metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(4-amino­benzoato)aqua­silver(I)]-μ-hexa­methyl­ene­tetramine]

aSchool of the Ocean, Harbin Institute of Technology, Weihai 264209, People's Republic of China, and bSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
*Correspondence e-mail: hanjiajunhit@yahoo.com.cn

(Received 13 December 2009; accepted 22 December 2009; online 9 January 2010)

In the title coordination polymer, [Ag(C7H6NO2)(C6H12N4)(H2O)]n, the AgI ion is five-coordinated by two carboxyl­ate O atoms from one 4-amino­benzoate anion (L), two N atoms from two different hexa­methyl­enetetramine (hmt) ligands, and one water O atom in a distorted square-pyramidal geometry. The metal atom lies on a mirror plane and the L anion, hmt ligand and water mol­ecule all lie across crystallographic mirror planes. Each hmt ligand bridges two neighboring AgI ions, resulting in the formation of a chain structure along the b axis. The chains are linked into a three-dimensional framework by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the applications and structures of silver(I) coordination polymers, see: Yang et al. (2007[Yang, G., Wang, Y.-L., Li, J.-P., Zhu, Y., Wang, S.-M., Hou, H.-W., Fan, Y.-T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. pp. 714-719.], 2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C7H6NO2)(C6H12N4)(H2O)]

  • Mr = 402.21

  • Orthorhombic, P n m a

  • a = 19.8107 (11) Å

  • b = 6.4877 (3) Å

  • c = 11.3257 (6) Å

  • V = 1455.65 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 293 K

  • 0.31 × 0.27 × 0.22 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.66, Tmax = 0.87

  • 7757 measured reflections

  • 1557 independent reflections

  • 1373 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.08

  • 1557 reflections

  • 123 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.3862 (17)
Ag1—O1W 2.445 (2)
Ag1—O1 2.5413 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1i 0.81 (2) 1.95 (2) 2.742 (2) 168 (2)
N2—H2A⋯O1ii 0.84 (2) 2.27 (2) 3.072 (2) 159 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the applications and structures of silver(I) coordination polymers, see: Yang et al. (2007, 2008).

Experimental top

An aqueous solution (10 ml) of HL (0.104 g, 0.5 mmol) was added to solid Ag2CO3 (0.25 mmol) and stirred for several minutes until no further CO2 was given off. A solution of hmt (0.5 mmol) in acetonitrile (10 ml) was then added and a white precipitate formed. The precipitate was dissolved by dropwise addition of an aqueous solution of NH3 (14 M). Colourless blocks of the title compound were obtained by evaporation of the solution for several days at room temperature (33% yield).

Refinement top

Amino and water H-atoms were located in a difference Fourier map, and refined freely. The remaining H atoms were positioned geometrically (C-H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

For the applications and structures of silver(I) coordination polymers, see: Yang et al. (2007, 2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the AgI centre in the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x, 3/2 - y, z; (ii) x, 1/2 - y, z.
[Figure 2] Fig. 2. Part of the polymeric chain in the title compound.
catena-Poly[[(4-aminobenzoato)aquasilver(I)]-µ-hexamethylenetetramine] top
Crystal data top
[Ag(C7H6NO2)(C6H12N4)(H2O)]F(000) = 816
Mr = 402.21Dx = 1.835 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1557 reflections
a = 19.8107 (11) Åθ = 3.0–26.0°
b = 6.4877 (3) ŵ = 1.41 mm1
c = 11.3257 (6) ÅT = 293 K
V = 1455.65 (13) Å3Block, colourless
Z = 40.31 × 0.27 × 0.22 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1557 independent reflections
Radiation source: fine-focus sealed tube1373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2423
Tmin = 0.66, Tmax = 0.87k = 77
7757 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.5726P]
where P = (Fo2 + 2Fc2)/3
1557 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ag(C7H6NO2)(C6H12N4)(H2O)]V = 1455.65 (13) Å3
Mr = 402.21Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 19.8107 (11) ŵ = 1.41 mm1
b = 6.4877 (3) ÅT = 293 K
c = 11.3257 (6) Å0.31 × 0.27 × 0.22 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
1557 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1373 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.87Rint = 0.029
7757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.37 e Å3
1557 reflectionsΔρmin = 0.26 e Å3
123 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.425226 (10)0.25000.638361 (18)0.02218 (9)
O1W0.54862 (12)0.25000.6362 (2)0.0324 (5)
H1W10.5643 (11)0.352 (4)0.606 (2)0.036 (7)*
O10.38093 (7)0.4203 (2)0.45173 (12)0.0306 (4)
N10.42059 (7)0.5604 (3)0.75114 (14)0.0198 (4)
N20.23019 (13)0.25000.0371 (2)0.0261 (6)
H2A0.2075 (11)0.358 (3)0.0497 (19)0.033 (7)*
N30.47738 (11)0.75000.9101 (2)0.0186 (5)
N40.35383 (11)0.75000.8979 (2)0.0228 (5)
C10.26785 (13)0.25000.0657 (2)0.0182 (6)
C20.28812 (9)0.4347 (3)0.11800 (16)0.0206 (4)
H20.27810.55940.08140.025*
C30.32294 (9)0.4339 (3)0.22365 (16)0.0196 (4)
H30.33570.55850.25760.024*
C40.33924 (13)0.25000.2803 (2)0.0178 (6)
C50.36952 (13)0.25000.4018 (2)0.0222 (6)
C60.35759 (9)0.5670 (3)0.82288 (17)0.0235 (5)
H6A0.31890.56490.77040.028*
H6B0.35540.44480.87210.028*
C70.47854 (9)0.5664 (3)0.83436 (16)0.0214 (4)
H7A0.47760.44400.88360.026*
H7B0.52030.56470.78970.026*
C80.41317 (12)0.75000.9761 (2)0.0223 (6)
H8A0.41150.62921.02640.027*0.50
H8B0.41150.87081.02640.027*0.50
C90.42303 (13)0.75000.6783 (2)0.0200 (6)
H9A0.46420.75000.63210.024*
H9B0.38520.75000.62400.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02328 (13)0.02679 (14)0.01649 (13)0.0000.00302 (9)0.000
O1W0.0240 (12)0.0378 (15)0.0352 (14)0.0000.0073 (10)0.000
O10.0353 (8)0.0378 (9)0.0187 (7)0.0053 (8)0.0049 (6)0.0054 (7)
N10.0170 (8)0.0292 (10)0.0130 (8)0.0014 (7)0.0024 (6)0.0004 (7)
N20.0244 (14)0.0349 (17)0.0189 (13)0.0000.0072 (11)0.000
N30.0137 (11)0.0288 (14)0.0134 (11)0.0000.0003 (9)0.000
N40.0140 (11)0.0378 (15)0.0165 (12)0.0000.0014 (9)0.000
C10.0126 (12)0.0283 (15)0.0137 (14)0.0000.0039 (11)0.000
C20.0208 (10)0.0229 (11)0.0179 (10)0.0016 (8)0.0010 (8)0.0035 (8)
C30.0200 (10)0.0210 (11)0.0179 (10)0.0011 (8)0.0041 (8)0.0020 (8)
C40.0112 (12)0.0279 (16)0.0143 (13)0.0000.0024 (10)0.000
C50.0145 (13)0.0355 (18)0.0168 (14)0.0000.0022 (11)0.000
C60.0159 (9)0.0355 (13)0.0192 (10)0.0040 (9)0.0024 (8)0.0019 (9)
C70.0167 (10)0.0308 (12)0.0167 (10)0.0015 (9)0.0025 (8)0.0019 (8)
C80.0152 (14)0.0377 (18)0.0139 (14)0.0000.0018 (11)0.000
C90.0168 (13)0.0301 (17)0.0132 (13)0.0000.0041 (11)0.000
Geometric parameters (Å, º) top
Ag1—N12.3862 (17)C1—C21.396 (2)
Ag1—N1i2.3862 (17)C1—C2i1.396 (2)
Ag1—O1W2.445 (2)C2—C31.381 (3)
Ag1—O12.5413 (14)C2—H20.93
Ag1—O1i2.5413 (14)C3—C41.393 (2)
O1W—H1W10.81 (2)C3—H30.93
O1—C51.2615 (19)C4—C3i1.393 (2)
N1—C91.482 (2)C4—C51.500 (4)
N1—C71.486 (2)C5—O1i1.2615 (19)
N1—C61.490 (2)C6—H6A0.97
N2—C11.383 (4)C6—H6B0.97
N2—H2A0.84 (2)C7—H7A0.97
N3—C71.468 (2)C7—H7B0.97
N3—C7ii1.468 (2)C8—H8A0.97
N3—C81.475 (3)C8—H8B0.97
N4—C61.462 (2)C9—N1ii1.482 (2)
N4—C6ii1.462 (2)C9—H9A0.97
N4—C81.472 (3)C9—H9B0.97
N1—Ag1—N1i115.09 (8)C2—C3—H3119.4
N1—Ag1—O1W92.52 (5)C4—C3—H3119.4
N1i—Ag1—O1W92.52 (5)C3i—C4—C3117.9 (2)
N1—Ag1—O193.74 (5)C3i—C4—C5121.01 (12)
N1i—Ag1—O1143.00 (5)C3—C4—C5121.01 (12)
O1W—Ag1—O1109.69 (6)O1i—C5—O1122.2 (3)
N1—Ag1—O1i143.00 (5)O1i—C5—C4118.87 (13)
N1i—Ag1—O1i93.74 (5)O1—C5—C4118.87 (13)
O1W—Ag1—O1i109.69 (6)N4—C6—N1112.52 (17)
O1—Ag1—O1i51.53 (7)N4—C6—H6A109.1
Ag1—O1W—H1W1112.9 (17)N1—C6—H6A109.1
C5—O1—Ag193.12 (14)N4—C6—H6B109.1
C9—N1—C7107.80 (16)N1—C6—H6B109.1
C9—N1—C6107.87 (17)H6A—C6—H6B107.8
C7—N1—C6107.49 (15)N3—C7—N1112.34 (17)
C9—N1—Ag1113.67 (12)N3—C7—H7A109.1
C7—N1—Ag1109.39 (12)N1—C7—H7A109.1
C6—N1—Ag1110.39 (12)N3—C7—H7B109.1
C1—N2—H2A115.4 (16)N1—C7—H7B109.1
C7—N3—C7ii108.4 (2)H7A—C7—H7B107.9
C7—N3—C8108.02 (14)N4—C8—N3112.6 (2)
C7ii—N3—C8108.02 (14)N4—C8—H8A109.1
C6—N4—C6ii108.6 (2)N3—C8—H8A109.1
C6—N4—C8107.99 (14)N4—C8—H8B109.1
C6ii—N4—C8107.99 (14)N3—C8—H8B109.1
N2—C1—C2120.83 (12)H8A—C8—H8B107.8
N2—C1—C2i120.83 (12)N1ii—C9—N1112.3 (2)
C2—C1—C2i118.3 (2)N1ii—C9—H9A109.2
C3—C2—C1120.53 (19)N1—C9—H9A109.2
C3—C2—H2119.7N1ii—C9—H9B109.2
C1—C2—H2119.7N1—C9—H9B109.2
C2—C3—C4121.23 (19)H9A—C9—H9B107.9
N1—Ag1—O1—C5166.41 (14)Ag1—O1—C5—C4178.7 (2)
N1i—Ag1—O1—C523.97 (18)C3i—C4—C5—O1i0.9 (4)
O1W—Ag1—O1—C599.57 (14)C3—C4—C5—O1i177.1 (2)
O1i—Ag1—O1—C50.38 (15)C3i—C4—C5—O1177.1 (2)
N1i—Ag1—N1—C9179.54 (11)C3—C4—C5—O10.9 (4)
O1W—Ag1—N1—C986.50 (15)C6ii—N4—C6—N158.4 (3)
O1—Ag1—N1—C923.43 (14)C8—N4—C6—N158.5 (2)
O1i—Ag1—N1—C941.73 (17)C9—N1—C6—N457.9 (2)
N1i—Ag1—N1—C759.91 (14)C7—N1—C6—N458.1 (2)
O1W—Ag1—N1—C734.05 (13)Ag1—N1—C6—N4177.33 (13)
O1—Ag1—N1—C7143.98 (12)C7ii—N3—C7—N158.6 (2)
O1i—Ag1—N1—C7162.28 (10)C8—N3—C7—N158.2 (2)
N1i—Ag1—N1—C658.17 (14)C9—N1—C7—N358.2 (2)
O1W—Ag1—N1—C6152.14 (12)C6—N1—C7—N357.8 (2)
O1—Ag1—N1—C697.94 (12)Ag1—N1—C7—N3177.73 (13)
O1i—Ag1—N1—C679.64 (15)C6—N4—C8—N358.64 (14)
N2—C1—C2—C3176.9 (2)C6ii—N4—C8—N358.64 (14)
C2i—C1—C2—C34.8 (4)C7—N3—C8—N458.54 (13)
C1—C2—C3—C40.5 (3)C7ii—N3—C8—N458.54 (13)
C2—C3—C4—C3i3.8 (4)C7—N1—C9—N1ii58.1 (2)
C2—C3—C4—C5172.5 (2)C6—N1—C9—N1ii57.7 (2)
Ag1—O1—C5—O1i0.7 (3)Ag1—N1—C9—N1ii179.56 (11)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1iii0.81 (2)1.95 (2)2.742 (2)168 (2)
N2—H2A···O1iv0.84 (2)2.27 (2)3.072 (2)159 (2)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Ag(C7H6NO2)(C6H12N4)(H2O)]
Mr402.21
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)19.8107 (11), 6.4877 (3), 11.3257 (6)
V3)1455.65 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.31 × 0.27 × 0.22
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.66, 0.87
No. of measured, independent and
observed [I > 2σ(I)] reflections
7757, 1557, 1373
Rint0.029
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.08
No. of reflections1557
No. of parameters123
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N12.3862 (17)Ag1—O12.5413 (14)
Ag1—O1W2.445 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.81 (2)1.95 (2)2.742 (2)168 (2)
N2—H2A···O1ii0.84 (2)2.27 (2)3.072 (2)159 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

The authors thank Harbin Institute of Technology for financial support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar
First citationYang, G., Wang, Y.-L., Li, J.-P., Zhu, Y., Wang, S.-M., Hou, H.-W., Fan, Y.-T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. pp. 714–719.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds