metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m88-m89

catena-Poly[[tetra-μ3-isonicotinato-μ3-oxalato-μ2-oxalato-disamarium(III)disilver(I)] dihydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yuesht@scnu.edu.cn

(Received 8 October 2009; accepted 16 December 2009; online 24 December 2009)

In the title compound, {[AgSm(C6H4NO2)2(C2O4)]·H2O}n, the asymmetric unit contains one SmIII ion, one AgI ion, two unique isonicotinate (ina) ligands, two half oxalate (ox) ligands (one on an inversion centre, the other on a twofold axis) and one uncoordinated water mol­ecule. The central SmIII ion is nine-coordinated by four O-donor atoms from separate bidentate bridging ox ligands and five O-donor atoms from the two ina ligands (both bidentate) and a symmetry-related ina ligand [Sm—O = 2.389 (4)–2.791 (4) Å], giving a distorted monocapped square anti­prismatic geometry. The AgI ion is three-coordinated in a T-shaped geometry involving two ina N-donor atoms [Ag—N = 2.181 (6) and 2.185 (5) Å] and a bridging oxalate O-donor atom [Ag—O = 2.620 (4) Å]. The three-dimensional heterometallic Sm—Ag coordination polymer, having a unique (3,4,6)-connected five-nodal net topology, is constructed from two-dimensional samarium–oxalate layers and pillared Ag(ina)2 subunits. Inter­molecular water–carboxyl­ate O—H⋯O hydrogen-bonding inter­actions are also present.

Related literature

For microporous metal-organic framework (MMOF) compounds, see: Sun et al. (2006[Sun, D.-F., Ma, S.-Q., Ke, Y.-X., Collins, D.-J. & Zhou, H.-C. (2006). J. Am. Chem. Soc. 128, 3896-3897.]); Wu & Lin (2005[Wu, C.-D. & Lin, W.-B. (2005). Angew. Chem. Int. Ed. 44, 1958-1961.]); Cho et al. (2006[Cho, S.-H., Ma, B.-Q., Nguyen, S. T., Hupp, J. T. & Albrecht-Schmitt, T. E. (2006). Chem. Commun. pp. 2563-2565.]). For isonicotinic acid-heterometallic compounds, see: Cai et al. (2009[Cai, Y.-P., Yu, Q.-Y., Zhou, Z.-Y., Hu, Z.-J., Fang, H.-C., Wang, N., Zhan, Q.-G., Chen, L. & Su, C.-Y. (2009). CrystEngComm, 11, 1006-1013.]); Gu & Xue (2006[Gu, X.-J. & Xue, D.-F. (2006). Cryst. Growth Des. 6, 2551-2557.], 2007[Gu, X.-J. & Xue, D.-F. (2007). CrystEngComm, 9, 471-477.]); Ma et al. (2009[Ma, D.-Y., Liu, H.-L. & Li, Y.-W. (2009). Inorg. Chem. Commun. 12, 883-886.]). For topological studies, see: Blatov et al. (2000[Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (2000). J. Appl. Cryst. 33, 1193.]); Blatov & Shevchenko (2006[Blatov, V.-A. & Shevchenko, A.-P. (2006). TOPOS. Samara State University, Russia.]).

[Scheme 1]

Experimental

Crystal data
  • [AgSm(C6H4NO2)2(C2O4)]·H2O

  • Mr = 608.47

  • Monoclinic, C 2/c

  • a = 22.0484 (18) Å

  • b = 9.2372 (8) Å

  • c = 17.1137 (14) Å

  • β = 108.123 (1)°

  • V = 3312.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.75 mm−1

  • T = 298 K

  • 0.30 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.330, Tmax = 0.482

  • 8766 measured reflections

  • 3240 independent reflections

  • 2789 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.08

  • 3240 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −1.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O8i 0.86 2.16 2.960 (8) 156
O1W—H2W⋯O3 0.86 2.31 2.915 (7) 128
Symmetry code: (i) [-x+1, y, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Microporous metal-organic frameworks (MMOFs) are of great current interest in view of their fascinating structural topologies and potential applications, e.g. in small molecule gas storage, separation and catalysis (Sun et al., 2006; Wu et al., 2005; Cho et al., 2006). However, most of the works have so far focused on the assembly of 3d block metals with organic ligands as linkers and many 3d-4f heterometallic MOFs have also been reported. However, the 4d-4f heterometallic compounds based on the isonicotinic acid (ina) ligand have received less attention (Gu et al., 2006; Gu et al., 2007; Ma et al., 2009; Cai et al., 2009). The preparation of 4d-4f MMOFs has certain difficulties because of the high coordination number of 4f block metals, which frequently leads to interpenetration and consequently results in a decrease of the pore size or the MMOF may even become nonporous. Therefore the selection of the organic ligands becomes a key point in the preparation of 4d-4f heterometallic MMOFs. Herein, we report the structure of the title compound {[SmAg(C6H4NO2)2(C2O4)].H2O}n (I) involving SmIII, AgI and the organic nicotinate and oxalate ligands, which has a microporous structure.

In the title compound (Fig. 1), the asymmetric unit contains one SmIII ion, one AgI ion, two unique isonicotinate (ina) ligands, two half oxalate (ox) ligands [one on an inversion centre (associated with O5 and O6), the other on a two-fold axis (associated with O7 and O8)] and one uncoordinated water molecule of solvation (O1W). The central SmIII ion is nine-coordinate with four O-donor atoms from separate bidentate bridging ox ligands and five O-donors from the two ina ligands (both bidentate) [Sm—O bond length range, 2.389 (4)–2.791 (4) Å], giving a distorted monocapped square antiprismatic stereochemistry. The three-coordinate AgIion is surrounded by two N-donor atoms from the two ina ligands [Ag–N, 2.181 (6), 2.185 (5) Å] and one O atom from a bridging oxalate ligand giving a T-shaped coordination geometry. The Ag—O bond [2.620 (4) Å] is long but this and the N—Ag—N angle [154.3 (2)°] are similar to those found in other AgI complexes having T-shaped configurations. The oxalate ligands bridge Sm centers to form a two-dimensional lanthanide-oxalate layered network. In the packing arrangement of the title compound, 'linear' N–Ag–N linkages play an important role in connecting the adjacent two-dimensional layers, forming a three-dimensional pillar-layered coordination polymer with microporous structures. Topological studies performed using the software package TOPOS 4.0 (Blatov & Shevchenko, 2006; Blatov et al., 2000) reveal that this topology is a unique five-nodal (3,4,6)-connected net. The water molecule of solvation also gives O–H···O hydrogen-bonding interactions with oxalate and isonicotinate O acceptors (Table 1).

Related literature top

For microporous metal-organic framework (MMOF) compounds, see: Sun et al. (2006); Wu & Lin (2005); Cho et al. (2006). For isonicotinic acid-heterometallic compounds, see: Cai et al. (2009); Gu & Xue (2006, 2007); Ma et al. (2009). For topological studies, see: Blatov et al. (2000); Blatov & Shevchenko (2006).

Experimental top

A mixture of isonicotinic acid (0.0615 g), Sm(NO3)3.6H2O (0.114 g), AgNO3 (0.051 g, 0.3mmol), oxalic acid dihydrate (0.037 g, 0.3mmol) and water (10 ml) was heated at 430 K for 72 h in a 23 ml Teflon-lined stainless-steel autoclave and then cooled to room temperature at a rate of 278° per hour. Colourless prismatic crystals were collected, washed with water three times and dried in air.

Refinement top

All H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 |%A and O—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O). The H atoms of the water molecule (O1W) were found from the difference Fourier maps and fixed using AFIX within SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (40% probability level) of the title compound, with atom numbering scheme for non-H atoms. For symmetry-generated atoms, codes are: (A) -x + 1, y, -z - 1/2; (B) -x + 1, -y, -z; (C) -x + 1, -y + 1, -z; (D) -x + 1/2, y - 1/2,-z + 1/2; (E) x + 1/2,-y + 3/2, z - 1/2; (F) x - 1/2, y + 1/2, z].
[Figure 2] Fig. 2. The three-dimensional pillar-layered structure in a packing diagram of the title compound, with H atoms omitted for clarity. Hydrogen bonds are shown as dashed lines.
catena-Poly[[tetra-µ3-isonicotinato-µ3-oxalato-µ2-oxalato- disamarium(III)disilver(I)] dihydrate] top
Crystal data top
[AgSm(C6H4NO2)2(C2O4)]·H2OF(000) = 2312
Mr = 608.47Dx = 2.440 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3815 reflections
a = 22.0484 (18) Åθ = 2.4–27.8°
b = 9.2372 (8) ŵ = 4.75 mm1
c = 17.1137 (14) ÅT = 298 K
β = 108.123 (1)°Prism, colorless
V = 3312.6 (5) Å30.30 × 0.23 × 0.18 mm
Z = 8
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
3240 independent reflections
Radiation source: fine-focus sealed tube2789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2727
Tmin = 0.330, Tmax = 0.482k = 1111
8766 measured reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0301P)2 + 2.6943P]
where P = (Fo2 + 2Fc2)/3
3240 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 1.50 e Å3
Crystal data top
[AgSm(C6H4NO2)2(C2O4)]·H2OV = 3312.6 (5) Å3
Mr = 608.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.0484 (18) ŵ = 4.75 mm1
b = 9.2372 (8) ÅT = 298 K
c = 17.1137 (14) Å0.30 × 0.23 × 0.18 mm
β = 108.123 (1)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
3240 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2789 reflections with I > 2σ(I)
Tmin = 0.330, Tmax = 0.482Rint = 0.057
8766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 1.43 e Å3
3240 reflectionsΔρmin = 1.50 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.17077 (3)0.56369 (8)0.13601 (4)0.0685 (2)
C10.5352 (2)0.0142 (5)0.0244 (3)0.0262 (11)
C20.5364 (2)0.2525 (5)0.2303 (3)0.0240 (11)
C30.3774 (2)0.4799 (6)0.0550 (3)0.0278 (11)
C40.3236 (3)0.5115 (6)0.0213 (3)0.0317 (12)
C50.2693 (4)0.4269 (10)0.0417 (6)0.082 (3)
H50.26270.35670.08250.098*
C60.3283 (3)0.6170 (8)0.0352 (5)0.0520 (18)
H60.36230.68170.04730.062*
C70.2830 (3)0.6284 (8)0.0745 (4)0.0527 (19)
H70.28840.69920.11480.063*
C80.2246 (4)0.4474 (10)0.0008 (6)0.086 (3)
H80.18780.39100.01550.103*
C90.1123 (4)0.5823 (7)0.2779 (5)0.064 (2)
H90.11600.48220.27600.077*
C100.1345 (3)0.8035 (7)0.2388 (4)0.0437 (16)
H100.15470.86150.21010.052*
C110.1016 (3)0.8711 (7)0.2855 (4)0.0408 (15)
H110.09850.97140.28660.049*
C120.0803 (3)0.6383 (7)0.3267 (4)0.0490 (18)
H120.06300.57730.35740.059*
C130.0734 (3)0.7849 (6)0.3305 (3)0.0255 (11)
C140.0374 (2)0.8525 (6)0.3833 (3)0.0262 (11)
N10.1388 (2)0.6622 (6)0.2325 (3)0.0420 (13)
N20.2324 (3)0.5447 (6)0.0585 (3)0.0492 (14)
O10.0347 (2)0.7806 (4)0.4442 (2)0.0353 (9)
O20.01455 (19)0.9765 (4)0.3628 (2)0.0337 (9)
O30.37193 (18)0.3777 (5)0.1045 (2)0.0388 (10)
O40.42816 (17)0.5524 (4)0.0283 (2)0.0316 (8)
O50.56218 (17)0.0747 (4)0.0790 (2)0.0286 (8)
O60.55987 (17)0.1263 (4)0.0070 (2)0.0307 (8)
O70.55695 (18)0.2331 (4)0.1546 (2)0.0332 (9)
O80.56874 (17)0.2685 (4)0.2785 (2)0.0309 (8)
O1W0.2965 (3)0.1982 (6)0.2401 (4)0.0729 (17)
H1W0.33110.21960.25060.109*
H2W0.29250.25700.20310.109*
Sm10.487549 (12)0.31384 (3)0.073228 (15)0.02264 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0488 (3)0.1075 (6)0.0651 (4)0.0103 (3)0.0408 (3)0.0402 (4)
C10.037 (3)0.022 (3)0.025 (3)0.004 (2)0.017 (2)0.005 (2)
C20.036 (3)0.016 (3)0.027 (3)0.000 (2)0.020 (2)0.000 (2)
C30.027 (3)0.035 (3)0.022 (3)0.002 (2)0.010 (2)0.003 (2)
C40.029 (3)0.041 (3)0.031 (3)0.004 (2)0.017 (2)0.003 (2)
C50.063 (5)0.109 (7)0.099 (7)0.046 (5)0.061 (5)0.083 (6)
C60.036 (3)0.056 (4)0.071 (5)0.012 (3)0.027 (3)0.032 (4)
C70.037 (3)0.067 (5)0.057 (4)0.006 (3)0.020 (3)0.037 (4)
C80.068 (5)0.110 (8)0.109 (7)0.049 (5)0.070 (5)0.069 (6)
C90.090 (6)0.031 (4)0.104 (6)0.011 (3)0.080 (5)0.017 (4)
C100.048 (4)0.054 (4)0.042 (4)0.001 (3)0.032 (3)0.006 (3)
C110.056 (4)0.033 (3)0.047 (4)0.011 (3)0.035 (3)0.016 (3)
C120.072 (5)0.028 (3)0.072 (5)0.007 (3)0.059 (4)0.005 (3)
C130.031 (3)0.030 (3)0.018 (2)0.003 (2)0.013 (2)0.001 (2)
C140.030 (3)0.027 (3)0.028 (3)0.001 (2)0.017 (2)0.005 (2)
N10.045 (3)0.049 (3)0.044 (3)0.006 (2)0.031 (3)0.018 (2)
N20.045 (3)0.066 (4)0.051 (3)0.001 (3)0.034 (3)0.016 (3)
O10.052 (3)0.033 (2)0.030 (2)0.0029 (18)0.0265 (19)0.0004 (17)
O20.050 (2)0.028 (2)0.030 (2)0.0086 (17)0.0228 (18)0.0002 (16)
O30.035 (2)0.050 (3)0.037 (2)0.0027 (18)0.0180 (18)0.015 (2)
O40.0268 (19)0.036 (2)0.035 (2)0.0004 (17)0.0138 (16)0.0022 (17)
O50.035 (2)0.0238 (19)0.028 (2)0.0042 (15)0.0108 (16)0.0055 (15)
O60.030 (2)0.026 (2)0.040 (2)0.0057 (16)0.0180 (17)0.0028 (17)
O70.039 (2)0.041 (2)0.025 (2)0.0037 (18)0.0167 (17)0.0006 (17)
O80.033 (2)0.035 (2)0.033 (2)0.0030 (16)0.0217 (17)0.0026 (17)
O1W0.058 (3)0.081 (4)0.080 (4)0.006 (3)0.022 (3)0.011 (3)
Sm10.02976 (18)0.02037 (18)0.02401 (18)0.00243 (10)0.01742 (13)0.00082 (9)
Geometric parameters (Å, º) top
Sm1—O32.507 (4)N1—C91.331 (10)
Sm1—O42.791 (4)N2—C81.326 (11)
Sm1—O62.463 (4)N2—C71.314 (10)
Sm1—O72.483 (4)C1—C1ii1.539 (7)
Sm1—O8i2.489 (3)C2—C2i1.536 (7)
Sm1—O5ii2.454 (4)C3—C41.500 (8)
Sm1—O4iii2.448 (4)C4—C61.354 (9)
Sm1—O1iv2.426 (4)C4—C51.381 (11)
Sm1—O2v2.389 (4)C5—C81.388 (13)
Ag1—N12.185 (5)C6—C71.371 (10)
Ag1—N22.181 (6)C9—C121.353 (11)
Ag1—O5vi2.620 (4)C10—C111.384 (10)
O1—C141.253 (6)C11—C131.383 (9)
O2—C141.257 (7)C12—C131.367 (9)
O3—C31.249 (7)C13—C141.511 (8)
O4—C31.262 (6)C5—H50.9300
O5—C11.247 (6)C6—H60.9300
O6—C11.248 (6)C7—H70.9300
O7—C21.245 (6)C8—H80.9300
O8—C21.256 (6)C9—H90.9300
O1W—H2W0.8600C10—H100.9300
O1W—H1W0.8600C11—H110.9300
N1—C101.316 (9)C12—H120.9300
O3—Sm1—O448.69 (12)Sm1i—O8—C2119.0 (3)
O3—Sm1—O6136.35 (13)H1W—O1W—H2W108.00
O3—Sm1—O7135.58 (11)Ag1—N1—C9120.9 (5)
O3—Sm1—O8i70.76 (12)Ag1—N1—C10121.6 (4)
O3—Sm1—O5ii77.95 (14)C9—N1—C10116.5 (6)
O3—Sm1—O4iii122.00 (13)Ag1—N2—C8124.3 (6)
O1iv—Sm1—O375.17 (13)C7—N2—C8117.2 (7)
O2v—Sm1—O395.35 (14)Ag1—N2—C7118.4 (4)
O4—Sm1—O6132.82 (10)O5—C1—O6125.7 (5)
O4—Sm1—O7144.66 (11)O6—C1—C1ii116.9 (4)
O4—Sm1—O8i106.61 (11)O5—C1—C1ii117.4 (4)
O4—Sm1—O5ii118.67 (12)O7—C2—O8127.1 (5)
O4—Sm1—O4iii73.95 (12)O8—C2—C2i116.2 (4)
O1iv—Sm1—O466.68 (11)O7—C2—C2i116.7 (4)
O2v—Sm1—O472.02 (12)O3—C3—O4122.3 (5)
O6—Sm1—O772.32 (12)O3—C3—C4119.1 (5)
O6—Sm1—O8i118.75 (12)O4—C3—C4118.4 (5)
O5ii—Sm1—O665.99 (12)C3—C4—C5121.3 (6)
O4iii—Sm1—O675.07 (12)C3—C4—C6121.4 (6)
O1iv—Sm1—O671.50 (13)C5—C4—C6117.1 (7)
O2v—Sm1—O6127.96 (13)C4—C5—C8119.4 (8)
O7—Sm1—O8i64.94 (12)C4—C6—C7120.0 (7)
O5ii—Sm1—O793.02 (12)N2—C7—C6123.6 (7)
O4iii—Sm1—O794.90 (12)N2—C8—C5122.3 (8)
O1iv—Sm1—O7143.81 (13)N1—C9—C12123.8 (6)
O2v—Sm1—O772.64 (13)N1—C10—C11124.0 (6)
O5ii—Sm1—O8i74.50 (11)C10—C11—C13118.0 (6)
O4iii—Sm1—O8i146.76 (12)C9—C12—C13119.7 (6)
O1iv—Sm1—O8i136.79 (13)C11—C13—C14120.4 (5)
O2v—Sm1—O8i77.62 (12)C12—C13—C14121.7 (5)
O4iii—Sm1—O5ii135.56 (11)C11—C13—C12117.9 (6)
O1iv—Sm1—O5ii73.05 (12)O1—C14—O2126.6 (5)
O2v—Sm1—O5ii151.99 (11)O2—C14—C13116.7 (4)
O1iv—Sm1—O4iii75.03 (13)O1—C14—C13116.6 (5)
O2v—Sm1—O4iii70.96 (12)C4—C5—H5120.00
O1iv—Sm1—O2v132.02 (12)C8—C5—H5120.00
N1—Ag1—N2154.3 (2)C7—C6—H6120.00
O5vi—Ag1—N190.71 (15)C4—C6—H6120.00
O5vi—Ag1—N2113.85 (17)N2—C7—H7118.00
Sm1vii—O1—C14140.0 (3)C6—C7—H7118.00
Sm1viii—O2—C14138.3 (3)C5—C8—H8119.00
Sm1—O3—C399.0 (3)N2—C8—H8119.00
Sm1—O4—C385.4 (3)N1—C9—H9118.00
Sm1—O4—Sm1iii106.05 (13)C12—C9—H9118.00
Sm1iii—O4—C3156.5 (3)C11—C10—H10118.00
Sm1ii—O5—C1117.4 (3)N1—C10—H10118.00
Ag1ix—O5—C197.2 (3)C10—C11—H11121.00
Sm1ii—O5—Ag1ix143.05 (16)C13—C11—H11121.00
Sm1—O6—C1117.5 (3)C9—C12—H12120.00
Sm1—O7—C2116.9 (3)C13—C12—H12120.00
O8i—Sm1—O6—C172.4 (4)O3i—Sm1i—O8—C2164.2 (4)
O5ii—Sm1—O6—C117.8 (3)O4i—Sm1i—O8—C2130.7 (3)
O4iii—Sm1—O6—C1140.3 (4)O5vi—Ag1—N1—C947.9 (5)
O1iv—Sm1—O6—C161.4 (3)N1—Ag1—O5vi—C1vi95.8 (3)
O2v—Sm1—O6—C1169.2 (3)N2—Ag1—O5vi—C1vi76.5 (3)
O3—Sm1—O7—C217.4 (4)O5vi—Ag1—N1—C10120.1 (5)
O4—Sm1—O7—C261.6 (4)N1—Ag1—N2—C77.2 (8)
O6—Sm1—O7—C2156.9 (4)N1—Ag1—N2—C8177.3 (6)
O8i—Sm1—O7—C221.9 (3)O5vi—Ag1—N2—C7169.2 (5)
O5ii—Sm1—O7—C293.3 (3)O5vi—Ag1—N2—C815.3 (7)
O3vii—Sm1vii—O1—C1484.5 (6)N2—Ag1—N1—C9148.6 (6)
O4vii—Sm1vii—O1—C1433.5 (5)N2—Ag1—N1—C1043.5 (7)
O6vii—Sm1vii—O1—C14124.1 (6)Sm1vii—O1—C14—C13161.8 (4)
O7vii—Sm1vii—O1—C14122.7 (5)Sm1vii—O1—C14—O216.4 (9)
O4viii—Sm1vii—O1—C1445.2 (5)Sm1viii—O2—C14—O126.0 (9)
O4vii—Sm1viii—O2—C1426.1 (5)Sm1viii—O2—C14—C13152.2 (4)
O3viii—Sm1viii—O2—C1495.9 (5)Sm1—O3—C3—C4151.9 (4)
O4viii—Sm1viii—O2—C1452.6 (5)Sm1—O3—C3—O423.7 (5)
O6viii—Sm1viii—O2—C1478.2 (5)Sm1—O4—C3—O321.0 (5)
O7viii—Sm1viii—O2—C14127.8 (5)Sm1iii—O4—C3—C433.8 (11)
O4—Sm1—O3—C311.8 (3)Sm1iii—O4—C3—O3141.8 (7)
O6—Sm1—O3—C3101.1 (4)Sm1—O4—C3—C4154.7 (4)
O7—Sm1—O3—C3142.7 (3)Sm1ii—O5—C1—O6163.5 (4)
O8i—Sm1—O3—C3147.0 (3)Ag1ix—O5—C1—C1ii175.3 (3)
O5ii—Sm1—O3—C3135.4 (3)Ag1ix—O5—C1—O63.0 (5)
O4iii—Sm1—O3—C31.3 (4)Sm1ii—O5—C1—C1ii18.3 (5)
O1iv—Sm1—O3—C360.0 (3)Sm1—O6—C1—O5162.4 (4)
O2v—Sm1—O3—C372.1 (3)Sm1—O6—C1—C1ii15.9 (5)
O3—Sm1—O4—C311.6 (3)Sm1—O7—C2—O8153.3 (4)
O6—Sm1—O4—C3108.4 (3)Sm1—O7—C2—C2i28.7 (5)
O7—Sm1—O4—C3125.4 (3)Sm1i—O8—C2—C2i4.0 (5)
O8i—Sm1—O4—C355.5 (3)Sm1i—O8—C2—O7177.9 (4)
O5ii—Sm1—O4—C325.6 (3)Ag1—N1—C9—C12166.4 (6)
O4iii—Sm1—O4—C3159.2 (3)C10—N1—C9—C122.2 (11)
O1iv—Sm1—O4—C378.9 (3)Ag1—N1—C10—C11164.8 (5)
O2v—Sm1—O4—C3126.1 (3)C9—N1—C10—C113.7 (10)
O3—Sm1—O4—Sm1iii170.7 (2)Ag1—N2—C8—C5171.7 (7)
O6—Sm1—O4—Sm1iii50.8 (2)Ag1—N2—C7—C6173.7 (6)
O7—Sm1—O4—Sm1iii75.4 (2)C7—N2—C8—C53.8 (12)
O8i—Sm1—O4—Sm1iii145.32 (13)C8—N2—C7—C62.1 (11)
O5ii—Sm1—O4—Sm1iii133.58 (13)O6—C1—C1ii—O6ii180.0 (4)
O4iii—Sm1—O4—Sm1iii0.02 (14)O5—C1—C1ii—O6ii1.6 (7)
O1iv—Sm1—O4—Sm1iii80.28 (15)O6—C1—C1ii—O5ii1.6 (7)
O2v—Sm1—O4—Sm1iii74.72 (14)O5—C1—C1ii—O5ii180.0 (4)
O3iii—Sm1iii—O4—Sm18.21 (18)O7—C2—C2i—O8i16.8 (6)
O4iii—Sm1iii—O4—Sm10.00 (11)O8—C2—C2i—O7i16.8 (6)
O6iii—Sm1iii—O4—Sm1143.96 (15)O7—C2—C2i—O7i161.5 (4)
O7iii—Sm1iii—O4—Sm1145.82 (12)O8—C2—C2i—O8i164.9 (4)
O2iv—Sm1iii—O4—Sm176.09 (14)O3—C3—C4—C6177.1 (6)
O1v—Sm1iii—O4—Sm169.54 (13)O3—C3—C4—C52.3 (9)
O3iii—Sm1iii—O4—C3125.3 (9)O4—C3—C4—C61.3 (8)
O4iii—Sm1iii—O4—C3117.0 (9)O4—C3—C4—C5173.5 (6)
O6iii—Sm1iii—O4—C399.0 (9)C6—C4—C5—C83.7 (12)
O7iii—Sm1iii—O4—C328.8 (9)C3—C4—C6—C7169.6 (6)
O2iv—Sm1iii—O4—C341.0 (9)C3—C4—C5—C8171.3 (7)
O1v—Sm1iii—O4—C3173.4 (9)C5—C4—C6—C75.5 (10)
O3ii—Sm1ii—O5—C1136.2 (4)C4—C5—C8—N20.9 (14)
O4ii—Sm1ii—O5—C1108.6 (3)C4—C6—C7—N22.7 (11)
O6ii—Sm1ii—O5—C118.6 (3)N1—C9—C12—C130.6 (12)
O7ii—Sm1ii—O5—C187.7 (3)N1—C10—C11—C132.3 (10)
O3—Sm1—O6—C119.3 (4)C10—C11—C13—C120.6 (9)
O4—Sm1—O6—C189.9 (4)C10—C11—C13—C14179.4 (5)
O7—Sm1—O6—C1119.4 (4)C9—C12—C13—C112.0 (10)
O6i—Sm1i—O8—C262.8 (4)C9—C12—C13—C14179.3 (6)
O7i—Sm1i—O8—C212.5 (3)C11—C13—C14—O225.2 (8)
O2v—Sm1—O7—C262.2 (3)C12—C13—C14—O125.6 (8)
O4iii—Sm1—O7—C2130.5 (3)C12—C13—C14—O2156.1 (6)
O1iv—Sm1—O7—C2158.3 (3)C11—C13—C14—O1153.1 (6)
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+3/2, z1/2; (vi) x1/2, y+1/2, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+3/2, z+1/2; (ix) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O8i0.862.162.960 (8)156
O1W—H2W···O30.862.312.915 (7)128
Symmetry code: (i) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formula[AgSm(C6H4NO2)2(C2O4)]·H2O
Mr608.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)22.0484 (18), 9.2372 (8), 17.1137 (14)
β (°) 108.123 (1)
V3)3312.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)4.75
Crystal size (mm)0.30 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.330, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
8766, 3240, 2789
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.08
No. of reflections3240
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 1.50

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O8i0.862.162.960 (8)156
O1W—H2W···O30.862.312.915 (7)128
Symmetry code: (i) x+1, y, z1/2.
 

Acknowledgements

This work was financially supported by Guangdong Provincial Science and Technology Bureau (grant No. 2008B010600009), and NSFC (grant Nos. U0734005 and 20971047).

References

First citationBlatov, V.-A. & Shevchenko, A.-P. (2006). TOPOS. Samara State University, Russia.  Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (2000). J. Appl. Cryst. 33, 1193.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, Y.-P., Yu, Q.-Y., Zhou, Z.-Y., Hu, Z.-J., Fang, H.-C., Wang, N., Zhan, Q.-G., Chen, L. & Su, C.-Y. (2009). CrystEngComm, 11, 1006–1013.  Web of Science CSD CrossRef CAS Google Scholar
First citationCho, S.-H., Ma, B.-Q., Nguyen, S. T., Hupp, J. T. & Albrecht-Schmitt, T. E. (2006). Chem. Commun. pp. 2563–2565.  Web of Science CSD CrossRef Google Scholar
First citationGu, X.-J. & Xue, D.-F. (2006). Cryst. Growth Des. 6, 2551–2557.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, X.-J. & Xue, D.-F. (2007). CrystEngComm, 9, 471–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, D.-Y., Liu, H.-L. & Li, Y.-W. (2009). Inorg. Chem. Commun. 12, 883–886.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D.-F., Ma, S.-Q., Ke, Y.-X., Collins, D.-J. & Zhou, H.-C. (2006). J. Am. Chem. Soc. 128, 3896–3897.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, C.-D. & Lin, W.-B. (2005). Angew. Chem. Int. Ed. 44, 1958–1961.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m88-m89
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds