metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m16-m17

Poly[tetra­kis(μ-cyclo­hexa­ne-1,4-di­carboxyl­ato)di-μ-hydroxido-penta­zinc(II)]

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: mww_514730@yahoo.com.cn

(Received 8 November 2009; accepted 1 December 2009; online 4 December 2009)

In the title coordination polymer, [Zn5(μ3-OH)2(1,4-CDC)4]n (1,4-CDCH2 = 1,4-cyclo­hexa­nedicarboxylic acid) or [Zn5(C8H10O4)4(OH)2]n, the asymmetric unit comprises one half of an octa­hedrally coordinated ZnO6 complex unit (site symmetry [\overline1]) and two five-coordinate ZnO5 complex units, together with two μ3-bridging hydroxido ligands and four 1,4-CDC ligands (comprising two whole mol­ecules and four inversion-related half-molecules). The ZnO6 unit consists of four carboxyl­ate O donors (two bridging) and two hydroxido O donors (both bridging three Zn centres) [Zn—O range 2.065 (3)–2.125 (3) Å]. Each of the ZnO5 units [one capped tetra­hedral, the other square-pyrimidal; Zn—O range 1.928 (3)–2.338 (3) Å] has one hydroxido O donor and four carboxyl O donors from three different 1,4-CDC carboxyl­ate O donors (one bridging). Infinite (ZnO)n inorganic chains run parallel to the a axis and are interconnected by the organic ligands into a three-dimensional structure.

Related literature

For the structures of related complexes of 1,4-cyclo­hexa­nedicarboxylic acid, see: Liu, Huang et al. (2009[Liu, G.-X., Huang, L.-F., Kong, X.-J., Huang, R.-Y. & Xu, H. (2009). Inorg. Chim. Acta, 362, 1755-1760.]); Liu, Zhu et al. (2009[Liu, G.-X., Zhu, K., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605-1610.]); Yang et al. (2007[Yang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G. & Zhao, X.-J. (2007). Cryst. Growth Des. 7, 2009-2015.]); Du et al. (2005[Du, M., Cai, H. & Zhao, X.-J. (2005). Inorg. Chim. Acta, 358, 4034-4038.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn5(C8H10O4)4(OH)2]

  • Mr = 1039.59

  • Triclinic, [P \overline 1]

  • a = 8.646 (3) Å

  • b = 10.665 (3) Å

  • c = 11.804 (3) Å

  • α = 113.915 (3)°

  • β = 96.307 (3)°

  • γ = 106.285 (3)°

  • V = 923.6 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • 3929 measured reflections

  • 3202 independent reflections

  • 2789 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.04

  • 3202 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, new coordination compounds formed from reaction of metals with cyclohexane-1,4-dicarboxylic acid [1,4-CDCH2] have attracted much attention (Liu, Huang et al., 2009; Liu, Zhu et al., 2009; Yang et al., 2007; Du et al., 2005). The structure of the title complex from the reaction of this acid with ZnII ion, [Zn53-OH)2(1,4-CDC)4]n (I) has been determined and the structure is reported here.

Compound (I) is a coordination polymer in which the repeating unit lies on a crystallographic inversion centre,the asymmetric unit comprising a half of an octahedraly coordinated Zn atom (Zn1) which lies on the centre, two five-coordinate Zn atoms in (Zn2 and Zn3), general sites, one µ3-hydroxido ligand (O1) and two cyclohexane-1,4-dicarboxylate ligands (Fig. 1). One of these 1,4-CDC ligands is complete (associated with donor atoms O6, O8, O3, O7) while the other 1,4-CDC ligand consists of two inversion-related halves (associated with O4, O5 and O2, O9). The ZnO6 coordination sphere about Zn1 consists of four carboxylate O donors (two bridging) and two hydroxido O donors (both bridging three Zn centres), [Zn—O bond length range, 2.065 (3)–2.125 (3) Å]. Both Zn2 and Zn3 are five coordinate, Zn2 having a capped tetrahedral stereochemistry, comprising one bridging hydroxyl O donor and four O donors from three different 1,4-CDC ligands (one bridging) [Zn–O bond length and O–Zn–O bond angle ranges, 1.928 (3)–2.338 (3) Å and 58.85 (11)–145.39 (12)° respectively]. The stereochemistry about Zn3 is tetragonal pyramidal with the four basal coordination sites occupied by O donor atoms from three different 1,4-CDC ligands (one bridging) [Zn—O range, 1.938 (3)–2.207 (3) Å], with the axial site occupied by the bridging hydroxido O donor [Zn–O1, 1.977 (3) Å]. The bond angle range is 86.00 (12)–125.97 (12)°. The repeat units form infinite (ZnO)n inorganic chains parallel to the a-axis which are interconnected by the organic ligands into a three-dimensional structure (Fig. 2).

Related literature top

For the structures of related complexes of cyclohexane-1,4-dicarboxylic acid, see: Liu, Huang et al. (2009); Liu, Zhu et al. (2009); Yang et al. (2007); Du et al. (2005). Scheme - the repeat unit inside the brackets should be two whole and four half cyclohexanedicarboxylate ligands instead of eight whole ones

Experimental top

An aqueous mixture of cyclohexane-1,4-dicarboxylic acid (0.086 g, 0.5 mmol) and NaOH (0.040 g, 1 mmol) in 8 ml of water was stirred for half an hour. The pH was adjusted to ca. 7 with 1M HNO3 and (0.147 g, 0.5 mmol) of Zn(NO3)2 . 6H2O was added and the solution was stirred for half an hour. After adding 3 ml of cyclohexanol, the mixture was transferred into a 23 ml Teflon-lined autoclave and heated at 180° for 120 h. After cooling to room temperature, colorless single crystal blocks were obtained, which were washed with water.

Refinement top

All H atoms were fixed geometrically and treated as riding, with C—H = 0.97 –0.98 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound (I), with displacement ellipsoids drawn at the 30% probability level. For symmetry codes: (A),-x+1,-y+1,-z+1; (B),-x,-y+1,-z+1; (C),-x,-y,-z; (D),-x,-y+2,-z+1; (E), -x,-y-1,-z+1;(F),-x+1,-y+1,-z; (G), x+1, y+1, z+1; (H), x, y,z+1.
[Figure 2] Fig. 2. The two-dimensional framework polymer structure of (I).
Poly[tetrakis(µ-cyclohexane-1,4-dicarboxylato)di-µ-hydroxido-pentazinc(II)] top
Crystal data top
[Zn5(OH)2(C8H10O4)4]Z = 1
Mr = 1039.59F(000) = 526
Triclinic, P1Dx = 1.869 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.646 (3) ÅCell parameters from 30 reflections
b = 10.665 (3) Åθ = 3–25°
c = 11.804 (3) ŵ = 3.28 mm1
α = 113.915 (3)°T = 295 K
β = 96.307 (3)°Block, colorless
γ = 106.285 (3)°0.20 × 0.20 × 0.20 mm
V = 923.6 (5) Å3
Data collection top
Rigaku SCXmini
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 1010
ω scansk = 129
3929 measured reflectionsl = 1413
3202 independent reflections3 standard reflections every 150 reflections
2789 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0488P)2 + 2.2254P]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Zn5(OH)2(C8H10O4)4]γ = 106.285 (3)°
Mr = 1039.59V = 923.6 (5) Å3
Triclinic, P1Z = 1
a = 8.646 (3) ÅMo Kα radiation
b = 10.665 (3) ŵ = 3.28 mm1
c = 11.804 (3) ÅT = 295 K
α = 113.915 (3)°0.20 × 0.20 × 0.20 mm
β = 96.307 (3)°
Data collection top
Rigaku SCXmini
diffractometer
Rint = 0.019
3929 measured reflections3 standard reflections every 150 reflections
3202 independent reflections intensity decay: none
2789 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 1.11 e Å3
3202 reflectionsΔρmin = 0.50 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.01886 (17)
Zn20.23318 (6)0.53614 (5)0.33384 (4)0.02004 (14)
Zn30.22931 (6)0.63639 (5)0.63471 (4)0.02095 (15)
O10.2545 (3)0.4858 (3)0.4786 (2)0.0165 (6)
O20.4649 (3)0.5325 (3)0.3351 (3)0.0227 (6)
O30.0494 (4)0.3940 (3)0.2794 (3)0.0260 (7)
O40.0760 (4)0.7048 (3)0.5332 (3)0.0292 (7)
O50.2146 (4)0.7268 (3)0.3889 (3)0.0329 (8)
O60.4102 (4)0.2695 (3)0.3800 (3)0.0333 (8)
O70.1035 (4)0.4072 (4)0.1489 (3)0.0354 (8)
O80.5888 (4)0.1755 (3)0.2861 (3)0.0367 (8)
O90.6515 (4)0.4466 (4)0.2502 (3)0.0391 (9)
C10.0356 (5)0.3514 (5)0.1658 (4)0.0216 (9)
C20.4892 (6)0.5179 (5)0.1295 (4)0.0244 (9)
H20.40890.56810.14530.029*
C30.5402 (5)0.4959 (5)0.2450 (4)0.0210 (9)
C40.1756 (5)0.2307 (5)0.0558 (4)0.0239 (9)
H40.28080.22940.07990.029*
C50.4451 (6)0.1700 (5)0.2982 (4)0.0266 (10)
C60.3284 (6)0.1108 (5)0.1772 (4)0.0340 (11)
H6A0.33260.12060.25560.041*
H6B0.43370.10870.15530.041*
C70.4060 (6)0.3693 (5)0.0104 (4)0.0293 (10)
H7A0.48170.31560.00220.035*
H7B0.30680.31260.02360.035*
C80.3027 (5)0.0317 (5)0.1984 (4)0.0274 (10)
H80.19950.03060.22580.033*
C90.6414 (6)0.6136 (5)0.1087 (4)0.0330 (11)
H9A0.68830.70960.18270.040*
H9B0.72580.56890.10000.040*
C100.1861 (6)0.2424 (5)0.0691 (4)0.0330 (11)
H10A0.08150.24670.09280.040*
H10B0.20410.33230.05680.040*
C110.1180 (6)0.7593 (5)0.4592 (4)0.0281 (10)
C120.0494 (7)0.8716 (6)0.4494 (6)0.0441 (13)
H120.02630.84990.35900.053*
C130.1518 (7)0.0883 (5)0.0363 (5)0.0425 (13)
H13A0.15400.07790.11410.051*
H13B0.04340.09220.02000.051*
C140.2867 (7)0.0456 (5)0.0755 (5)0.0396 (12)
H14A0.39280.05820.05330.047*
H14B0.26060.13260.08940.047*
C150.1774 (7)1.0209 (7)0.5214 (7)0.0554 (16)
H15A0.27501.02370.48760.066*
H15B0.21051.04320.61070.066*
C160.1133 (7)0.8624 (6)0.4875 (7)0.0518 (15)
H16A0.09760.87520.57460.062*
H16B0.19620.76570.43190.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0198 (3)0.0240 (4)0.0140 (3)0.0118 (3)0.0024 (3)0.0077 (3)
Zn20.0223 (3)0.0226 (3)0.0165 (3)0.0107 (2)0.00190 (19)0.0092 (2)
Zn30.0198 (3)0.0234 (3)0.0170 (3)0.0083 (2)0.00536 (19)0.0062 (2)
O10.0185 (13)0.0181 (14)0.0134 (13)0.0092 (11)0.0029 (11)0.0062 (11)
O20.0255 (15)0.0346 (17)0.0163 (14)0.0167 (13)0.0072 (12)0.0150 (13)
O30.0235 (15)0.0329 (17)0.0157 (15)0.0074 (13)0.0038 (12)0.0077 (13)
O40.0330 (17)0.0306 (17)0.0320 (18)0.0168 (14)0.0109 (14)0.0175 (15)
O50.0436 (19)0.0259 (17)0.045 (2)0.0222 (15)0.0220 (16)0.0213 (15)
O60.0372 (19)0.0199 (16)0.0304 (18)0.0063 (14)0.0105 (15)0.0020 (14)
O70.0249 (17)0.046 (2)0.0211 (17)0.0037 (15)0.0056 (13)0.0077 (15)
O80.0246 (17)0.0229 (17)0.045 (2)0.0037 (13)0.0040 (15)0.0030 (15)
O90.051 (2)0.069 (2)0.0274 (18)0.046 (2)0.0192 (16)0.0314 (18)
C10.019 (2)0.027 (2)0.020 (2)0.0133 (18)0.0068 (17)0.0076 (18)
C20.036 (2)0.035 (3)0.020 (2)0.024 (2)0.0138 (19)0.020 (2)
C30.023 (2)0.029 (2)0.015 (2)0.0126 (18)0.0066 (16)0.0118 (18)
C40.021 (2)0.026 (2)0.021 (2)0.0091 (18)0.0035 (17)0.0071 (18)
C50.027 (2)0.025 (2)0.024 (2)0.0082 (19)0.0048 (18)0.009 (2)
C60.047 (3)0.026 (2)0.017 (2)0.005 (2)0.004 (2)0.006 (2)
C70.033 (2)0.032 (3)0.028 (2)0.011 (2)0.0070 (19)0.018 (2)
C80.023 (2)0.023 (2)0.025 (2)0.0057 (18)0.0033 (18)0.0029 (19)
C90.036 (3)0.037 (3)0.024 (2)0.009 (2)0.002 (2)0.017 (2)
C100.046 (3)0.020 (2)0.020 (2)0.006 (2)0.002 (2)0.0038 (19)
C110.030 (2)0.024 (2)0.033 (3)0.0117 (19)0.010 (2)0.014 (2)
C120.062 (4)0.038 (3)0.059 (4)0.033 (3)0.034 (3)0.032 (3)
C130.047 (3)0.031 (3)0.038 (3)0.006 (2)0.011 (2)0.016 (2)
C140.043 (3)0.020 (2)0.040 (3)0.001 (2)0.009 (2)0.012 (2)
C150.042 (3)0.056 (4)0.084 (5)0.029 (3)0.019 (3)0.038 (4)
C160.044 (3)0.039 (3)0.080 (4)0.018 (3)0.017 (3)0.032 (3)
Geometric parameters (Å, º) top
Zn1—O12.065 (3)C5—C81.528 (6)
Zn1—O1i2.065 (3)C6—C81.521 (6)
Zn1—O2i2.116 (3)C6—C10iii1.532 (6)
Zn1—O22.116 (3)C6—H6A0.9700
Zn1—O62.125 (3)C6—H6B0.9700
Zn1—O6i2.125 (3)C7—C9iv1.517 (6)
Zn2—O51.928 (3)C7—H7A0.9700
Zn2—O11.993 (3)C7—H7B0.9700
Zn2—O22.013 (3)C8—C141.513 (7)
Zn2—O72.019 (3)C8—H80.9800
Zn2—O32.338 (3)C9—C7iv1.517 (6)
Zn3—O8i1.939 (3)C9—H9A0.9700
Zn3—O3ii1.971 (3)C9—H9B0.9700
Zn3—O11.977 (3)C10—C6iii1.532 (6)
Zn3—O42.151 (3)C10—H10A0.9700
Zn3—O9i2.207 (3)C10—H10B0.9700
O2—C31.290 (5)C11—C121.516 (6)
O3—C11.261 (5)C12—C151.480 (8)
O4—C111.263 (5)C12—C161.513 (8)
O5—C111.260 (5)C12—H120.9800
O6—C51.250 (5)C13—C14iii1.530 (6)
O7—C11.261 (5)C13—H13A0.9700
O8—C51.254 (5)C13—H13B0.9700
O9—C31.226 (5)C14—C13iii1.530 (6)
C1—C41.495 (6)C14—H14A0.9700
C2—C31.514 (5)C14—H14B0.9700
C2—C71.529 (6)C15—C16v1.532 (7)
C2—C91.535 (6)C15—H15A0.9700
C2—H20.9800C15—H15B0.9700
C4—C131.518 (6)C16—C15v1.532 (7)
C4—C101.524 (6)C16—H16A0.9700
C4—H40.9800C16—H16B0.9700
O1—Zn1—O280.38 (10)O8—C5—C8115.7 (4)
O1—Zn1—O687.49 (11)C8—C6—C10iii110.4 (4)
O2—Zn1—O689.32 (12)C8—C6—H6A109.6
O1—Zn1—O6i92.51 (11)C10iii—C6—H6A109.6
O2—Zn1—O6i90.68 (12)C8—C6—H6B109.6
O6—Zn1—O6i180.00 (12)C10iii—C6—H6B109.6
O1—Zn1—Zn2i140.05 (7)H6A—C6—H6B108.1
O2—Zn1—Zn2i139.33 (8)C9iv—C7—C2111.9 (4)
O6—Zn1—Zn2i88.74 (9)C9iv—C7—H7A109.2
O5—Zn2—O1111.19 (13)C2—C7—H7A109.2
O5—Zn2—O2115.65 (13)C9iv—C7—H7B109.2
O1—Zn2—O284.68 (11)C2—C7—H7B109.2
O5—Zn2—O7108.81 (15)H7A—C7—H7B107.9
O1—Zn2—O7129.58 (13)C14—C8—C6110.5 (4)
O2—Zn2—O7104.36 (12)C14—C8—C5106.2 (4)
O5—Zn2—O398.81 (13)C6—C8—C5114.1 (4)
O1—Zn2—O385.57 (11)C14—C8—H8108.6
O2—Zn2—O3145.41 (12)C6—C8—H8108.6
O7—Zn2—O358.86 (11)C5—C8—H8108.6
O8i—Zn3—O3ii118.92 (13)C7iv—C9—C2111.0 (4)
O8i—Zn3—O1114.91 (13)C7iv—C9—H9A109.4
O3ii—Zn3—O1125.97 (12)C2—C9—H9A109.4
O8i—Zn3—O493.78 (14)C7iv—C9—H9B109.4
O3ii—Zn3—O486.00 (12)C2—C9—H9B109.4
O1—Zn3—O494.98 (11)H9A—C9—H9B108.0
O8i—Zn3—O9i92.49 (15)C4—C10—C6iii111.1 (4)
O3ii—Zn3—O9i84.37 (13)C4—C10—H10A109.4
O1—Zn3—O9i89.19 (12)C6iii—C10—H10A109.4
O4—Zn3—O9i170.20 (13)C4—C10—H10B109.4
Zn3—O1—Zn2111.16 (13)C6iii—C10—H10B109.4
Zn3—O1—Zn1110.07 (12)H10A—C10—H10B108.0
Zn2—O1—Zn198.36 (11)O5—C11—O4124.9 (4)
C3—O2—Zn2132.3 (3)O5—C11—C12115.1 (4)
C3—O2—Zn1125.5 (3)O4—C11—C12120.0 (4)
Zn2—O2—Zn196.09 (11)C15—C12—C16112.4 (5)
C1—O3—Zn3ii137.0 (3)C15—C12—C11110.3 (5)
C1—O3—Zn284.3 (2)C16—C12—C11113.4 (4)
Zn3ii—O3—Zn2138.63 (14)C15—C12—H12106.8
C11—O4—Zn3125.9 (3)C16—C12—H12106.8
C11—O5—Zn2118.8 (3)C11—C12—H12106.8
C5—O6—Zn1142.7 (3)C4—C13—C14iii112.1 (4)
C1—O7—Zn299.0 (3)C4—C13—H13A109.2
C5—O8—Zn3i119.7 (3)C14iii—C13—H13A109.2
C3—O9—Zn3i140.7 (3)C4—C13—H13B109.2
O7—C1—O3117.8 (4)C14iii—C13—H13B109.2
O7—C1—C4121.1 (4)H13A—C13—H13B107.9
O3—C1—C4121.0 (4)C8—C14—C13iii112.6 (4)
C3—C2—C7110.1 (3)C8—C14—H14A109.1
C3—C2—C9110.3 (4)C13iii—C14—H14A109.1
C7—C2—C9110.4 (4)C8—C14—H14B109.1
C3—C2—H2108.6C13iii—C14—H14B109.1
C7—C2—H2108.6H14A—C14—H14B107.8
C9—C2—H2108.6C12—C15—C16v111.8 (5)
O9—C3—O2122.9 (4)C12—C15—H15A109.2
O9—C3—C2119.3 (4)C16v—C15—H15A109.2
O2—C3—C2117.8 (4)C12—C15—H15B109.2
C1—C4—C13106.4 (4)C16v—C15—H15B109.2
C1—C4—C10115.0 (4)H15A—C15—H15B107.9
C13—C4—C10109.7 (4)C12—C16—C15v112.0 (5)
C1—C4—H4108.5C12—C16—H16A109.2
C13—C4—H4108.5C15v—C16—H16A109.2
C10—C4—H4108.5C12—C16—H16B109.2
O6—C5—O8125.7 (4)C15v—C16—H16B109.2
O6—C5—C8118.6 (4)H16A—C16—H16B107.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z; (iv) x+1, y+1, z; (v) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn5(OH)2(C8H10O4)4]
Mr1039.59
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.646 (3), 10.665 (3), 11.804 (3)
α, β, γ (°)113.915 (3), 96.307 (3), 106.285 (3)
V3)923.6 (5)
Z1
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3929, 3202, 2789
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.04
No. of reflections3202
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.50

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by the start-up fund of Southeast University.

References

First citationDu, M., Cai, H. & Zhao, X.-J. (2005). Inorg. Chim. Acta, 358, 4034–4038.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G.-X., Huang, L.-F., Kong, X.-J., Huang, R.-Y. & Xu, H. (2009). Inorg. Chim. Acta, 362, 1755–1760.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, G.-X., Zhu, K., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009). Inorg. Chim. Acta, 362, 1605–1610.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G. & Zhao, X.-J. (2007). Cryst. Growth Des. 7, 2009–2015.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages m16-m17
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds