organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Bromo­phen­yl)-3-[3-(4-bromo­phen­yl)-1H-pyrazol-1-yl]prop-2-enal

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 December 2009; accepted 19 December 2009; online 9 January 2010)

There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound, C18H12Br2N2O. In each mol­ecule, one of the bromo­phenyl rings lies almost in the plane of pyrazole unit [dihedral angles of 5.8 (3)° in the first mol­ecule and and 5.1 (3)° in the second] while the other ring is approximately perpendicular to it [dihedral angles of 80.3 (3) and 76.5 (3)°]. The crystal packing shows inter­molecular C—H⋯O inter­actions. The crystal studied was a racemic twin.

Related literature

For the pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147-66.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199-200.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]). For a related structure, see: Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12Br2N2O

  • Mr = 432.12

  • Orthorhombic, P c a 21

  • a = 9.2600 (3) Å

  • b = 9.3782 (3) Å

  • c = 37.9965 (4) Å

  • V = 3299.70 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.92 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.319, Tmax = 0.455

  • 17654 measured reflections

  • 5353 independent reflections

  • 3562 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.086

  • S = 1.01

  • 5353 reflections

  • 416 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.68 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1831 Friedel pairs

  • Flack parameter: 0.226 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8B—H8B⋯O1Bi 0.93 2.50 3.419 (8) 172
Symmetry code: (i) [x-{\script{1\over 2}}, -y, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.])); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities. The crystallographic study of the title compound has been carried out to establish the molecular structure.

An ORTEP plot of the molecule is shown in Fig. 1. There are two crystallographically independent molecules in the asymmetric unit. One of the bromophenyl rings lies almost in the plane of the pyrazole moiety and the other ring is approximately perpendicular to it [dihidral angles [5.8 (3)° for C15A—C20A ring and 5.1 (3)° for C15B—C20B ring; 80.3 (3)° for C7A—C12A ring and 76.5 (3)° for C7B—C12B ring]. The vinyl aldehyde groups adopt extended conformation [C6A—C13A—C14A—O1A = -177.9 (7)° for molecule A and 179.4 (7)° for molecule B]. The sum of the bond angles at atoms N2A (359.9°) and N2B (360.0°) of the pyrazole ring in both molecules are in accordance with sp2 hybridization.

The molecular conformation is stabilized by weak intra molecular C—H···N interactions. The crystal packing shows intermolecular C—H···O interactions. Atom C8B at (x, y, z) donates a proton to atom O1B at (x - 1/2, -y, z), forming a C7 (Bernstein, 1995) zigzag chain running along the a axis as shown in Fig. 2

Related literature top

For the pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Chen & Li (1998); Mishra et al. (1998); Smith et al. (2001). For a related structure, see: Jin et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a mixture of 1-(4-bromophenyl)-1-ethanone N-[(E)-1-(4-bromophenyl)ethylidene] hydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in an ice bath at 0°C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was rectystalized in dichloromethane.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms.

Structure description top

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities. The crystallographic study of the title compound has been carried out to establish the molecular structure.

An ORTEP plot of the molecule is shown in Fig. 1. There are two crystallographically independent molecules in the asymmetric unit. One of the bromophenyl rings lies almost in the plane of the pyrazole moiety and the other ring is approximately perpendicular to it [dihidral angles [5.8 (3)° for C15A—C20A ring and 5.1 (3)° for C15B—C20B ring; 80.3 (3)° for C7A—C12A ring and 76.5 (3)° for C7B—C12B ring]. The vinyl aldehyde groups adopt extended conformation [C6A—C13A—C14A—O1A = -177.9 (7)° for molecule A and 179.4 (7)° for molecule B]. The sum of the bond angles at atoms N2A (359.9°) and N2B (360.0°) of the pyrazole ring in both molecules are in accordance with sp2 hybridization.

The molecular conformation is stabilized by weak intra molecular C—H···N interactions. The crystal packing shows intermolecular C—H···O interactions. Atom C8B at (x, y, z) donates a proton to atom O1B at (x - 1/2, -y, z), forming a C7 (Bernstein, 1995) zigzag chain running along the a axis as shown in Fig. 2

For the pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Chen & Li (1998); Mishra et al. (1998); Smith et al. (2001). For a related structure, see: Jin et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, (1997)); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of one of the two molecules in the asymmetric unit with the atomic numbering and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down c–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-3-(4-Bromophenyl)-3-[3-(4-bromophenyl)-1H-pyrazol- 1-yl]prop-2-enal top
Crystal data top
C18H12Br2N2OF(000) = 1696
Mr = 432.12Dx = 1.740 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2356 reflections
a = 9.2600 (3) Åθ = 2.1–26.7°
b = 9.3782 (3) ŵ = 4.92 mm1
c = 37.9965 (4) ÅT = 293 K
V = 3299.70 (15) Å3Block, colorless
Z = 80.30 × 0.20 × 0.16 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5353 independent reflections
Radiation source: fine-focus sealed tube3562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 26.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 911
Tmin = 0.319, Tmax = 0.455k = 118
17654 measured reflectionsl = 4728
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0332P)2 + 2.8025P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
5353 reflectionsΔρmax = 0.94 e Å3
416 parametersΔρmin = 0.68 e Å3
2 restraintsAbsolute structure: Flack (1983), 1831 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.226 (12)
Crystal data top
C18H12Br2N2OV = 3299.70 (15) Å3
Mr = 432.12Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 9.2600 (3) ŵ = 4.92 mm1
b = 9.3782 (3) ÅT = 293 K
c = 37.9965 (4) Å0.30 × 0.20 × 0.16 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5353 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3562 reflections with I > 2σ(I)
Tmin = 0.319, Tmax = 0.455Rint = 0.032
17654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.94 e Å3
S = 1.01Δρmin = 0.68 e Å3
5353 reflectionsAbsolute structure: Flack (1983), 1831 Friedel pairs
416 parametersAbsolute structure parameter: 0.226 (12)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A1.06404 (10)0.03442 (11)1.04136 (2)0.0845 (3)
Br1B0.30627 (8)0.54380 (9)0.52040 (2)0.0701 (2)
Br2A0.53252 (8)0.16474 (8)0.66987 (2)0.0689 (2)
Br2B0.20118 (8)0.34086 (8)0.888391 (19)0.0687 (2)
O1A0.4407 (6)0.3862 (6)0.94905 (14)0.0893 (18)
O1B0.2716 (6)0.0770 (5)0.61274 (14)0.0782 (15)
N1A0.6924 (5)0.1737 (5)0.84642 (15)0.0441 (13)
N1B0.0394 (5)0.3223 (5)0.71192 (13)0.0386 (12)
N2A0.7688 (5)0.1414 (5)0.87580 (13)0.0394 (12)
N2B0.0373 (5)0.3565 (5)0.68274 (13)0.0401 (12)
C3A0.8905 (7)0.0679 (6)0.86725 (18)0.0456 (16)
H3A0.95950.03390.88290.055*
C3B0.1573 (6)0.4349 (6)0.69043 (19)0.0427 (16)
H3B0.22410.47090.67450.051*
C4A0.8933 (7)0.0536 (6)0.83279 (19)0.0451 (16)
H4A0.96370.00770.81950.054*
C4B0.1601 (6)0.4502 (6)0.72623 (17)0.0409 (15)
H4B0.22920.49720.73970.049*
C5A0.7689 (6)0.1212 (6)0.82008 (16)0.0357 (14)
C5B0.0348 (7)0.3788 (6)0.73838 (16)0.0358 (14)
C6A0.7229 (7)0.1875 (6)0.90911 (18)0.0466 (17)
C6B0.0081 (6)0.3060 (6)0.64915 (17)0.0390 (15)
C7A0.8119 (7)0.1444 (7)0.93918 (16)0.0429 (16)
C7B0.0733 (6)0.3630 (7)0.61901 (16)0.0409 (16)
C8A0.9017 (7)0.2424 (7)0.95476 (18)0.0520 (17)
H8A0.91110.33330.94520.062*
C8B0.1625 (7)0.2773 (7)0.59906 (18)0.0468 (16)
H8B0.17450.18180.60500.056*
C9A0.9776 (8)0.2055 (8)0.9845 (2)0.063 (2)
H9A1.03770.27250.99510.076*
C9B0.2332 (7)0.3330 (7)0.57053 (18)0.0527 (17)
H9B0.29600.27590.55770.063*
C10A0.9667 (7)0.0750 (8)0.99855 (18)0.0523 (17)
C10B0.2125 (7)0.4713 (7)0.56087 (19)0.0478 (17)
C11A0.8816 (9)0.0234 (8)0.9832 (2)0.059 (2)
H11A0.87490.11400.99300.070*
C11B0.1234 (7)0.5587 (7)0.58027 (18)0.0486 (17)
H11B0.11000.65350.57380.058*
C12A0.8043 (8)0.0080 (7)0.9532 (3)0.058 (2)
H12A0.74770.06150.94250.069*
C12B0.0553 (8)0.5044 (7)0.6090 (2)0.053 (2)
H12B0.00460.56310.62230.064*
C13A0.6043 (7)0.2674 (7)0.91238 (19)0.0581 (18)
H13A0.55400.29240.89210.070*
C13B0.1155 (7)0.2129 (6)0.64759 (17)0.0480 (16)
H130.15560.17940.66850.058*
C14A0.5513 (8)0.3163 (7)0.9454 (2)0.063 (2)
H14A0.60390.29360.96550.076*
C14B0.1728 (8)0.1613 (7)0.61425 (19)0.0554 (18)
H140.13200.19410.59340.067*
C15A0.7154 (6)0.1352 (6)0.78364 (17)0.0375 (15)
C15B0.0164 (6)0.3646 (6)0.77424 (17)0.0360 (14)
C16A0.7845 (7)0.0686 (6)0.75603 (19)0.0472 (17)
H16A0.86730.01530.76040.057*
C16B0.0520 (7)0.4315 (6)0.80212 (18)0.0428 (16)
H16B0.13550.48370.79780.051*
C17A0.7334 (7)0.0793 (6)0.72186 (18)0.0464 (16)
H17A0.78220.03610.70330.056*
C17B0.0001 (7)0.4232 (7)0.83575 (18)0.0494 (17)
H17B0.04790.46950.85400.059*
C18A0.6105 (7)0.1544 (6)0.71609 (16)0.0420 (15)
C18B0.1237 (7)0.3455 (6)0.84255 (17)0.0435 (15)
C19A0.5396 (6)0.2233 (7)0.74279 (19)0.0456 (16)
H19A0.45660.27580.73810.055*
C19B0.1903 (6)0.2769 (7)0.81560 (18)0.0470 (17)
H19B0.27260.22310.82010.056*
C20A0.5924 (6)0.2141 (6)0.77660 (17)0.0413 (15)
H20A0.54510.26120.79480.050*
C20B0.1383 (7)0.2854 (6)0.78198 (18)0.0398 (15)
H20B0.18580.23720.76400.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0906 (6)0.1116 (6)0.0512 (5)0.0180 (5)0.0083 (5)0.0153 (5)
Br1B0.0723 (5)0.0778 (5)0.0601 (6)0.0001 (4)0.0177 (4)0.0176 (5)
Br2A0.0836 (5)0.0759 (5)0.0474 (4)0.0057 (4)0.0086 (4)0.0055 (4)
Br2B0.0748 (5)0.0871 (5)0.0442 (4)0.0013 (5)0.0060 (4)0.0059 (4)
O1A0.096 (4)0.116 (4)0.056 (3)0.053 (4)0.002 (3)0.022 (3)
O1B0.082 (4)0.077 (3)0.075 (4)0.032 (3)0.016 (3)0.012 (3)
N1A0.037 (3)0.049 (3)0.046 (4)0.004 (3)0.009 (3)0.002 (3)
N1B0.042 (3)0.044 (3)0.029 (3)0.001 (2)0.001 (2)0.001 (2)
N2A0.040 (3)0.044 (3)0.035 (3)0.003 (2)0.003 (3)0.001 (2)
N2B0.043 (3)0.040 (3)0.038 (3)0.008 (3)0.002 (3)0.006 (2)
C3A0.046 (4)0.044 (4)0.047 (4)0.001 (3)0.003 (3)0.012 (3)
C3B0.033 (3)0.036 (4)0.059 (5)0.009 (3)0.001 (3)0.002 (3)
C4A0.049 (4)0.029 (3)0.058 (5)0.001 (3)0.003 (4)0.013 (4)
C4B0.033 (3)0.046 (4)0.044 (4)0.005 (3)0.006 (3)0.002 (4)
C5A0.033 (3)0.030 (3)0.044 (4)0.002 (3)0.005 (3)0.001 (3)
C5B0.045 (4)0.025 (3)0.038 (4)0.007 (3)0.003 (3)0.002 (3)
C6A0.050 (4)0.044 (4)0.046 (5)0.003 (3)0.007 (3)0.002 (3)
C6B0.039 (3)0.041 (4)0.037 (4)0.006 (3)0.002 (3)0.000 (3)
C7A0.047 (4)0.045 (4)0.037 (4)0.004 (3)0.002 (3)0.002 (3)
C7B0.045 (4)0.041 (4)0.037 (4)0.004 (3)0.004 (3)0.002 (3)
C8A0.055 (4)0.045 (4)0.055 (4)0.004 (3)0.012 (4)0.008 (3)
C8B0.046 (4)0.036 (3)0.058 (4)0.009 (3)0.004 (3)0.002 (3)
C9A0.057 (4)0.067 (5)0.066 (5)0.007 (4)0.007 (4)0.009 (4)
C9B0.053 (4)0.053 (4)0.053 (4)0.004 (3)0.017 (4)0.009 (4)
C10A0.050 (4)0.059 (5)0.048 (4)0.005 (4)0.004 (3)0.006 (4)
C10B0.046 (4)0.047 (4)0.050 (5)0.002 (3)0.007 (3)0.007 (3)
C11A0.081 (5)0.039 (4)0.056 (5)0.012 (4)0.010 (4)0.017 (4)
C11B0.058 (4)0.039 (4)0.048 (4)0.005 (3)0.000 (4)0.003 (3)
C12A0.074 (6)0.034 (4)0.064 (6)0.007 (3)0.001 (5)0.002 (3)
C12B0.059 (6)0.054 (5)0.046 (5)0.010 (3)0.013 (4)0.001 (3)
C13A0.059 (5)0.069 (4)0.046 (4)0.011 (4)0.000 (3)0.008 (4)
C13B0.056 (4)0.049 (4)0.039 (4)0.009 (3)0.001 (3)0.007 (3)
C14A0.063 (5)0.078 (5)0.049 (4)0.015 (4)0.000 (3)0.012 (4)
C14B0.063 (5)0.056 (4)0.048 (5)0.010 (4)0.006 (4)0.003 (4)
C15A0.040 (4)0.032 (3)0.041 (4)0.008 (3)0.010 (3)0.004 (3)
C15B0.038 (3)0.028 (3)0.042 (4)0.003 (3)0.007 (3)0.001 (3)
C16A0.037 (4)0.046 (4)0.058 (5)0.006 (3)0.003 (3)0.006 (4)
C16B0.043 (4)0.040 (4)0.045 (4)0.004 (3)0.002 (3)0.004 (4)
C17A0.052 (4)0.042 (4)0.046 (4)0.004 (3)0.003 (3)0.006 (3)
C17B0.050 (4)0.058 (4)0.040 (4)0.005 (4)0.009 (3)0.015 (3)
C18A0.048 (4)0.035 (3)0.043 (4)0.001 (3)0.000 (3)0.007 (3)
C18B0.045 (4)0.045 (4)0.040 (4)0.006 (3)0.000 (3)0.004 (3)
C19A0.039 (4)0.046 (4)0.052 (5)0.000 (3)0.005 (3)0.003 (3)
C19B0.039 (4)0.048 (4)0.054 (5)0.006 (3)0.010 (3)0.009 (3)
C20A0.035 (3)0.047 (4)0.043 (4)0.006 (3)0.009 (3)0.001 (3)
C20B0.046 (3)0.036 (4)0.038 (4)0.002 (3)0.007 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1A—C10A1.898 (7)C8B—H8B0.9300
Br1B—C10B1.892 (7)C9A—C10A1.339 (9)
Br2A—C18A1.901 (6)C9A—H9A0.9300
Br2B—C18B1.884 (6)C9B—C10B1.361 (8)
O1A—C14A1.224 (8)C9B—H9B0.9300
O1B—C14B1.210 (8)C10A—C11A1.347 (10)
N1A—C5A1.321 (8)C10B—C11B1.377 (9)
N1A—N2A1.356 (7)C11A—C12A1.375 (12)
N1B—C5B1.328 (7)C11A—H11A0.9300
N1B—N2B1.355 (6)C11B—C12B1.361 (10)
N2A—N1A1.356 (7)C11B—H11B0.9300
N2A—C3A1.361 (8)C12A—H12A0.9300
N2A—C6A1.403 (8)C12B—H12B0.9300
N2B—N1B1.355 (6)C13A—C14A1.424 (10)
N2B—C3B1.363 (7)C13A—H13A0.9300
N2B—C6B1.425 (8)C13B—C14B1.456 (9)
C3A—C4A1.316 (9)C13B—H130.9300
C3A—H3A0.9300C14A—H14A0.9300
C3B—C4B1.368 (8)C14B—H140.9300
C3B—H3B0.9300C15A—C16A1.379 (8)
C4A—C5A1.401 (9)C15A—C20A1.384 (8)
C4A—H4A0.9300C15B—C20B1.382 (8)
C4B—C5B1.416 (9)C15B—C16B1.384 (8)
C4B—H4B0.9300C16A—C17A1.385 (9)
C5A—N1A1.321 (8)C16A—H16A0.9300
C5A—C15A1.477 (8)C16B—C17B1.367 (9)
C5B—N1B1.328 (7)C16B—H16B0.9300
C5B—C15B1.449 (8)C17A—C18A1.356 (8)
C6A—C13A1.336 (8)C17A—H17A0.9300
C6A—C7A1.465 (9)C17B—C18B1.383 (9)
C6B—C13B1.325 (8)C17B—H17B0.9300
C6B—C7B1.471 (8)C18A—C19A1.371 (9)
C7A—C8A1.374 (9)C18B—C19B1.358 (9)
C7A—C12A1.388 (9)C19A—C20A1.377 (9)
C7B—C8B1.379 (8)C19A—H19A0.9300
C7B—C12B1.389 (9)C19B—C20B1.367 (9)
C8A—C9A1.375 (9)C19B—H19B0.9300
C8A—H8A0.9300C20A—H20A0.9300
C8B—C9B1.370 (9)C20B—H20B0.9300
C5A—N1A—N2A105.1 (5)C10A—C11A—C12A121.1 (6)
C5B—N1B—N2B104.7 (5)C10A—C11A—H11A119.4
N1A—N2A—C3A110.4 (5)C12A—C11A—H11A119.4
N1A—N2A—C6A121.0 (5)C12B—C11B—C10B119.0 (6)
C3A—N2A—C6A128.5 (6)C12B—C11B—H11B120.5
N1B—N2B—C3B112.3 (5)C10B—C11B—H11B120.5
N1B—N2B—C6B120.0 (5)C11A—C12A—C7A119.3 (7)
C3B—N2B—C6B127.7 (5)C11A—C12A—H12A120.4
C4A—C3A—N2A107.8 (6)C7A—C12A—H12A120.4
C4A—C3A—H3A126.1C11B—C12B—C7B121.4 (7)
N2A—C3A—H3A126.1C11B—C12B—H12B119.3
N2B—C3B—C4B106.6 (6)C7B—C12B—H12B119.3
N2B—C3B—H3B126.7C6A—C13A—C14A123.1 (7)
C4B—C3B—H3B126.7C6A—C13A—H13A118.5
C3A—C4A—C5A106.3 (6)C14A—C13A—H13A118.5
C3A—C4A—H4A126.8C6B—C13B—C14B122.1 (6)
C5A—C4A—H4A126.8C6B—C13B—H13118.9
C3B—C4B—C5B105.0 (6)C14B—C13B—H13118.9
C3B—C4B—H4B127.5O1A—C14A—C13A124.0 (7)
C5B—C4B—H4B127.5O1A—C14A—H14A118.0
N1A—C5A—C4A110.4 (6)C13A—C14A—H14A118.0
N1A—C5A—C4A110.4 (6)O1B—C14B—C13B122.3 (7)
N1A—C5A—C15A119.8 (5)O1B—C14B—H14118.9
N1A—C5A—C15A119.8 (5)C13B—C14B—H14118.9
C4A—C5A—C15A129.8 (6)C16A—C15A—C20A118.5 (6)
N1B—C5B—C4B111.4 (6)C16A—C15A—C5A121.2 (5)
N1B—C5B—C4B111.4 (6)C20A—C15A—C5A120.3 (6)
N1B—C5B—C15B120.4 (5)C20B—C15B—C16B117.0 (6)
N1B—C5B—C15B120.4 (5)C20B—C15B—C5B121.1 (6)
C4B—C5B—C15B128.2 (6)C16B—C15B—C5B121.9 (6)
C13A—C6A—N2A120.4 (6)C15A—C16A—C17A121.4 (6)
C13A—C6A—C7A123.0 (6)C15A—C16A—H16A119.3
N2A—C6A—C7A116.6 (5)C17A—C16A—H16A119.3
C13B—C6B—N2B118.7 (6)C17B—C16B—C15B121.9 (6)
C13B—C6B—C7B126.1 (6)C17B—C16B—H16B119.1
N2B—C6B—C7B115.2 (5)C15B—C16B—H16B119.1
C8A—C7A—C12A118.8 (6)C18A—C17A—C16A118.4 (6)
C8A—C7A—C6A119.4 (6)C18A—C17A—H17A120.8
C12A—C7A—C6A121.7 (7)C16A—C17A—H17A120.8
C8B—C7B—C12B118.5 (6)C16B—C17B—C18B119.7 (6)
C8B—C7B—C6B121.5 (6)C16B—C17B—H17B120.1
C12B—C7B—C6B119.8 (6)C18B—C17B—H17B120.1
C7A—C8A—C9A119.7 (6)C17A—C18A—C19A121.8 (6)
C7A—C8A—H8A120.2C17A—C18A—Br2A119.7 (5)
C9A—C8A—H8A120.2C19A—C18A—Br2A118.5 (5)
C9B—C8B—C7B120.0 (6)C19B—C18B—C17B119.0 (6)
C9B—C8B—H8B120.0C19B—C18B—Br2B120.9 (5)
C7B—C8B—H8B120.0C17B—C18B—Br2B120.0 (5)
C10A—C9A—C8A121.3 (7)C18A—C19A—C20A119.4 (6)
C10A—C9A—H9A119.4C18A—C19A—H19A120.3
C8A—C9A—H9A119.4C20A—C19A—H19A120.3
C10B—C9B—C8B120.6 (6)C18B—C19B—C20B121.1 (6)
C10B—C9B—H9B119.7C18B—C19B—H19B119.4
C8B—C9B—H9B119.7C20B—C19B—H19B119.4
C9A—C10A—C11A119.8 (7)C19A—C20A—C15A120.4 (6)
C9A—C10A—Br1A119.3 (6)C19A—C20A—H20A119.8
C11A—C10A—Br1A120.8 (6)C15A—C20A—H20A119.8
C9B—C10B—C11B120.5 (6)C19B—C20B—C15B121.2 (6)
C9B—C10B—Br1B119.8 (5)C19B—C20B—H20B119.4
C11B—C10B—Br1B119.7 (5)C15B—C20B—H20B119.4
C5A—N1A—N2A—C3A0.8 (6)C8B—C9B—C10B—Br1B177.8 (5)
C5A—N1A—N2A—C6A176.8 (5)C9A—C10A—C11A—C12A0.5 (12)
C5B—N1B—N2B—C3B0.7 (6)Br1A—C10A—C11A—C12A176.3 (6)
C5B—N1B—N2B—C6B176.9 (5)C9B—C10B—C11B—C12B0.7 (10)
N1A—N2A—C3A—C4A0.4 (7)Br1B—C10B—C11B—C12B179.1 (6)
N1A—N2A—C3A—C4A0.4 (7)C10A—C11A—C12A—C7A1.5 (12)
C6A—N2A—C3A—C4A176.9 (6)C8A—C7A—C12A—C11A2.9 (11)
N1B—N2B—C3B—C4B1.1 (6)C6A—C7A—C12A—C11A174.8 (7)
N1B—N2B—C3B—C4B1.1 (6)C10B—C11B—C12B—C7B0.3 (11)
C6B—N2B—C3B—C4B176.3 (6)C8B—C7B—C12B—C11B0.0 (11)
N2A—C3A—C4A—C5A0.2 (7)C6B—C7B—C12B—C11B176.8 (7)
N2B—C3B—C4B—C5B0.9 (7)N2A—C6A—C13A—C14A179.3 (6)
N2A—N1A—C5A—C4A0.9 (6)C7A—C6A—C13A—C14A1.2 (10)
N2A—N1A—C5A—C15A178.9 (5)N2B—C6B—C13B—C14B177.0 (5)
C3A—C4A—C5A—N1A0.7 (7)C7B—C6B—C13B—C14B4.0 (10)
C3A—C4A—C5A—C15A178.5 (6)C6A—C13A—C14A—O1A177.9 (7)
N2B—N1B—C5B—C4B0.1 (6)C6B—C13B—C14B—O1B179.4 (7)
N2B—N1B—C5B—C15B179.4 (5)N1A—C5A—C15A—C16A173.0 (5)
C3B—C4B—C5B—N1B0.5 (7)C4A—C5A—C15A—C16A4.7 (9)
C3B—C4B—C5B—N1B0.5 (7)N1A—C5A—C15A—C20A5.9 (8)
C3B—C4B—C5B—C15B178.7 (6)C4A—C5A—C15A—C20A176.4 (6)
N1A—N2A—C6A—C13A1.6 (8)N1B—C5B—C15B—C20B3.8 (8)
C3A—N2A—C6A—C13A175.4 (6)C4B—C5B—C15B—C20B177.0 (6)
N1A—N2A—C6A—C7A178.9 (5)N1B—C5B—C15B—C16B174.8 (5)
C3A—N2A—C6A—C7A4.1 (9)C4B—C5B—C15B—C16B4.4 (9)
N1B—N2B—C6B—C13B7.6 (8)C20A—C15A—C16A—C17A0.0 (8)
C3B—N2B—C6B—C13B169.6 (6)C5A—C15A—C16A—C17A178.9 (6)
N1B—N2B—C6B—C7B173.3 (5)C20B—C15B—C16B—C17B1.5 (9)
C3B—N2B—C6B—C7B9.5 (8)C5B—C15B—C16B—C17B177.1 (6)
C13A—C6A—C7A—C8A75.2 (8)C15A—C16A—C17A—C18A1.7 (9)
N2A—C6A—C7A—C8A104.3 (7)C15B—C16B—C17B—C18B0.3 (10)
C13A—C6A—C7A—C12A102.4 (9)C16A—C17A—C18A—C19A2.4 (9)
N2A—C6A—C7A—C12A78.1 (8)C16A—C17A—C18A—Br2A177.3 (5)
C13B—C6B—C7B—C8B67.2 (9)C16B—C17B—C18B—C19B1.1 (9)
N2B—C6B—C7B—C8B111.8 (6)C16B—C17B—C18B—Br2B177.0 (5)
C13B—C6B—C7B—C12B109.5 (8)C17A—C18A—C19A—C20A1.3 (9)
N2B—C6B—C7B—C12B71.5 (8)Br2A—C18A—C19A—C20A178.4 (5)
C12A—C7A—C8A—C9A2.4 (10)C17B—C18B—C19B—C20B1.1 (9)
C6A—C7A—C8A—C9A175.4 (6)Br2B—C18B—C19B—C20B176.9 (5)
C12B—C7B—C8B—C9B1.3 (10)C18A—C19A—C20A—C15A0.5 (9)
C6B—C7B—C8B—C9B178.0 (6)C16A—C15A—C20A—C19A1.1 (8)
C7A—C8A—C9A—C10A0.5 (11)C5A—C15A—C20A—C19A177.8 (5)
C7B—C8B—C9B—C10B2.4 (10)C18B—C19B—C20B—C15B0.2 (9)
C8A—C9A—C10A—C11A1.0 (11)C16B—C15B—C20B—C19B1.5 (8)
C8A—C9A—C10A—Br1A175.8 (5)C5B—C15B—C20B—C19B177.2 (5)
C8B—C9B—C10B—C11B2.0 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13A—H13A···N1A0.932.432.779 (9)102
C13B—H13···N1B0.932.382.743 (8)103
C8B—H8B···O1Bi0.932.503.419 (8)172
Symmetry code: (i) x1/2, y, z.

Experimental details

Crystal data
Chemical formulaC18H12Br2N2O
Mr432.12
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)9.2600 (3), 9.3782 (3), 37.9965 (4)
V3)3299.70 (15)
Z8
Radiation typeMo Kα
µ (mm1)4.92
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.319, 0.455
No. of measured, independent and
observed [I > 2σ(I)] reflections
17654, 5353, 3562
Rint0.032
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.01
No. of reflections5353
No. of parameters416
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.68
Absolute structureFlack (1983), 1831 Friedel pairs
Absolute structure parameter0.226 (12)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, (1997)), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13A—H13A···N1A0.932.432.779 (9)102.2
C13B—H13···N1B0.932.382.743 (8)102.8
C8B—H8B···O1Bi0.932.503.419 (8)171.6
Symmetry code: (i) x1/2, y, z.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–66.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds