metal-organic compounds
catena-Poly[[tetra-μ3-isonicotinato-μ3-oxalato-μ2-oxalato-disamarium(III)disilver(I)] dihydrate]
aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yuesht@scnu.edu.cn
In the title compound, {[AgSm(C6H4NO2)2(C2O4)]·H2O}n, the contains one SmIII ion, one AgI ion, two unique isonicotinate (ina) ligands, two half oxalate (ox) ligands (one on an inversion centre, the other on a twofold axis) and one uncoordinated water molecule. The central SmIII ion is nine-coordinated by four O-donor atoms from separate bidentate bridging ox ligands and five O-donor atoms from the two ina ligands (both bidentate) and a symmetry-related ina ligand [Sm—O = 2.389 (4)–2.791 (4) Å], giving a distorted monocapped square antiprismatic geometry. The AgI ion is three-coordinated in a T-shaped geometry involving two ina N-donor atoms [Ag—N = 2.181 (6) and 2.185 (5) Å] and a bridging oxalate O-donor atom [Ag—O = 2.620 (4) Å]. The three-dimensional heterometallic Sm—Ag coordination polymer, having a unique (3,4,6)-connected five-nodal net topology, is constructed from two-dimensional samarium–oxalate layers and pillared Ag(ina)2 subunits. Intermolecular water–carboxylate O—H⋯O hydrogen-bonding interactions are also present.
Related literature
For microporous metal-organic framework (MMOF) compounds, see: Sun et al. (2006); Wu & Lin (2005); Cho et al. (2006). For isonicotinic acid-heterometallic compounds, see: Cai et al. (2009); Gu & Xue (2006, 2007); Ma et al. (2009). For topological studies, see: Blatov et al. (2000); Blatov & Shevchenko (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809054208/zs2014sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809054208/zs2014Isup2.hkl
A mixture of isonicotinic acid (0.0615 g), Sm(NO3)3.6H2O (0.114 g), AgNO3 (0.051 g, 0.3mmol), oxalic acid dihydrate (0.037 g, 0.3mmol) and water (10 ml) was heated at 430 K for 72 h in a 23 ml Teflon-lined stainless-steel autoclave and then cooled to room temperature at a rate of 278° per hour. Colourless prismatic crystals were collected, washed with water three times and dried in air.
All H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 |%A and O—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O). The H atoms of the water molecule (O1W) were found from the difference Fourier maps and fixed using AFIX within SHELXL97 (Sheldrick, 2008).
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[AgSm(C6H4NO2)2(C2O4)]·H2O | F(000) = 2312 |
Mr = 608.47 | Dx = 2.440 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3815 reflections |
a = 22.0484 (18) Å | θ = 2.4–27.8° |
b = 9.2372 (8) Å | µ = 4.75 mm−1 |
c = 17.1137 (14) Å | T = 298 K |
β = 108.123 (1)° | Prism, colorless |
V = 3312.6 (5) Å3 | 0.30 × 0.23 × 0.18 mm |
Z = 8 |
Bruker SMART APEX CCD-detector diffractometer | 3240 independent reflections |
Radiation source: fine-focus sealed tube | 2789 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ω scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −27→27 |
Tmin = 0.330, Tmax = 0.482 | k = −11→11 |
8766 measured reflections | l = −16→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0301P)2 + 2.6943P] where P = (Fo2 + 2Fc2)/3 |
3240 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 1.43 e Å−3 |
0 restraints | Δρmin = −1.50 e Å−3 |
[AgSm(C6H4NO2)2(C2O4)]·H2O | V = 3312.6 (5) Å3 |
Mr = 608.47 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.0484 (18) Å | µ = 4.75 mm−1 |
b = 9.2372 (8) Å | T = 298 K |
c = 17.1137 (14) Å | 0.30 × 0.23 × 0.18 mm |
β = 108.123 (1)° |
Bruker SMART APEX CCD-detector diffractometer | 3240 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2789 reflections with I > 2σ(I) |
Tmin = 0.330, Tmax = 0.482 | Rint = 0.057 |
8766 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.43 e Å−3 |
3240 reflections | Δρmin = −1.50 e Å−3 |
244 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.17077 (3) | 0.56369 (8) | 0.13601 (4) | 0.0685 (2) | |
C1 | 0.5352 (2) | 0.0142 (5) | 0.0244 (3) | 0.0262 (11) | |
C2 | 0.5364 (2) | 0.2525 (5) | −0.2303 (3) | 0.0240 (11) | |
C3 | 0.3774 (2) | 0.4799 (6) | −0.0550 (3) | 0.0278 (11) | |
C4 | 0.3236 (3) | 0.5115 (6) | −0.0213 (3) | 0.0317 (12) | |
C5 | 0.2693 (4) | 0.4269 (10) | −0.0417 (6) | 0.082 (3) | |
H5 | 0.2627 | 0.3567 | −0.0825 | 0.098* | |
C6 | 0.3283 (3) | 0.6170 (8) | 0.0352 (5) | 0.0520 (18) | |
H6 | 0.3623 | 0.6817 | 0.0473 | 0.062* | |
C7 | 0.2830 (3) | 0.6284 (8) | 0.0745 (4) | 0.0527 (19) | |
H7 | 0.2884 | 0.6992 | 0.1148 | 0.063* | |
C8 | 0.2246 (4) | 0.4474 (10) | −0.0008 (6) | 0.086 (3) | |
H8 | 0.1878 | 0.3910 | −0.0155 | 0.103* | |
C9 | 0.1123 (4) | 0.5823 (7) | 0.2779 (5) | 0.064 (2) | |
H9 | 0.1160 | 0.4822 | 0.2760 | 0.077* | |
C10 | 0.1345 (3) | 0.8035 (7) | 0.2388 (4) | 0.0437 (16) | |
H10 | 0.1547 | 0.8615 | 0.2101 | 0.052* | |
C11 | 0.1016 (3) | 0.8711 (7) | 0.2855 (4) | 0.0408 (15) | |
H11 | 0.0985 | 0.9714 | 0.2866 | 0.049* | |
C12 | 0.0803 (3) | 0.6383 (7) | 0.3267 (4) | 0.0490 (18) | |
H12 | 0.0630 | 0.5773 | 0.3574 | 0.059* | |
C13 | 0.0734 (3) | 0.7849 (6) | 0.3305 (3) | 0.0255 (11) | |
C14 | 0.0374 (2) | 0.8525 (6) | 0.3833 (3) | 0.0262 (11) | |
N1 | 0.1388 (2) | 0.6622 (6) | 0.2325 (3) | 0.0420 (13) | |
N2 | 0.2324 (3) | 0.5447 (6) | 0.0585 (3) | 0.0492 (14) | |
O1 | 0.0347 (2) | 0.7806 (4) | 0.4442 (2) | 0.0353 (9) | |
O2 | 0.01455 (19) | 0.9765 (4) | 0.3628 (2) | 0.0337 (9) | |
O3 | 0.37193 (18) | 0.3777 (5) | −0.1045 (2) | 0.0388 (10) | |
O4 | 0.42816 (17) | 0.5524 (4) | −0.0283 (2) | 0.0316 (8) | |
O5 | 0.56218 (17) | −0.0747 (4) | 0.0790 (2) | 0.0286 (8) | |
O6 | 0.55987 (17) | 0.1263 (4) | 0.0070 (2) | 0.0307 (8) | |
O7 | 0.55695 (18) | 0.2331 (4) | −0.1546 (2) | 0.0332 (9) | |
O8 | 0.56874 (17) | 0.2685 (4) | −0.2785 (2) | 0.0309 (8) | |
O1W | 0.2965 (3) | 0.1982 (6) | −0.2401 (4) | 0.0729 (17) | |
H1W | 0.3311 | 0.2196 | −0.2506 | 0.109* | |
H2W | 0.2925 | 0.2570 | −0.2031 | 0.109* | |
Sm1 | 0.487549 (12) | 0.31384 (3) | −0.073228 (15) | 0.02264 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0488 (3) | 0.1075 (6) | 0.0651 (4) | −0.0103 (3) | 0.0408 (3) | −0.0402 (4) |
C1 | 0.037 (3) | 0.022 (3) | 0.025 (3) | −0.004 (2) | 0.017 (2) | −0.005 (2) |
C2 | 0.036 (3) | 0.016 (3) | 0.027 (3) | 0.000 (2) | 0.020 (2) | 0.000 (2) |
C3 | 0.027 (3) | 0.035 (3) | 0.022 (3) | 0.002 (2) | 0.010 (2) | 0.003 (2) |
C4 | 0.029 (3) | 0.041 (3) | 0.031 (3) | −0.004 (2) | 0.017 (2) | −0.003 (2) |
C5 | 0.063 (5) | 0.109 (7) | 0.099 (7) | −0.046 (5) | 0.061 (5) | −0.083 (6) |
C6 | 0.036 (3) | 0.056 (4) | 0.071 (5) | −0.012 (3) | 0.027 (3) | −0.032 (4) |
C7 | 0.037 (3) | 0.067 (5) | 0.057 (4) | −0.006 (3) | 0.020 (3) | −0.037 (4) |
C8 | 0.068 (5) | 0.110 (8) | 0.109 (7) | −0.049 (5) | 0.070 (5) | −0.069 (6) |
C9 | 0.090 (6) | 0.031 (4) | 0.104 (6) | −0.011 (3) | 0.080 (5) | −0.017 (4) |
C10 | 0.048 (4) | 0.054 (4) | 0.042 (4) | 0.001 (3) | 0.032 (3) | 0.006 (3) |
C11 | 0.056 (4) | 0.033 (3) | 0.047 (4) | 0.011 (3) | 0.035 (3) | 0.016 (3) |
C12 | 0.072 (5) | 0.028 (3) | 0.072 (5) | −0.007 (3) | 0.059 (4) | −0.005 (3) |
C13 | 0.031 (3) | 0.030 (3) | 0.018 (2) | 0.003 (2) | 0.013 (2) | 0.001 (2) |
C14 | 0.030 (3) | 0.027 (3) | 0.028 (3) | −0.001 (2) | 0.017 (2) | −0.005 (2) |
N1 | 0.045 (3) | 0.049 (3) | 0.044 (3) | −0.006 (2) | 0.031 (3) | −0.018 (2) |
N2 | 0.045 (3) | 0.066 (4) | 0.051 (3) | −0.001 (3) | 0.034 (3) | −0.016 (3) |
O1 | 0.052 (3) | 0.033 (2) | 0.030 (2) | 0.0029 (18) | 0.0265 (19) | 0.0004 (17) |
O2 | 0.050 (2) | 0.028 (2) | 0.030 (2) | 0.0086 (17) | 0.0228 (18) | −0.0002 (16) |
O3 | 0.035 (2) | 0.050 (3) | 0.037 (2) | −0.0027 (18) | 0.0180 (18) | −0.015 (2) |
O4 | 0.0268 (19) | 0.036 (2) | 0.035 (2) | −0.0004 (17) | 0.0138 (16) | 0.0022 (17) |
O5 | 0.035 (2) | 0.0238 (19) | 0.028 (2) | −0.0042 (15) | 0.0108 (16) | 0.0055 (15) |
O6 | 0.030 (2) | 0.026 (2) | 0.040 (2) | −0.0057 (16) | 0.0180 (17) | 0.0028 (17) |
O7 | 0.039 (2) | 0.041 (2) | 0.025 (2) | 0.0037 (18) | 0.0167 (17) | 0.0006 (17) |
O8 | 0.033 (2) | 0.035 (2) | 0.033 (2) | 0.0030 (16) | 0.0217 (17) | 0.0026 (17) |
O1W | 0.058 (3) | 0.081 (4) | 0.080 (4) | −0.006 (3) | 0.022 (3) | −0.011 (3) |
Sm1 | 0.02976 (18) | 0.02037 (18) | 0.02401 (18) | −0.00243 (10) | 0.01742 (13) | −0.00082 (9) |
Sm1—O3 | 2.507 (4) | N1—C9 | 1.331 (10) |
Sm1—O4 | 2.791 (4) | N2—C8 | 1.326 (11) |
Sm1—O6 | 2.463 (4) | N2—C7 | 1.314 (10) |
Sm1—O7 | 2.483 (4) | C1—C1ii | 1.539 (7) |
Sm1—O8i | 2.489 (3) | C2—C2i | 1.536 (7) |
Sm1—O5ii | 2.454 (4) | C3—C4 | 1.500 (8) |
Sm1—O4iii | 2.448 (4) | C4—C6 | 1.354 (9) |
Sm1—O1iv | 2.426 (4) | C4—C5 | 1.381 (11) |
Sm1—O2v | 2.389 (4) | C5—C8 | 1.388 (13) |
Ag1—N1 | 2.185 (5) | C6—C7 | 1.371 (10) |
Ag1—N2 | 2.181 (6) | C9—C12 | 1.353 (11) |
Ag1—O5vi | 2.620 (4) | C10—C11 | 1.384 (10) |
O1—C14 | 1.253 (6) | C11—C13 | 1.383 (9) |
O2—C14 | 1.257 (7) | C12—C13 | 1.367 (9) |
O3—C3 | 1.249 (7) | C13—C14 | 1.511 (8) |
O4—C3 | 1.262 (6) | C5—H5 | 0.9300 |
O5—C1 | 1.247 (6) | C6—H6 | 0.9300 |
O6—C1 | 1.248 (6) | C7—H7 | 0.9300 |
O7—C2 | 1.245 (6) | C8—H8 | 0.9300 |
O8—C2 | 1.256 (6) | C9—H9 | 0.9300 |
O1W—H2W | 0.8600 | C10—H10 | 0.9300 |
O1W—H1W | 0.8600 | C11—H11 | 0.9300 |
N1—C10 | 1.316 (9) | C12—H12 | 0.9300 |
O3—Sm1—O4 | 48.69 (12) | Sm1i—O8—C2 | 119.0 (3) |
O3—Sm1—O6 | 136.35 (13) | H1W—O1W—H2W | 108.00 |
O3—Sm1—O7 | 135.58 (11) | Ag1—N1—C9 | 120.9 (5) |
O3—Sm1—O8i | 70.76 (12) | Ag1—N1—C10 | 121.6 (4) |
O3—Sm1—O5ii | 77.95 (14) | C9—N1—C10 | 116.5 (6) |
O3—Sm1—O4iii | 122.00 (13) | Ag1—N2—C8 | 124.3 (6) |
O1iv—Sm1—O3 | 75.17 (13) | C7—N2—C8 | 117.2 (7) |
O2v—Sm1—O3 | 95.35 (14) | Ag1—N2—C7 | 118.4 (4) |
O4—Sm1—O6 | 132.82 (10) | O5—C1—O6 | 125.7 (5) |
O4—Sm1—O7 | 144.66 (11) | O6—C1—C1ii | 116.9 (4) |
O4—Sm1—O8i | 106.61 (11) | O5—C1—C1ii | 117.4 (4) |
O4—Sm1—O5ii | 118.67 (12) | O7—C2—O8 | 127.1 (5) |
O4—Sm1—O4iii | 73.95 (12) | O8—C2—C2i | 116.2 (4) |
O1iv—Sm1—O4 | 66.68 (11) | O7—C2—C2i | 116.7 (4) |
O2v—Sm1—O4 | 72.02 (12) | O3—C3—O4 | 122.3 (5) |
O6—Sm1—O7 | 72.32 (12) | O3—C3—C4 | 119.1 (5) |
O6—Sm1—O8i | 118.75 (12) | O4—C3—C4 | 118.4 (5) |
O5ii—Sm1—O6 | 65.99 (12) | C3—C4—C5 | 121.3 (6) |
O4iii—Sm1—O6 | 75.07 (12) | C3—C4—C6 | 121.4 (6) |
O1iv—Sm1—O6 | 71.50 (13) | C5—C4—C6 | 117.1 (7) |
O2v—Sm1—O6 | 127.96 (13) | C4—C5—C8 | 119.4 (8) |
O7—Sm1—O8i | 64.94 (12) | C4—C6—C7 | 120.0 (7) |
O5ii—Sm1—O7 | 93.02 (12) | N2—C7—C6 | 123.6 (7) |
O4iii—Sm1—O7 | 94.90 (12) | N2—C8—C5 | 122.3 (8) |
O1iv—Sm1—O7 | 143.81 (13) | N1—C9—C12 | 123.8 (6) |
O2v—Sm1—O7 | 72.64 (13) | N1—C10—C11 | 124.0 (6) |
O5ii—Sm1—O8i | 74.50 (11) | C10—C11—C13 | 118.0 (6) |
O4iii—Sm1—O8i | 146.76 (12) | C9—C12—C13 | 119.7 (6) |
O1iv—Sm1—O8i | 136.79 (13) | C11—C13—C14 | 120.4 (5) |
O2v—Sm1—O8i | 77.62 (12) | C12—C13—C14 | 121.7 (5) |
O4iii—Sm1—O5ii | 135.56 (11) | C11—C13—C12 | 117.9 (6) |
O1iv—Sm1—O5ii | 73.05 (12) | O1—C14—O2 | 126.6 (5) |
O2v—Sm1—O5ii | 151.99 (11) | O2—C14—C13 | 116.7 (4) |
O1iv—Sm1—O4iii | 75.03 (13) | O1—C14—C13 | 116.6 (5) |
O2v—Sm1—O4iii | 70.96 (12) | C4—C5—H5 | 120.00 |
O1iv—Sm1—O2v | 132.02 (12) | C8—C5—H5 | 120.00 |
N1—Ag1—N2 | 154.3 (2) | C7—C6—H6 | 120.00 |
O5vi—Ag1—N1 | 90.71 (15) | C4—C6—H6 | 120.00 |
O5vi—Ag1—N2 | 113.85 (17) | N2—C7—H7 | 118.00 |
Sm1vii—O1—C14 | 140.0 (3) | C6—C7—H7 | 118.00 |
Sm1viii—O2—C14 | 138.3 (3) | C5—C8—H8 | 119.00 |
Sm1—O3—C3 | 99.0 (3) | N2—C8—H8 | 119.00 |
Sm1—O4—C3 | 85.4 (3) | N1—C9—H9 | 118.00 |
Sm1—O4—Sm1iii | 106.05 (13) | C12—C9—H9 | 118.00 |
Sm1iii—O4—C3 | 156.5 (3) | C11—C10—H10 | 118.00 |
Sm1ii—O5—C1 | 117.4 (3) | N1—C10—H10 | 118.00 |
Ag1ix—O5—C1 | 97.2 (3) | C10—C11—H11 | 121.00 |
Sm1ii—O5—Ag1ix | 143.05 (16) | C13—C11—H11 | 121.00 |
Sm1—O6—C1 | 117.5 (3) | C9—C12—H12 | 120.00 |
Sm1—O7—C2 | 116.9 (3) | C13—C12—H12 | 120.00 |
O8i—Sm1—O6—C1 | −72.4 (4) | O3i—Sm1i—O8—C2 | 164.2 (4) |
O5ii—Sm1—O6—C1 | −17.8 (3) | O4i—Sm1i—O8—C2 | 130.7 (3) |
O4iii—Sm1—O6—C1 | 140.3 (4) | O5vi—Ag1—N1—C9 | 47.9 (5) |
O1iv—Sm1—O6—C1 | 61.4 (3) | N1—Ag1—O5vi—C1vi | 95.8 (3) |
O2v—Sm1—O6—C1 | −169.2 (3) | N2—Ag1—O5vi—C1vi | −76.5 (3) |
O3—Sm1—O7—C2 | 17.4 (4) | O5vi—Ag1—N1—C10 | −120.1 (5) |
O4—Sm1—O7—C2 | −61.6 (4) | N1—Ag1—N2—C7 | 7.2 (8) |
O6—Sm1—O7—C2 | 156.9 (4) | N1—Ag1—N2—C8 | −177.3 (6) |
O8i—Sm1—O7—C2 | 21.9 (3) | O5vi—Ag1—N2—C7 | 169.2 (5) |
O5ii—Sm1—O7—C2 | 93.3 (3) | O5vi—Ag1—N2—C8 | −15.3 (7) |
O3vii—Sm1vii—O1—C14 | −84.5 (6) | N2—Ag1—N1—C9 | −148.6 (6) |
O4vii—Sm1vii—O1—C14 | −33.5 (5) | N2—Ag1—N1—C10 | 43.5 (7) |
O6vii—Sm1vii—O1—C14 | 124.1 (6) | Sm1vii—O1—C14—C13 | 161.8 (4) |
O7vii—Sm1vii—O1—C14 | 122.7 (5) | Sm1vii—O1—C14—O2 | −16.4 (9) |
O4viii—Sm1vii—O1—C14 | 45.2 (5) | Sm1viii—O2—C14—O1 | 26.0 (9) |
O4vii—Sm1viii—O2—C14 | 26.1 (5) | Sm1viii—O2—C14—C13 | −152.2 (4) |
O3viii—Sm1viii—O2—C14 | −95.9 (5) | Sm1—O3—C3—C4 | −151.9 (4) |
O4viii—Sm1viii—O2—C14 | −52.6 (5) | Sm1—O3—C3—O4 | 23.7 (5) |
O6viii—Sm1viii—O2—C14 | 78.2 (5) | Sm1—O4—C3—O3 | −21.0 (5) |
O7viii—Sm1viii—O2—C14 | 127.8 (5) | Sm1iii—O4—C3—C4 | 33.8 (11) |
O4—Sm1—O3—C3 | −11.8 (3) | Sm1iii—O4—C3—O3 | −141.8 (7) |
O6—Sm1—O3—C3 | 101.1 (4) | Sm1—O4—C3—C4 | 154.7 (4) |
O7—Sm1—O3—C3 | −142.7 (3) | Sm1ii—O5—C1—O6 | −163.5 (4) |
O8i—Sm1—O3—C3 | −147.0 (3) | Ag1ix—O5—C1—C1ii | −175.3 (3) |
O5ii—Sm1—O3—C3 | 135.4 (3) | Ag1ix—O5—C1—O6 | 3.0 (5) |
O4iii—Sm1—O3—C3 | −1.3 (4) | Sm1ii—O5—C1—C1ii | 18.3 (5) |
O1iv—Sm1—O3—C3 | 60.0 (3) | Sm1—O6—C1—O5 | −162.4 (4) |
O2v—Sm1—O3—C3 | −72.1 (3) | Sm1—O6—C1—C1ii | 15.9 (5) |
O3—Sm1—O4—C3 | 11.6 (3) | Sm1—O7—C2—O8 | 153.3 (4) |
O6—Sm1—O4—C3 | −108.4 (3) | Sm1—O7—C2—C2i | −28.7 (5) |
O7—Sm1—O4—C3 | 125.4 (3) | Sm1i—O8—C2—C2i | 4.0 (5) |
O8i—Sm1—O4—C3 | 55.5 (3) | Sm1i—O8—C2—O7 | −177.9 (4) |
O5ii—Sm1—O4—C3 | −25.6 (3) | Ag1—N1—C9—C12 | −166.4 (6) |
O4iii—Sm1—O4—C3 | −159.2 (3) | C10—N1—C9—C12 | 2.2 (11) |
O1iv—Sm1—O4—C3 | −78.9 (3) | Ag1—N1—C10—C11 | 164.8 (5) |
O2v—Sm1—O4—C3 | 126.1 (3) | C9—N1—C10—C11 | −3.7 (10) |
O3—Sm1—O4—Sm1iii | 170.7 (2) | Ag1—N2—C8—C5 | −171.7 (7) |
O6—Sm1—O4—Sm1iii | 50.8 (2) | Ag1—N2—C7—C6 | 173.7 (6) |
O7—Sm1—O4—Sm1iii | −75.4 (2) | C7—N2—C8—C5 | 3.8 (12) |
O8i—Sm1—O4—Sm1iii | −145.32 (13) | C8—N2—C7—C6 | −2.1 (11) |
O5ii—Sm1—O4—Sm1iii | 133.58 (13) | O6—C1—C1ii—O6ii | 180.0 (4) |
O4iii—Sm1—O4—Sm1iii | 0.02 (14) | O5—C1—C1ii—O6ii | −1.6 (7) |
O1iv—Sm1—O4—Sm1iii | 80.28 (15) | O6—C1—C1ii—O5ii | 1.6 (7) |
O2v—Sm1—O4—Sm1iii | −74.72 (14) | O5—C1—C1ii—O5ii | 180.0 (4) |
O3iii—Sm1iii—O4—Sm1 | 8.21 (18) | O7—C2—C2i—O8i | 16.8 (6) |
O4iii—Sm1iii—O4—Sm1 | 0.00 (11) | O8—C2—C2i—O7i | 16.8 (6) |
O6iii—Sm1iii—O4—Sm1 | 143.96 (15) | O7—C2—C2i—O7i | −161.5 (4) |
O7iii—Sm1iii—O4—Sm1 | −145.82 (12) | O8—C2—C2i—O8i | −164.9 (4) |
O2iv—Sm1iii—O4—Sm1 | −76.09 (14) | O3—C3—C4—C6 | 177.1 (6) |
O1v—Sm1iii—O4—Sm1 | 69.54 (13) | O3—C3—C4—C5 | 2.3 (9) |
O3iii—Sm1iii—O4—C3 | 125.3 (9) | O4—C3—C4—C6 | 1.3 (8) |
O4iii—Sm1iii—O4—C3 | 117.0 (9) | O4—C3—C4—C5 | −173.5 (6) |
O6iii—Sm1iii—O4—C3 | −99.0 (9) | C6—C4—C5—C8 | −3.7 (12) |
O7iii—Sm1iii—O4—C3 | −28.8 (9) | C3—C4—C6—C7 | −169.6 (6) |
O2iv—Sm1iii—O4—C3 | 41.0 (9) | C3—C4—C5—C8 | 171.3 (7) |
O1v—Sm1iii—O4—C3 | −173.4 (9) | C5—C4—C6—C7 | 5.5 (10) |
O3ii—Sm1ii—O5—C1 | 136.2 (4) | C4—C5—C8—N2 | −0.9 (14) |
O4ii—Sm1ii—O5—C1 | 108.6 (3) | C4—C6—C7—N2 | −2.7 (11) |
O6ii—Sm1ii—O5—C1 | −18.6 (3) | N1—C9—C12—C13 | 0.6 (12) |
O7ii—Sm1ii—O5—C1 | −87.7 (3) | N1—C10—C11—C13 | 2.3 (10) |
O3—Sm1—O6—C1 | 19.3 (4) | C10—C11—C13—C12 | 0.6 (9) |
O4—Sm1—O6—C1 | 89.9 (4) | C10—C11—C13—C14 | 179.4 (5) |
O7—Sm1—O6—C1 | −119.4 (4) | C9—C12—C13—C11 | −2.0 (10) |
O6i—Sm1i—O8—C2 | −62.8 (4) | C9—C12—C13—C14 | 179.3 (6) |
O7i—Sm1i—O8—C2 | −12.5 (3) | C11—C13—C14—O2 | 25.2 (8) |
O2v—Sm1—O7—C2 | −62.2 (3) | C12—C13—C14—O1 | 25.6 (8) |
O4iii—Sm1—O7—C2 | −130.5 (3) | C12—C13—C14—O2 | −156.1 (6) |
O1iv—Sm1—O7—C2 | 158.3 (3) | C11—C13—C14—O1 | −153.1 (6) |
Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x+1/2, −y+3/2, z−1/2; (vi) x−1/2, y+1/2, z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) x−1/2, −y+3/2, z+1/2; (ix) x+1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O8i | 0.86 | 2.16 | 2.960 (8) | 156 |
O1W—H2W···O3 | 0.86 | 2.31 | 2.915 (7) | 128 |
Symmetry code: (i) −x+1, y, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [AgSm(C6H4NO2)2(C2O4)]·H2O |
Mr | 608.47 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 22.0484 (18), 9.2372 (8), 17.1137 (14) |
β (°) | 108.123 (1) |
V (Å3) | 3312.6 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 4.75 |
Crystal size (mm) | 0.30 × 0.23 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.330, 0.482 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8766, 3240, 2789 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.097, 1.08 |
No. of reflections | 3240 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.43, −1.50 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O8i | 0.86 | 2.16 | 2.960 (8) | 156 |
O1W—H2W···O3 | 0.86 | 2.31 | 2.915 (7) | 128 |
Symmetry code: (i) −x+1, y, −z−1/2. |
Acknowledgements
This work was financially supported by Guangdong Provincial Science and Technology Bureau (grant No. 2008B010600009), and NSFC (grant Nos. U0734005 and 20971047).
References
Blatov, V.-A. & Shevchenko, A.-P. (2006). TOPOS. Samara State University, Russia. Google Scholar
Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (2000). J. Appl. Cryst. 33, 1193. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, Y.-P., Yu, Q.-Y., Zhou, Z.-Y., Hu, Z.-J., Fang, H.-C., Wang, N., Zhan, Q.-G., Chen, L. & Su, C.-Y. (2009). CrystEngComm, 11, 1006–1013. Web of Science CSD CrossRef CAS Google Scholar
Cho, S.-H., Ma, B.-Q., Nguyen, S. T., Hupp, J. T. & Albrecht-Schmitt, T. E. (2006). Chem. Commun. pp. 2563–2565. Web of Science CSD CrossRef Google Scholar
Gu, X.-J. & Xue, D.-F. (2006). Cryst. Growth Des. 6, 2551–2557. Web of Science CSD CrossRef CAS Google Scholar
Gu, X.-J. & Xue, D.-F. (2007). CrystEngComm, 9, 471–477. Web of Science CSD CrossRef CAS Google Scholar
Ma, D.-Y., Liu, H.-L. & Li, Y.-W. (2009). Inorg. Chem. Commun. 12, 883–886. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, D.-F., Ma, S.-Q., Ke, Y.-X., Collins, D.-J. & Zhou, H.-C. (2006). J. Am. Chem. Soc. 128, 3896–3897. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wu, C.-D. & Lin, W.-B. (2005). Angew. Chem. Int. Ed. 44, 1958–1961. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Microporous metal-organic frameworks (MMOFs) are of great current interest in view of their fascinating structural topologies and potential applications, e.g. in small molecule gas storage, separation and catalysis (Sun et al., 2006; Wu et al., 2005; Cho et al., 2006). However, most of the works have so far focused on the assembly of 3d block metals with organic ligands as linkers and many 3d-4f heterometallic MOFs have also been reported. However, the 4d-4f heterometallic compounds based on the isonicotinic acid (ina) ligand have received less attention (Gu et al., 2006; Gu et al., 2007; Ma et al., 2009; Cai et al., 2009). The preparation of 4d-4f MMOFs has certain difficulties because of the high coordination number of 4f block metals, which frequently leads to interpenetration and consequently results in a decrease of the pore size or the MMOF may even become nonporous. Therefore the selection of the organic ligands becomes a key point in the preparation of 4d-4f heterometallic MMOFs. Herein, we report the structure of the title compound {[SmAg(C6H4NO2)2(C2O4)].H2O}n (I) involving SmIII, AgI and the organic nicotinate and oxalate ligands, which has a microporous structure.
In the title compound (Fig. 1), the asymmetric unit contains one SmIII ion, one AgI ion, two unique isonicotinate (ina) ligands, two half oxalate (ox) ligands [one on an inversion centre (associated with O5 and O6), the other on a two-fold axis (associated with O7 and O8)] and one uncoordinated water molecule of solvation (O1W). The central SmIII ion is nine-coordinate with four O-donor atoms from separate bidentate bridging ox ligands and five O-donors from the two ina ligands (both bidentate) [Sm—O bond length range, 2.389 (4)–2.791 (4) Å], giving a distorted monocapped square antiprismatic stereochemistry. The three-coordinate AgIion is surrounded by two N-donor atoms from the two ina ligands [Ag–N, 2.181 (6), 2.185 (5) Å] and one O atom from a bridging oxalate ligand giving a T-shaped coordination geometry. The Ag—O bond [2.620 (4) Å] is long but this and the N—Ag—N angle [154.3 (2)°] are similar to those found in other AgI complexes having T-shaped configurations. The oxalate ligands bridge Sm centers to form a two-dimensional lanthanide-oxalate layered network. In the packing arrangement of the title compound, 'linear' N–Ag–N linkages play an important role in connecting the adjacent two-dimensional layers, forming a three-dimensional pillar-layered coordination polymer with microporous structures. Topological studies performed using the software package TOPOS 4.0 (Blatov & Shevchenko, 2006; Blatov et al., 2000) reveal that this topology is a unique five-nodal (3,4,6)-connected net. The water molecule of solvation also gives O–H···O hydrogen-bonding interactions with oxalate and isonicotinate O acceptors (Table 1).