organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,7-Di­meth­oxy­naphthalene-1,8-di­yl)bis­­(4-fluoro­benzo­yl)di­methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 2 December 2009; accepted 5 January 2010; online 9 January 2010)

The title compound, C26H18F2O4, is a naphthalene derivative in which the two aroyl groups at the 1- and 8-positions (peri positions) are anti to each other. There is an appreciable difference in the dihedral angles between the naphthalene ring system and the two benzene rings [66.88 (7)° and 88.09 (6)°]. In the crystal, weak C—H⋯O inter­actions involving one of the carbonyl groups and an aromatic C—H group ortho to the F atom seem to stabilize the packing of the mol­ecules.

Related literature

Our study on the selective electrophilic aromatic aroylation of 2,7-dimethoxy­naphthalene, has shown peri-aroylnaphthalene compounds to be formed regioselectively with the aid of a suitable acidic mediator, see: (Okamoto & Yonezawa, 2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For related structures, see: Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.], 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Mitsui et al. (2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18F2O4

  • Mr = 432.42

  • Monoclinic, P 21 /c

  • a = 9.87444 (18) Å

  • b = 17.0275 (3) Å

  • c = 14.9671 (3) Å

  • β = 126.871 (1)°

  • V = 2013.19 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 296 K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.713, Tmax = 0.915

  • 36825 measured reflections

  • 3682 independent reflections

  • 3338 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.07

  • 3682 reflections

  • 314 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H7⋯O1i 1.00 2.54 3.493 (2) 158
C21—H10⋯O1ii 0.99 2.68 3.636 (2) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite fashion and are found to be non-coplanar resulting in partial disruption in π-conjugation systems. Recently, we have reported the X-ray crystal structures of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). As a part of the course of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, peri-aroylnaphthalene bearing fluoro groups, is discussed in this report.

In the molecule (Fig. 1), the dihedral angle between benzene rings [C12–C17] and [C19–C24] is 32.34 (8)°, which is distinctively larger than that of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene [7.99 (8)°]. The dihedral angles between the naphthalene ring [C1–C10] plane and the planes of two benzene rings [C12–C17] and [C19–C24] are 66.88 (7)° and 88.12 (6)°, respectively. The difference between two dihedral angles is larger than that of the analogous compound, which has the corresponding angles of 71.98 (7)° and 71.55 (7)°.

The molecules are packed in the crystal lattice apparently stabilized by C—H···O interactions inovolving C16, C21 and O1 [2.54 Å, 158° and 2.68 Å, 161°](Fig. 2 and Table 1).

Related literature top

Our study on the selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, has shown peri-aroylnaphthalene compounds to be formed regioselectively with the aid of a suitable acidic mediator, see: (Okamoto & Yonezawa, 2009). For related structures, see: Nakaema et al. (2007, 2008); Mitsui et al. (2009).

Experimental top

To a 10 ml flask, 4-fluorobenzoic acid (4.4 mmol, 616.5 mg) and phosphorus pentoxide–methanesulfonic acid (P2O5–MsOH; 8.8 ml) were placed and stirred at 60°C. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (2.0 mmol, 376.4 mg) was added. After the reaction mixture was stirred at 60 °C for 1 h, it was poured into ice-cold water (10 ml) and the mixture was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (98% yield). Crude product was purified by recrystallization from EtOH (77% isolated yield). Furthermore, the isolated product was crystallized from toluene–hexane to give single-crystal.

Spectroscopic Data:

1H NMR δ (300 MHz, CDCl3): 3.70 (6H, s), 7.02 (4H, dd, J = 8.6 Hz), 7.21 (2H, d, J = 8.7 Hz), 7.71 (4H, dd, J = 8.41 Hz), 7.96 (2H, d, J = 8.7 Hz). 13C NMR δ (300 MHz, CDCl3): 56.289, 111.12, 114.92, 115.21, 125.47, 129.76, 131.52, 131.64, 132.25, 135.19, 156.24, 163.81, 167.17, 195.38. IR (KBr): 1596 (C=O), 1270 (Ar–O–Me). m.p. = 196°C. Anal. Calcd for C26H18F2O4; C, 70.27; H, 4.20. Found C, 72.05; H, 4.20.

Refinement top

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our study on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009). The aroyl groups at 1,8-positions of the naphthalene rings in these compounds are oriented in opposite fashion and are found to be non-coplanar resulting in partial disruption in π-conjugation systems. Recently, we have reported the X-ray crystal structures of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). As a part of the course of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, peri-aroylnaphthalene bearing fluoro groups, is discussed in this report.

In the molecule (Fig. 1), the dihedral angle between benzene rings [C12–C17] and [C19–C24] is 32.34 (8)°, which is distinctively larger than that of 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene [7.99 (8)°]. The dihedral angles between the naphthalene ring [C1–C10] plane and the planes of two benzene rings [C12–C17] and [C19–C24] are 66.88 (7)° and 88.12 (6)°, respectively. The difference between two dihedral angles is larger than that of the analogous compound, which has the corresponding angles of 71.98 (7)° and 71.55 (7)°.

The molecules are packed in the crystal lattice apparently stabilized by C—H···O interactions inovolving C16, C21 and O1 [2.54 Å, 158° and 2.68 Å, 161°](Fig. 2 and Table 1).

Our study on the selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, has shown peri-aroylnaphthalene compounds to be formed regioselectively with the aid of a suitable acidic mediator, see: (Okamoto & Yonezawa, 2009). For related structures, see: Nakaema et al. (2007, 2008); Mitsui et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids at 50% probability for non-H atoms.
[Figure 2] Fig. 2. Weak C–H···O interactions (dotted lines).
(2,7-Dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone top
Crystal data top
C26H18F2O4F(000) = 896
Mr = 432.42Dx = 1.427 Mg m3
Monoclinic, P21/cMelting point: 469 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 9.87444 (18) ÅCell parameters from 33844 reflections
b = 17.0275 (3) Åθ = 3.7–68.2°
c = 14.9671 (3) ŵ = 0.91 mm1
β = 126.871 (1)°T = 296 K
V = 2013.19 (7) Å3Platelet, yellow
Z = 40.40 × 0.40 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3682 independent reflections
Radiation source: fine-focus sealed tube3338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.5°
ω scansh = 1111
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2020
Tmin = 0.713, Tmax = 0.915l = 1818
36825 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3061P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3682 reflectionsΔρmax = 0.22 e Å3
314 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (3)
Crystal data top
C26H18F2O4V = 2013.19 (7) Å3
Mr = 432.42Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.87444 (18) ŵ = 0.91 mm1
b = 17.0275 (3) ÅT = 296 K
c = 14.9671 (3) Å0.40 × 0.40 × 0.10 mm
β = 126.871 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3682 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3338 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.915Rint = 0.030
36825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
3682 reflectionsΔρmin = 0.18 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.21053 (13)0.44424 (5)0.09780 (9)0.0824 (3)
F20.35965 (13)0.21569 (6)0.65179 (7)0.0878 (3)
O10.24490 (12)0.16209 (5)0.15843 (7)0.0570 (2)
O20.09608 (12)0.18156 (5)0.15466 (8)0.0598 (2)
O30.55074 (11)0.11265 (6)0.11168 (8)0.0634 (3)
O40.31918 (12)0.01602 (6)0.31605 (8)0.0684 (3)
C10.26555 (15)0.08412 (7)0.02104 (9)0.0444 (3)
C20.42192 (16)0.05978 (7)0.07141 (10)0.0503 (3)
C30.44496 (18)0.01516 (8)0.11871 (11)0.0587 (3)
H10.55310.02960.18250.070*
C40.31155 (19)0.06521 (7)0.07028 (11)0.0580 (3)
H20.32370.11700.10170.070*
C50.15072 (17)0.04486 (7)0.02702 (10)0.0501 (3)
C60.01766 (19)0.10000 (7)0.08034 (12)0.0574 (3)
H30.03890.15200.04630.067*
C70.13559 (18)0.08282 (8)0.17722 (11)0.0573 (3)
H40.22470.12250.21430.071*
C80.16525 (16)0.00701 (7)0.22300 (10)0.0516 (3)
C90.04104 (15)0.05019 (7)0.17254 (9)0.0450 (3)
C100.12396 (15)0.03188 (7)0.07386 (9)0.0438 (3)
C110.25571 (14)0.16202 (7)0.07300 (9)0.0444 (3)
C120.25352 (14)0.23685 (7)0.02252 (9)0.0449 (3)
C130.20106 (18)0.30478 (8)0.08654 (11)0.0559 (3)
H50.17150.30060.15730.068*
C140.1873 (2)0.37483 (8)0.04636 (12)0.0631 (4)
H60.14740.42210.09020.077*
C150.22767 (18)0.37560 (8)0.05889 (12)0.0592 (3)
C160.28166 (19)0.31051 (8)0.12562 (11)0.0614 (3)
H70.30570.31460.20080.086*
C170.29344 (17)0.24052 (7)0.08343 (10)0.0526 (3)
H80.33350.19380.13060.059*
C180.09933 (14)0.13262 (7)0.21535 (10)0.0461 (3)
C190.16719 (14)0.15291 (7)0.33199 (10)0.0459 (3)
C200.29027 (17)0.21100 (8)0.38710 (12)0.0576 (3)
H90.33230.23420.34710.074*
C210.35501 (18)0.23239 (9)0.49493 (12)0.0642 (4)
H100.44600.27210.53670.088*
C220.29323 (17)0.19592 (8)0.54466 (11)0.0598 (4)
C230.17105 (17)0.13886 (9)0.49316 (11)0.0597 (3)
H110.13020.11740.52880.071*
C240.10868 (16)0.11671 (8)0.38576 (10)0.0527 (3)
H120.02170.07580.34670.062*
C250.71784 (19)0.08920 (13)0.20143 (14)0.0706 (4)
C260.4565 (2)0.03775 (11)0.36866 (15)0.0697 (4)
H130.751 (3)0.0383 (12)0.1820 (16)0.098 (6)*
H140.786 (3)0.1326 (12)0.2121 (15)0.088 (6)*
H150.728 (2)0.0805 (11)0.2710 (16)0.094 (6)*
H160.429 (2)0.0860 (11)0.3956 (14)0.081 (5)*
H170.556 (3)0.0075 (11)0.4306 (16)0.094 (6)*
H180.479 (2)0.0552 (10)0.3166 (15)0.082 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1025 (7)0.0541 (5)0.1006 (7)0.0052 (4)0.0663 (6)0.0177 (4)
F20.0833 (6)0.1105 (8)0.0550 (5)0.0057 (5)0.0337 (5)0.0239 (5)
O10.0680 (6)0.0644 (6)0.0454 (5)0.0048 (4)0.0377 (4)0.0000 (4)
O20.0666 (6)0.0548 (5)0.0592 (5)0.0018 (4)0.0384 (5)0.0083 (4)
O30.0468 (5)0.0667 (6)0.0569 (5)0.0010 (4)0.0206 (4)0.0085 (4)
O40.0548 (5)0.0657 (6)0.0631 (6)0.0165 (4)0.0237 (5)0.0001 (5)
C10.0507 (6)0.0438 (6)0.0414 (6)0.0025 (5)0.0291 (5)0.0006 (5)
C20.0523 (7)0.0531 (7)0.0445 (6)0.0034 (5)0.0285 (6)0.0011 (5)
C30.0631 (8)0.0568 (7)0.0490 (7)0.0149 (6)0.0297 (6)0.0093 (6)
C40.0771 (9)0.0442 (7)0.0547 (7)0.0094 (6)0.0406 (7)0.0078 (5)
C50.0678 (8)0.0425 (6)0.0498 (6)0.0030 (5)0.0405 (6)0.0011 (5)
C60.0821 (9)0.0425 (6)0.0613 (8)0.0044 (6)0.0503 (8)0.0006 (6)
C70.0729 (9)0.0493 (7)0.0589 (8)0.0160 (6)0.0444 (7)0.0089 (6)
C80.0579 (7)0.0525 (7)0.0489 (6)0.0078 (6)0.0345 (6)0.0051 (5)
C90.0527 (7)0.0435 (6)0.0443 (6)0.0026 (5)0.0321 (5)0.0020 (5)
C100.0548 (7)0.0418 (6)0.0416 (6)0.0004 (5)0.0325 (5)0.0016 (5)
C110.0403 (6)0.0519 (7)0.0381 (6)0.0034 (5)0.0218 (5)0.0015 (5)
C120.0437 (6)0.0462 (6)0.0427 (6)0.0053 (5)0.0248 (5)0.0016 (5)
C130.0647 (8)0.0530 (7)0.0477 (7)0.0040 (6)0.0325 (6)0.0046 (5)
C140.0718 (9)0.0458 (7)0.0674 (8)0.0003 (6)0.0395 (7)0.0074 (6)
C150.0637 (8)0.0480 (7)0.0692 (8)0.0074 (6)0.0417 (7)0.0103 (6)
C160.0732 (9)0.0610 (8)0.0541 (7)0.0048 (7)0.0405 (7)0.0063 (6)
C170.0621 (8)0.0508 (7)0.0463 (6)0.0010 (6)0.0332 (6)0.0035 (5)
C180.0426 (6)0.0462 (6)0.0491 (6)0.0034 (5)0.0272 (5)0.0038 (5)
C190.0427 (6)0.0425 (6)0.0486 (6)0.0023 (5)0.0253 (5)0.0003 (5)
C200.0559 (7)0.0527 (7)0.0665 (8)0.0071 (6)0.0380 (7)0.0078 (6)
C210.0566 (8)0.0597 (8)0.0686 (9)0.0104 (6)0.0334 (7)0.0187 (7)
C220.0516 (7)0.0667 (8)0.0469 (7)0.0060 (6)0.0220 (6)0.0099 (6)
C230.0537 (7)0.0735 (9)0.0485 (7)0.0017 (6)0.0288 (6)0.0034 (6)
C240.0478 (6)0.0552 (7)0.0477 (6)0.0050 (5)0.0246 (5)0.0001 (5)
C250.0494 (8)0.0904 (12)0.0578 (9)0.0087 (8)0.0247 (7)0.0112 (8)
C260.0586 (9)0.0752 (10)0.0733 (10)0.0202 (8)0.0385 (8)0.0156 (8)
Geometric parameters (Å, º) top
F1—C151.3610 (15)C12—C131.3888 (17)
F2—C221.3611 (15)C13—C141.379 (2)
O1—C111.2176 (14)C13—H50.9168
O2—C181.2188 (14)C14—C151.374 (2)
O3—C21.3681 (16)C14—H60.9600
O3—C251.4236 (17)C15—C161.368 (2)
O4—C81.3651 (16)C16—C171.3859 (19)
O4—C261.4197 (17)C16—H71.0036
C1—C21.3808 (17)C17—H80.9758
C1—C101.4299 (16)C18—C191.4874 (16)
C1—C111.5110 (16)C19—C241.3854 (17)
C2—C31.4100 (18)C19—C201.3902 (17)
C3—C41.357 (2)C20—C211.381 (2)
C3—H10.9430C20—H90.9912
C4—C51.4099 (19)C21—C221.363 (2)
C4—H20.9717C21—H100.9902
C5—C61.4094 (18)C22—C231.370 (2)
C5—C101.4305 (16)C23—C241.3847 (18)
C6—C71.358 (2)C23—H110.9157
C6—H30.9791C24—H120.9809
C7—C81.4074 (18)C25—H131.03 (2)
C7—H40.9755C25—H140.95 (2)
C8—C91.3826 (17)C25—H151.00 (2)
C9—C101.4302 (17)C26—H161.018 (19)
C9—C181.5065 (16)C26—H171.00 (2)
C11—C121.4881 (16)C26—H180.975 (19)
C12—C171.3869 (16)
C2—O3—C25118.43 (12)C13—C14—H6122.3
C8—O4—C26119.26 (12)F1—C15—C16118.51 (13)
C2—C1—C10120.12 (11)F1—C15—C14118.29 (13)
C2—C1—C11117.85 (11)C16—C15—C14123.19 (12)
C10—C1—C11121.47 (10)C15—C16—C17117.81 (12)
O3—C2—C1115.41 (11)C15—C16—H7119.3
O3—C2—C3123.16 (11)C17—C16—H7122.8
C1—C2—C3121.42 (12)C16—C17—C12121.05 (12)
C4—C3—C2119.20 (12)C16—C17—H8118.7
C4—C3—H1121.6C12—C17—H8120.3
C2—C3—H1119.2O2—C18—C19120.52 (11)
C3—C4—C5121.88 (12)O2—C18—C9119.18 (11)
C3—C4—H2120.8C19—C18—C9120.24 (10)
C5—C4—H2117.3C24—C19—C20119.52 (11)
C6—C5—C4120.71 (11)C24—C19—C18121.83 (11)
C6—C5—C10119.72 (12)C20—C19—C18118.64 (11)
C4—C5—C10119.55 (12)C21—C20—C19120.52 (13)
C7—C6—C5121.59 (12)C21—C20—H9122.1
C7—C6—H3120.2C19—C20—H9117.3
C5—C6—H3118.2C22—C21—C20118.23 (13)
C6—C7—C8119.37 (12)C22—C21—H10120.0
C6—C7—H4120.4C20—C21—H10121.7
C8—C7—H4120.3F2—C22—C21118.26 (13)
O4—C8—C9115.77 (11)F2—C22—C23118.51 (14)
O4—C8—C7122.63 (11)C21—C22—C23123.20 (12)
C9—C8—C7121.52 (12)C22—C23—C24118.31 (13)
C8—C9—C10119.88 (11)C22—C23—H11120.2
C8—C9—C18115.89 (11)C24—C23—H11121.5
C10—C9—C18123.37 (10)C23—C24—C19120.21 (12)
C1—C10—C9124.44 (10)C23—C24—H12120.4
C1—C10—C5117.74 (11)C19—C24—H12119.4
C9—C10—C5117.78 (11)O3—C25—H13110.7 (11)
O1—C11—C12120.91 (10)O3—C25—H14104.1 (11)
O1—C11—C1118.64 (11)H13—C25—H14113.3 (16)
C12—C11—C1120.42 (9)O3—C25—H15111.1 (11)
C17—C12—C13118.93 (11)H13—C25—H15108.7 (15)
C17—C12—C11122.58 (10)H14—C25—H15109.0 (15)
C13—C12—C11118.41 (10)O4—C26—H16110.5 (10)
C14—C13—C12120.87 (12)O4—C26—H17105.2 (11)
C14—C13—H5121.7H16—C26—H17113.2 (15)
C12—C13—H5117.4O4—C26—H18110.6 (10)
C15—C14—C13118.15 (12)H16—C26—H18108.1 (14)
C15—C14—H6119.6H17—C26—H18109.3 (16)
C25—O3—C2—C1175.20 (12)C10—C1—C11—O168.78 (15)
C25—O3—C2—C33.86 (19)C2—C1—C11—C1279.42 (14)
C10—C1—C2—O3176.46 (10)C10—C1—C11—C12109.20 (12)
C11—C1—C2—O34.95 (16)O1—C11—C12—C17168.99 (12)
C10—C1—C2—C32.62 (18)C1—C11—C12—C1713.08 (17)
C11—C1—C2—C3174.13 (11)O1—C11—C12—C1314.35 (17)
O3—C2—C3—C4177.06 (12)C1—C11—C12—C13163.58 (11)
C1—C2—C3—C42.0 (2)C17—C12—C13—C140.5 (2)
C2—C3—C4—C50.9 (2)C11—C12—C13—C14176.26 (12)
C3—C4—C5—C6175.24 (12)C12—C13—C14—C150.3 (2)
C3—C4—C5—C102.9 (2)C13—C14—C15—F1178.54 (13)
C4—C5—C6—C7176.63 (13)C13—C14—C15—C160.4 (2)
C10—C5—C6—C71.52 (19)F1—C15—C16—C17178.04 (13)
C5—C6—C7—C83.0 (2)C14—C15—C16—C170.9 (2)
C26—O4—C8—C9176.00 (12)C15—C16—C17—C120.7 (2)
C26—O4—C8—C70.9 (2)C13—C12—C17—C160.01 (19)
C6—C7—C8—O4175.71 (12)C11—C12—C17—C16176.63 (12)
C6—C7—C8—C91.0 (2)C8—C9—C18—O2111.97 (13)
O4—C8—C9—C10179.36 (10)C10—C9—C18—O257.38 (16)
C7—C8—C9—C102.44 (18)C8—C9—C18—C1965.30 (14)
O4—C8—C9—C189.61 (16)C10—C9—C18—C19125.35 (12)
C7—C8—C9—C18167.31 (11)O2—C18—C19—C24150.27 (12)
C2—C1—C10—C9177.21 (11)C9—C18—C19—C2432.49 (17)
C11—C1—C10—C96.01 (17)O2—C18—C19—C2028.41 (17)
C2—C1—C10—C50.53 (16)C9—C18—C19—C20148.83 (12)
C11—C1—C10—C5171.73 (10)C24—C19—C20—C210.4 (2)
C8—C9—C10—C1173.95 (11)C18—C19—C20—C21179.11 (12)
C18—C9—C10—C117.11 (17)C19—C20—C21—C220.9 (2)
C8—C9—C10—C53.79 (16)C20—C21—C22—F2178.54 (12)
C18—C9—C10—C5165.16 (11)C20—C21—C22—C230.4 (2)
C6—C5—C10—C1176.01 (10)F2—C22—C23—C24177.46 (12)
C4—C5—C10—C12.16 (16)C21—C22—C23—C240.7 (2)
C6—C5—C10—C91.88 (16)C22—C23—C24—C191.2 (2)
C4—C5—C10—C9179.95 (11)C20—C19—C24—C230.70 (19)
C2—C1—C11—O1102.61 (13)C18—C19—C24—C23177.97 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H7···O1i1.002.543.493 (2)158
C21—H10···O1ii0.992.683.636 (2)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H18F2O4
Mr432.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.87444 (18), 17.0275 (3), 14.9671 (3)
β (°) 126.871 (1)
V3)2013.19 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.91
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.713, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
36825, 3682, 3338
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.07
No. of reflections3682
No. of parameters314
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H7···O1i1.002.543.493 (2)158
C21—H10···O1ii0.992.683.636 (2)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was partially supported by the Iketani Science and Technology Foundation, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds