metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[4-chloro-2-(2-pyridylmethyl­imino­meth­yl)phenolato]copper(II) nitrate monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 27 November 2009; accepted 5 December 2009; online 12 December 2009)

In the title mononuclear complex, [Cu(C13H10ClN2O)(H2O)]­NO3·H2O, the CuII atom is four-coordinated by two N atoms and one O atom of the tridentate Schiff base ligand and one O atom from the coordinated water mol­ecule in a slightly distorted square-planar configuration. The nitrate ion inter­acts with the copper center [Cu1⋯O3 = 2.579 (4) Å]. In the crystal, the cations, anions and water mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the role of copper proteins in fundamental biological processes, see: Arnesano et al. (2004[Arnesano, F., Banci, L., Bertini, I. & Ciofi-Baffoni, S. (2004). Eur. J. Inorg. Chem. pp. 1583-1586.]). For the chemistry of copper compounds, see: Bosnich (1968[Bosnich, B. (1968). J. Am. Chem. Soc. 90, 627-632.]); Costes et al. (1995[Costes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995). Polyhedron, 14, 2179-2187.]); Downing & Urbach (1969[Downing, R. S. & Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977-5983.]); Ganeshpure et al. (1996[Ganeshpure, P. A., Tembe, G. L. & Satish, S. (1996). J. Mol. Catal. A Chem. 113, L423-L425.]). For related structures, see: Sun et al. (2005[Sun, Y.-X., Gao, G.-Z., Pei, H.-X. & Zhang, R. (2005). Acta Cryst. E61, m370-m372.]); You et al. (2004[You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884-m886.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H10ClN2O)(H2O)]NO3·H2O

  • Mr = 407.26

  • Triclinic, [P \overline 1]

  • a = 7.892 (2) Å

  • b = 8.9741 (12) Å

  • c = 11.8929 (15) Å

  • α = 106.841 (2)°

  • β = 102.198 (1)°

  • γ = 92.897 (1)°

  • V = 782.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 298 K

  • 0.47 × 0.41 × 0.30 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.520, Tmax = 0.645

  • 4114 measured reflections

  • 2714 independent reflections

  • 2280 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.06

  • 2714 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.889 (2)
Cu1—N1 1.936 (3)
Cu1—O2 1.975 (2)
Cu1—N2 1.982 (3)
O1—Cu1—N1 93.94 (10)
O1—Cu1—O2 88.85 (9)
N1—Cu1—O2 171.60 (10)
O1—Cu1—N2 176.81 (10)
N1—Cu1—N2 82.98 (11)
O2—Cu1—N2 94.32 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2a⋯O5 0.85 1.83 2.676 (4) 173
O2—H2a⋯N3 0.85 2.52 3.253 (4) 146
O2—H2a⋯O3 0.85 2.57 3.052 (4) 117
O2—H2b⋯O6i 0.85 1.81 2.657 (4) 174
O6—H6a⋯O1ii 0.85 2.08 2.915 (3) 166
O6—H6b⋯O4 0.85 1.93 2.782 (5) 177
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metals ions are vital for living organisms because they are involved in many fundamental biological processes, e.g. copper proteins known to be involved in a crucial role, such as respiration, iron transport, oxidative stress protection, blood clotting and pigmentation (Arnesano et al., 2004). The study of copper compounds is of great interest in various aspects of chemistry (Downing & Urbach, 1969; Ganeshpure et al., 1996; Bosnich, 1968; Costes et al., 1995). The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. The CuII atom is four- coordinated by two nitrogen atoms and one oxygen atom of the tridentate Schiff base ligand, and one oxygen atom from the coordinated water molecule, forming a slightly distorted square-planar coordination configuration. The four coordinating atoms around the Cu centre are approximately coplanar. The Cu1—N2 bond [1.982 (2) Å; Table 1] is a little longer than the value [1.977 (4) Å] observed in a similar copper(II) complex (Sun et al., 2005). The Cu1—N1 bond length [1.936 (2) Å] is comparable with the corresponding value [1.934 (4) Å] observed in the same complex mentioned above (Sun et al., 2005). The Cu1—O1 bond length is 1.889 (18) Å. The nitrate ion is in interaction with the copper center [Cu1···O3 = 2.579 (4) Å]. The bond angles around the CuII centre show some deviations from ideal square-planar geometry. The Schiff base ligands from adjacent molecules are almost parallel due to by π-π interactions leading to the formation of two-dimensional parallel layers (Fig.2). The cations, anions and solvent water molecules are linked by O-H···O hydrogen bonds.

Related literature top

For the role of copper proteins in fundamental biological processes, see: Arnesano et al. (2004). For the chemistry of copper compounds, see: Bosnich (1968); Costes et al. (1995); Downing & Urbach (1969); Ganeshpure et al. (1996). For related structures, see: Sun et al. (2005); You et al. (2004). For related literature, see: Mizutani et al. (1999).

Experimental top

2-Aminomethylpyridine (0.1 mmol, 10.8 mg) and 5-chloro-salicylaldehyde (0.1 mmol, 15.6 mg) were dissolved in methanol (10 ml). The mixture was stirred for 1 h to give a clear yellow solution. To this solution was added a water solution (10 ml) of Cu(NO3)2.3H2O (0.1 mmol, 24.2 mg), with stirring. The mixture was stirred for 10 min to give a deep green solution, which was allowed to evaporate slowly in the open at room temperature. After 5 days, deep blue block-shaped crystals suitable for an X-ray diffraction study were formed at the bottom of the vessel.

Refinement top

The hydrogen atoms bound to carbon atoms were placed in geometrical positions and refined using a riding model, with C—H = 0.94 Å and Uiso(H) =1.2Ueq(C). The hydrogens of the water molecules were located in Fourier difference maps and refined with a distance restraint of 0.85 Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the compound (I). Hydrogen bonds are shown as dashed lines.
Aqua[4-chloro-2-(2-pyridylmethyliminomethyl)phenolato]copper(II) nitrate monohydrate top
Crystal data top
[Cu(C13H10ClN2O)(H2O)]NO3·H2OZ = 2
Mr = 407.26F(000) = 414
Triclinic, P1Dx = 1.729 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.892 (2) ÅCell parameters from 13380 reflections
b = 8.9741 (12) Åθ = 1.8–25.0°
c = 11.8929 (15) ŵ = 1.60 mm1
α = 106.841 (2)°T = 298 K
β = 102.198 (1)°Prism, dark blue
γ = 92.897 (1)°0.47 × 0.41 × 0.30 mm
V = 782.3 (2) Å3
Data collection top
Rigaku SCXmini
diffractometer
2714 independent reflections
Radiation source: Rotating Anode2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 810
Tmin = 0.520, Tmax = 0.645l = 1314
4114 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.5072P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2714 reflectionsΔρmax = 0.40 e Å3
218 parametersΔρmin = 0.39 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0320 (19)
Crystal data top
[Cu(C13H10ClN2O)(H2O)]NO3·H2Oγ = 92.897 (1)°
Mr = 407.26V = 782.3 (2) Å3
Triclinic, P1Z = 2
a = 7.892 (2) ÅMo Kα radiation
b = 8.9741 (12) ŵ = 1.60 mm1
c = 11.8929 (15) ÅT = 298 K
α = 106.841 (2)°0.47 × 0.41 × 0.30 mm
β = 102.198 (1)°
Data collection top
Rigaku SCXmini
diffractometer
2714 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2280 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.645Rint = 0.016
4114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
2714 reflectionsΔρmin = 0.39 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19716 (5)0.40689 (4)0.59865 (3)0.03271 (17)
Cl10.01878 (15)0.28462 (12)0.04586 (8)0.0556 (3)
N10.2799 (3)0.5546 (3)0.5259 (2)0.0322 (6)
N20.3181 (3)0.5696 (3)0.7513 (2)0.0329 (6)
N30.4694 (4)0.1517 (4)0.6974 (3)0.0448 (7)
O10.0888 (3)0.2574 (2)0.44856 (19)0.0391 (6)
O20.0886 (3)0.2783 (3)0.6801 (2)0.0380 (6)
H2A0.16810.22700.70490.046*
H2B0.00400.21040.63500.046*
O30.4553 (4)0.2453 (3)0.6385 (3)0.0632 (8)
O40.5942 (5)0.0744 (5)0.6999 (4)0.0921 (12)
O50.3572 (3)0.1310 (3)0.7528 (2)0.0513 (7)
O60.8275 (3)0.0554 (3)0.5520 (2)0.0496 (7)
H6A0.86620.03260.54620.059*
H6B0.75570.06500.59700.059*
C10.2497 (4)0.5376 (4)0.4119 (3)0.0322 (7)
H10.29420.61910.38880.039*
C20.1531 (4)0.4032 (4)0.3176 (3)0.0304 (7)
C30.0765 (4)0.2710 (4)0.3398 (3)0.0323 (7)
C40.0198 (5)0.1487 (4)0.2394 (3)0.0381 (8)
H40.07260.06180.25200.046*
C50.0380 (5)0.1543 (4)0.1237 (3)0.0395 (8)
H50.10280.07220.05890.047*
C60.0411 (5)0.2835 (4)0.1032 (3)0.0375 (8)
C70.1338 (4)0.4054 (4)0.1972 (3)0.0377 (8)
H70.18500.49110.18220.045*
C80.3778 (5)0.7018 (4)0.6111 (3)0.0382 (8)
H8A0.31380.78910.60300.046*
H8B0.49010.71840.59280.046*
C90.4047 (4)0.6945 (4)0.7380 (3)0.0328 (7)
C100.5091 (5)0.8088 (4)0.8357 (3)0.0420 (9)
H100.56970.89270.82430.050*
C110.5229 (5)0.7975 (4)0.9502 (3)0.0455 (9)
H110.59380.87291.01710.055*
C120.4294 (5)0.6720 (4)0.9639 (3)0.0458 (9)
H120.43400.66341.04050.055*
C130.3297 (5)0.5603 (4)0.8633 (3)0.0417 (9)
H130.26820.47550.87300.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0408 (3)0.0262 (2)0.0313 (2)0.00137 (16)0.00910 (17)0.00954 (17)
Cl10.0840 (8)0.0510 (6)0.0315 (5)0.0041 (5)0.0125 (5)0.0137 (4)
N10.0379 (16)0.0245 (14)0.0342 (15)0.0011 (11)0.0080 (12)0.0102 (12)
N20.0406 (16)0.0255 (14)0.0325 (15)0.0042 (12)0.0070 (12)0.0101 (12)
N30.0422 (19)0.0434 (18)0.0477 (19)0.0011 (15)0.0108 (15)0.0134 (15)
O10.0565 (15)0.0288 (12)0.0320 (13)0.0077 (11)0.0110 (11)0.0112 (10)
O20.0428 (14)0.0348 (13)0.0371 (13)0.0023 (10)0.0100 (10)0.0131 (11)
O30.0651 (19)0.0525 (17)0.093 (2)0.0078 (14)0.0379 (17)0.0412 (17)
O40.071 (2)0.121 (3)0.132 (3)0.050 (2)0.055 (2)0.083 (3)
O50.0485 (16)0.0679 (18)0.0474 (15)0.0065 (13)0.0170 (13)0.0288 (14)
O60.0546 (16)0.0384 (14)0.0572 (16)0.0014 (12)0.0160 (13)0.0162 (13)
C10.0331 (18)0.0297 (17)0.0395 (19)0.0029 (14)0.0115 (14)0.0174 (15)
C20.0323 (17)0.0266 (16)0.0342 (17)0.0037 (13)0.0081 (14)0.0119 (14)
C30.0364 (18)0.0289 (17)0.0338 (18)0.0060 (14)0.0105 (14)0.0111 (14)
C40.046 (2)0.0278 (18)0.0387 (19)0.0032 (15)0.0114 (16)0.0083 (15)
C50.044 (2)0.0333 (19)0.0356 (19)0.0023 (16)0.0081 (15)0.0043 (15)
C60.045 (2)0.0371 (19)0.0306 (18)0.0078 (16)0.0102 (15)0.0099 (16)
C70.042 (2)0.0374 (19)0.0407 (19)0.0049 (16)0.0134 (15)0.0194 (16)
C80.045 (2)0.0274 (17)0.0402 (19)0.0051 (15)0.0077 (16)0.0113 (15)
C90.0339 (18)0.0261 (17)0.0377 (18)0.0064 (14)0.0072 (14)0.0091 (15)
C100.043 (2)0.0322 (19)0.046 (2)0.0008 (16)0.0046 (16)0.0095 (17)
C110.051 (2)0.037 (2)0.038 (2)0.0044 (17)0.0016 (17)0.0046 (17)
C120.062 (3)0.039 (2)0.0327 (19)0.0069 (18)0.0041 (17)0.0095 (17)
C130.054 (2)0.0351 (19)0.0377 (19)0.0024 (17)0.0105 (17)0.0140 (16)
Geometric parameters (Å, º) top
Cu1—O11.889 (2)C2—C31.421 (4)
Cu1—N11.936 (3)C3—C41.407 (4)
Cu1—O21.975 (2)C4—C51.368 (5)
Cu1—N21.982 (3)C4—H40.9300
Cl1—C61.747 (3)C5—C61.396 (5)
N1—C11.288 (4)C5—H50.9300
N1—C81.469 (4)C6—C71.359 (5)
N2—C131.343 (4)C7—H70.9300
N2—C91.349 (4)C8—C91.500 (4)
N3—O41.233 (4)C8—H8A0.9700
N3—O31.236 (4)C8—H8B0.9700
N3—O51.247 (4)C9—C101.379 (4)
O1—C31.318 (4)C10—C111.376 (5)
O2—H2A0.8500C10—H100.9300
O2—H2B0.8500C11—C121.383 (5)
O6—H6A0.8500C11—H110.9300
O6—H6B0.8499C12—C131.372 (5)
C1—C21.433 (4)C12—H120.9300
C1—H10.9300C13—H130.9300
C2—C71.414 (4)
O1—Cu1—N193.94 (10)C3—C4—H4119.1
O1—Cu1—O288.85 (9)C4—C5—C6119.9 (3)
N1—Cu1—O2171.60 (10)C4—C5—H5120.1
O1—Cu1—N2176.81 (10)C6—C5—H5120.1
N1—Cu1—N282.98 (11)C7—C6—C5120.6 (3)
O2—Cu1—N294.32 (10)C7—C6—Cl1120.8 (3)
C1—N1—C8118.5 (3)C5—C6—Cl1118.5 (3)
C1—N1—Cu1125.9 (2)C6—C7—C2120.6 (3)
C8—N1—Cu1115.6 (2)C6—C7—H7119.7
C13—N2—C9118.7 (3)C2—C7—H7119.7
C13—N2—Cu1125.8 (2)N1—C8—C9109.7 (3)
C9—N2—Cu1115.3 (2)N1—C8—H8A109.7
O4—N3—O3120.0 (3)C9—C8—H8A109.7
O4—N3—O5118.9 (3)N1—C8—H8B109.7
O3—N3—O5121.1 (3)C9—C8—H8B109.7
C3—O1—Cu1127.6 (2)H8A—C8—H8B108.2
Cu1—O2—H2A105.5N2—C9—C10121.7 (3)
Cu1—O2—H2B115.4N2—C9—C8115.8 (3)
H2A—O2—H2B106.1C10—C9—C8122.5 (3)
H6A—O6—H6B107.8C11—C10—C9119.5 (3)
N1—C1—C2125.3 (3)C11—C10—H10120.3
N1—C1—H1117.3C9—C10—H10120.3
C2—C1—H1117.3C10—C11—C12118.7 (3)
C7—C2—C3119.4 (3)C10—C11—H11120.6
C7—C2—C1117.3 (3)C12—C11—H11120.6
C3—C2—C1123.4 (3)C13—C12—C11119.4 (3)
O1—C3—C4118.5 (3)C13—C12—H12120.3
O1—C3—C2123.8 (3)C11—C12—H12120.3
C4—C3—C2117.7 (3)N2—C13—C12122.1 (3)
C5—C4—C3121.8 (3)N2—C13—H13119.0
C5—C4—H4119.1C12—C13—H13119.0
O1—Cu1—N1—C12.8 (3)O1—C3—C4—C5179.8 (3)
O2—Cu1—N1—C1106.3 (7)C2—C3—C4—C51.0 (5)
N2—Cu1—N1—C1178.0 (3)C3—C4—C5—C60.3 (5)
O1—Cu1—N1—C8179.4 (2)C4—C5—C6—C71.1 (5)
O2—Cu1—N1—C870.3 (8)C4—C5—C6—Cl1178.7 (3)
N2—Cu1—N1—C81.4 (2)C5—C6—C7—C20.5 (5)
O1—Cu1—N2—C13163.3 (19)Cl1—C6—C7—C2179.3 (3)
N1—Cu1—N2—C13178.8 (3)C3—C2—C7—C60.8 (5)
O2—Cu1—N2—C139.1 (3)C1—C2—C7—C6178.7 (3)
O1—Cu1—N2—C912 (2)C1—N1—C8—C9177.7 (3)
N1—Cu1—N2—C93.5 (2)Cu1—N1—C8—C95.5 (4)
O2—Cu1—N2—C9175.5 (2)C13—N2—C9—C102.4 (5)
N1—Cu1—O1—C33.4 (3)Cu1—N2—C9—C10173.3 (3)
O2—Cu1—O1—C3168.7 (3)C13—N2—C9—C8176.7 (3)
N2—Cu1—O1—C319 (2)Cu1—N2—C9—C87.6 (4)
C8—N1—C1—C2178.5 (3)N1—C8—C9—N28.4 (4)
Cu1—N1—C1—C22.0 (5)N1—C8—C9—C10172.5 (3)
N1—C1—C2—C7179.8 (3)N2—C9—C10—C111.4 (5)
N1—C1—C2—C30.7 (5)C8—C9—C10—C11177.7 (3)
Cu1—O1—C3—C4176.1 (2)C9—C10—C11—C120.8 (5)
Cu1—O1—C3—C23.1 (5)C10—C11—C12—C131.8 (6)
C7—C2—C3—O1179.3 (3)C9—N2—C13—C121.3 (5)
C1—C2—C3—O11.2 (5)Cu1—N2—C13—C12173.9 (3)
C7—C2—C3—C41.5 (5)C11—C12—C13—N20.8 (6)
C1—C2—C3—C4178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2a···O50.851.832.676 (4)173
O2—H2a···N30.852.523.253 (4)146
O2—H2a···O30.852.573.052 (4)117
O2—H2b···O6i0.851.812.657 (4)174
O6—H6a···O1ii0.852.082.915 (3)166
O6—H6b···O40.851.932.782 (5)177
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C13H10ClN2O)(H2O)]NO3·H2O
Mr407.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.892 (2), 8.9741 (12), 11.8929 (15)
α, β, γ (°)106.841 (2), 102.198 (1), 92.897 (1)
V3)782.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.47 × 0.41 × 0.30
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.520, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
4114, 2714, 2280
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.06
No. of reflections2714
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.39

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.889 (2)Cu1—O21.975 (2)
Cu1—N11.936 (3)Cu1—N21.982 (3)
O1—Cu1—N193.94 (10)O1—Cu1—N2176.81 (10)
O1—Cu1—O288.85 (9)N1—Cu1—N282.98 (11)
N1—Cu1—O2171.60 (10)O2—Cu1—N294.32 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2a···O50.851.8292.676 (4)173.17
O2—H2a···N30.852.5173.253 (4)145.46
O2—H2a···O30.852.573.052 (4)117.12
O2—H2b···O6i0.851.8112.657 (4)173.63
O6—H6a···O1ii0.852.0832.915 (3)165.91
O6—H6b···O40.851.9342.782 (5)176.61
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

References

First citationArnesano, F., Banci, L., Bertini, I. & Ciofi-Baffoni, S. (2004). Eur. J. Inorg. Chem. pp. 1583–1586.  Web of Science CrossRef Google Scholar
First citationBosnich, B. (1968). J. Am. Chem. Soc. 90, 627–632.  CrossRef CAS Web of Science Google Scholar
First citationCostes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995). Polyhedron, 14, 2179–2187.  CrossRef CAS Web of Science Google Scholar
First citationDowning, R. S. & Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977–5983.  CrossRef CAS Web of Science Google Scholar
First citationGaneshpure, P. A., Tembe, G. L. & Satish, S. (1996). J. Mol. Catal. A Chem. 113, L423–L425.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., Gao, G.-Z., Pei, H.-X. & Zhang, R. (2005). Acta Cryst. E61, m370–m372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884–m886.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds