |
O1—Cu1—N1—C1 | 2.8 (3) | O1—C3—C4—C5 | −179.8 (3) |
O2—Cu1—N1—C1 | −106.3 (7) | C2—C3—C4—C5 | 1.0 (5) |
N2—Cu1—N1—C1 | −178.0 (3) | C3—C4—C5—C6 | 0.3 (5) |
O1—Cu1—N1—C8 | 179.4 (2) | C4—C5—C6—C7 | −1.1 (5) |
O2—Cu1—N1—C8 | 70.3 (8) | C4—C5—C6—Cl1 | 178.7 (3) |
N2—Cu1—N1—C8 | −1.4 (2) | C5—C6—C7—C2 | 0.5 (5) |
O1—Cu1—N2—C13 | −163.3 (19) | Cl1—C6—C7—C2 | −179.3 (3) |
N1—Cu1—N2—C13 | −178.8 (3) | C3—C2—C7—C6 | 0.8 (5) |
O2—Cu1—N2—C13 | 9.1 (3) | C1—C2—C7—C6 | −178.7 (3) |
O1—Cu1—N2—C9 | 12 (2) | C1—N1—C8—C9 | −177.7 (3) |
N1—Cu1—N2—C9 | −3.5 (2) | Cu1—N1—C8—C9 | 5.5 (4) |
O2—Cu1—N2—C9 | −175.5 (2) | C13—N2—C9—C10 | 2.4 (5) |
N1—Cu1—O1—C3 | −3.4 (3) | Cu1—N2—C9—C10 | −173.3 (3) |
O2—Cu1—O1—C3 | 168.7 (3) | C13—N2—C9—C8 | −176.7 (3) |
N2—Cu1—O1—C3 | −19 (2) | Cu1—N2—C9—C8 | 7.6 (4) |
C8—N1—C1—C2 | −178.5 (3) | N1—C8—C9—N2 | −8.4 (4) |
Cu1—N1—C1—C2 | −2.0 (5) | N1—C8—C9—C10 | 172.5 (3) |
N1—C1—C2—C7 | −179.8 (3) | N2—C9—C10—C11 | −1.4 (5) |
N1—C1—C2—C3 | 0.7 (5) | C8—C9—C10—C11 | 177.7 (3) |
Cu1—O1—C3—C4 | −176.1 (2) | C9—C10—C11—C12 | −0.8 (5) |
Cu1—O1—C3—C2 | 3.1 (5) | C10—C11—C12—C13 | 1.8 (6) |
C7—C2—C3—O1 | 179.3 (3) | C9—N2—C13—C12 | −1.3 (5) |
C1—C2—C3—O1 | −1.2 (5) | Cu1—N2—C13—C12 | 173.9 (3) |
C7—C2—C3—C4 | −1.5 (5) | C11—C12—C13—N2 | −0.8 (6) |
C1—C2—C3—C4 | 178.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2a···O5 | 0.85 | 1.83 | 2.676 (4) | 173 |
O2—H2a···N3 | 0.85 | 2.52 | 3.253 (4) | 146 |
O2—H2a···O3 | 0.85 | 2.57 | 3.052 (4) | 117 |
O2—H2b···O6i | 0.85 | 1.81 | 2.657 (4) | 174 |
O6—H6a···O1ii | 0.85 | 2.08 | 2.915 (3) | 166 |
O6—H6b···O4 | 0.85 | 1.93 | 2.782 (5) | 177 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C13H10ClN2O)(H2O)]NO3·H2O |
Mr | 407.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.892 (2), 8.9741 (12), 11.8929 (15) |
α, β, γ (°) | 106.841 (2), 102.198 (1), 92.897 (1) |
V (Å3) | 782.3 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.60 |
Crystal size (mm) | 0.47 × 0.41 × 0.30 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.520, 0.645 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4114, 2714, 2280 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.074, 1.06 |
No. of reflections | 2714 |
No. of parameters | 218 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.39 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O1 | 1.889 (2) | Cu1—O2 | 1.975 (2) |
Cu1—N1 | 1.936 (3) | Cu1—N2 | 1.982 (3) |
O1—Cu1—N1 | 93.94 (10) | O1—Cu1—N2 | 176.81 (10) |
O1—Cu1—O2 | 88.85 (9) | N1—Cu1—N2 | 82.98 (11) |
N1—Cu1—O2 | 171.60 (10) | O2—Cu1—N2 | 94.32 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2a···O5 | 0.85 | 1.829 | 2.676 (4) | 173.17 |
O2—H2a···N3 | 0.85 | 2.517 | 3.253 (4) | 145.46 |
O2—H2a···O3 | 0.85 | 2.57 | 3.052 (4) | 117.12 |
O2—H2b···O6i | 0.85 | 1.811 | 2.657 (4) | 173.63 |
O6—H6a···O1ii | 0.85 | 2.083 | 2.915 (3) | 165.91 |
O6—H6b···O4 | 0.85 | 1.934 | 2.782 (5) | 176.61 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1. |
References
Arnesano, F., Banci, L., Bertini, I. & Ciofi-Baffoni, S. (2004). Eur. J. Inorg. Chem. pp. 1583–1586. Web of Science CrossRef Google Scholar
Bosnich, B. (1968). J. Am. Chem. Soc. 90, 627–632. CrossRef CAS Web of Science Google Scholar
Costes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995). Polyhedron, 14, 2179–2187. CrossRef CAS Web of Science Google Scholar
Downing, R. S. & Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977–5983. CrossRef CAS Web of Science Google Scholar
Ganeshpure, P. A., Tembe, G. L. & Satish, S. (1996). J. Mol. Catal. A Chem. 113, L423–L425. CrossRef CAS Web of Science Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-X., Gao, G.-Z., Pei, H.-X. & Zhang, R. (2005). Acta Cryst. E61, m370–m372. Web of Science CSD CrossRef IUCr Journals Google Scholar
You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884–m886. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metals ions are vital for living organisms because they are involved in many fundamental biological processes, e.g. copper proteins known to be involved in a crucial role, such as respiration, iron transport, oxidative stress protection, blood clotting and pigmentation (Arnesano et al., 2004). The study of copper compounds is of great interest in various aspects of chemistry (Downing & Urbach, 1969; Ganeshpure et al., 1996; Bosnich, 1968; Costes et al., 1995). The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. The CuII atom is four- coordinated by two nitrogen atoms and one oxygen atom of the tridentate Schiff base ligand, and one oxygen atom from the coordinated water molecule, forming a slightly distorted square-planar coordination configuration. The four coordinating atoms around the Cu centre are approximately coplanar. The Cu1—N2 bond [1.982 (2) Å; Table 1] is a little longer than the value [1.977 (4) Å] observed in a similar copper(II) complex (Sun et al., 2005). The Cu1—N1 bond length [1.936 (2) Å] is comparable with the corresponding value [1.934 (4) Å] observed in the same complex mentioned above (Sun et al., 2005). The Cu1—O1 bond length is 1.889 (18) Å. The nitrate ion is in interaction with the copper center [Cu1···O3 = 2.579 (4) Å]. The bond angles around the CuII centre show some deviations from ideal square-planar geometry. The Schiff base ligands from adjacent molecules are almost parallel due to by π-π interactions leading to the formation of two-dimensional parallel layers (Fig.2). The cations, anions and solvent water molecules are linked by O-H···O hydrogen bonds.