organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo­pyridine-3-carboxylic acid

aDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, bInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 January 2010; accepted 27 January 2010; online 30 January 2010)

The carboxylic acid residue in the title compound, C6H4BrNO2, is twisted out of the plane of the other atoms, as indicated by the (Br)C—C—C—Ocarbon­yl torsion angle of −20.1 (9)°. In the crystal, supra­molecular chains mediated by O—H⋯N hydrogen bonds are formed with base vector [201] and C—H⋯O inter­actions reinforce the packing.

Related literature

For the biological activity of N-heterocylic compounds, see: de Souza (2005[Souza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009-1017.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]). For related structures, see: Wright & King (1953[Wright, W. B. & King, G. S. D. (1953). Acta Cryst. 6, 305-317.]); Kutoglu & Scheringer (1983[Kutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232-234.]); de Souza et al. (2005[Souza, M. V. N. de, Wardell, S. M. S. V. & Howie, R. A. (2005). Acta Cryst. E61, o1347-o1349.]); Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]). For the synthesis, see: Bradlow & van der Werf (1949[Bradlow, H. L. & van der Werf, C. A. (1949). J. Org. Chem. 14, 509-515.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4BrNO2

  • Mr = 202.01

  • Monoclinic, P 21 /c

  • a = 3.9286 (3) Å

  • b = 12.9737 (9) Å

  • c = 12.8570 (8) Å

  • β = 96.695 (4)°

  • V = 650.83 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.24 mm−1

  • T = 120 K

  • 0.10 × 0.09 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.453, Tmax = 0.607

  • 7699 measured reflections

  • 1147 independent reflections

  • 882 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.06

  • 1147 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 1.85 2.685 (5) 173
C5—H5⋯O2ii 0.95 2.39 3.258 (7) 152
C6—H6⋯O2iii 0.95 2.47 3.171 (6) 131
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The structure of the title compound, (I), was determined in connection with on-going studies of biological activitiess, e.g. anti-mycobacterial activity, of N-heterocyclic compounds (Cunico et al. 2006; de Souza, 2005), as we have embarked on complementary systematic structural investigations in order to ascertain supramolecular aggregation patterns (Kaiser et al., 2009).

In the molecular structure of (I), Fig. 1, the carbonyl-O2 atom is approximately syn to the bromide. The carboxylic acid residue is twisted out of the plane of the pyridine ring as seen in the value of the C2/C3/C7/O1 torsion angle of 161.1 (5)°. In the crystal packing, a supramolecular chain with base vector [2 0 1] is formed through the agency of O–H···N hydrogen bonds, Fig. 2 and Table 1. Additional stabilisation to the chains are afforded by CH···Ocarbonyl interactions, Table 1. The chains stack into layers in the ab place and are consolidated in the crystal structure by further CH···Ocarbonyl contacts, Fig. 2 & Table 1. Similar supramolecular chains are found in the crystal structures of nicotinic acid (Wright & King, 1953; Kutoglu & Scheringer, 1983) as well as in 2-chloropyridine-3-carboxylic acid (de Souza et al., 2005).

Related literature top

For the biological activity of N-heterocylic compounds, see: de Souza (2005); Cunico et al. (2006). For related structures, see: Wright & King (1953); Kutoglu & Scheringer (1983); de Souza et al. (2005); Kaiser et al. (2009). For the synthesis, see: Bradlow & van der Werf (1949).

Experimental top

A mixture of 2-bromo-3-methylpyridine (0.77 g, 4.5 mmol), KMnO4 (0.316 g, 2 mmol) and H2O (20 ml) was refluxed until the purple colour of the solution disappeared. A second portion of KMnO4 (0.316 g) and water (10 ml) were added and the reaction mixture was refluxed again until no purple colour remained. The reaction mixture was concentrated to 10 ml, acidified with concentrated hydrochloric acid, and filtered. The precipitate was washed with cold water and cold diethylether (20 ml). The yield was 0.79 g (60%), m.p. 520–523 K; lit value 522-523 K (Bradlow & van der Werf, 1949). 2-Bromonicotinic acid was recrystallised from EtOH for the crystallographic study. 1H NMR [500.00 MHz, DMSO-d6] δ: 8.50 (1H, dd, J = 5.0 and 2.0 Hz, H6), 8.13 (1H, dd, J = 7.5 and 2.0 Hz, H4), 7.55 (1H, dd, J = 7.5 and 5.0 Hz, H5), 3.44 (1H, s, OH) p.p.m. 13C NMR (125.0 MHz, DMSO-d6) δ: 166.3, 151.8, 139.1, 138.6, 131.1, 123.2 p.p.m.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(N).

Structure description top

The structure of the title compound, (I), was determined in connection with on-going studies of biological activitiess, e.g. anti-mycobacterial activity, of N-heterocyclic compounds (Cunico et al. 2006; de Souza, 2005), as we have embarked on complementary systematic structural investigations in order to ascertain supramolecular aggregation patterns (Kaiser et al., 2009).

In the molecular structure of (I), Fig. 1, the carbonyl-O2 atom is approximately syn to the bromide. The carboxylic acid residue is twisted out of the plane of the pyridine ring as seen in the value of the C2/C3/C7/O1 torsion angle of 161.1 (5)°. In the crystal packing, a supramolecular chain with base vector [2 0 1] is formed through the agency of O–H···N hydrogen bonds, Fig. 2 and Table 1. Additional stabilisation to the chains are afforded by CH···Ocarbonyl interactions, Table 1. The chains stack into layers in the ab place and are consolidated in the crystal structure by further CH···Ocarbonyl contacts, Fig. 2 & Table 1. Similar supramolecular chains are found in the crystal structures of nicotinic acid (Wright & King, 1953; Kutoglu & Scheringer, 1983) as well as in 2-chloropyridine-3-carboxylic acid (de Souza et al., 2005).

For the biological activity of N-heterocylic compounds, see: de Souza (2005); Cunico et al. (2006). For related structures, see: Wright & King (1953); Kutoglu & Scheringer (1983); de Souza et al. (2005); Kaiser et al. (2009). For the synthesis, see: Bradlow & van der Werf (1949).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of the unit cell contents in (I) highlighting the N–H···O hydrogen bonding (orange dashed lines) leading to supramolecular chains, and C–H···O contacts within and between chains (blue dashed lines). Colour code: Br, olive; O, red; N, blue; C, grey; and H, green.
2-Bromopyridine-3-carboxylic acid top
Crystal data top
C6H4BrNO2F(000) = 392
Mr = 202.01Dx = 2.062 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24006 reflections
a = 3.9286 (3) Åθ = 2.9–27.5°
b = 12.9737 (9) ŵ = 6.24 mm1
c = 12.8570 (8) ÅT = 120 K
β = 96.695 (4)°Block, colourless
V = 650.83 (8) Å30.10 × 0.09 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
1147 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode882 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.070
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.2°
φ and ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1515
Tmin = 0.453, Tmax = 0.607l = 1513
7699 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0439P)2 + 1.1585P]
where P = (Fo2 + 2Fc2)/3
1147 reflections(Δ/σ)max = 0.001
92 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C6H4BrNO2V = 650.83 (8) Å3
Mr = 202.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9286 (3) ŵ = 6.24 mm1
b = 12.9737 (9) ÅT = 120 K
c = 12.8570 (8) Å0.10 × 0.09 × 0.08 mm
β = 96.695 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1147 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
882 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 0.607Rint = 0.070
7699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.86 e Å3
1147 reflectionsΔρmin = 0.62 e Å3
92 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.26644 (13)0.59770 (4)0.89357 (4)0.0284 (2)
O10.1485 (10)0.8088 (3)0.6204 (3)0.0329 (9)
H10.25630.77830.56910.049*
O20.0225 (11)0.6488 (3)0.6647 (3)0.0484 (12)
N10.5499 (10)0.7843 (3)0.9471 (3)0.0257 (10)
C20.3563 (13)0.7384 (4)0.8676 (4)0.0237 (11)
C30.2287 (12)0.7899 (4)0.7756 (4)0.0246 (11)
C40.3069 (14)0.8942 (4)0.7698 (4)0.0303 (12)
H40.21930.93270.70980.036*
C50.5111 (13)0.9428 (4)0.8507 (4)0.0252 (12)
H50.56881.01370.84610.030*
C60.6276 (13)0.8854 (4)0.9378 (4)0.0268 (12)
H60.76790.91790.99350.032*
C70.0240 (13)0.7406 (4)0.6822 (4)0.0290 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0342 (3)0.0217 (3)0.0277 (3)0.0033 (2)0.0029 (2)0.0016 (2)
O10.042 (2)0.030 (2)0.025 (2)0.0023 (18)0.0059 (17)0.0007 (16)
O20.072 (3)0.027 (2)0.041 (2)0.009 (2)0.018 (2)0.0066 (19)
N10.031 (2)0.024 (2)0.023 (2)0.0023 (19)0.0034 (19)0.0008 (19)
C20.021 (2)0.024 (3)0.026 (3)0.002 (2)0.005 (2)0.001 (2)
C30.023 (3)0.026 (3)0.024 (3)0.005 (2)0.002 (2)0.003 (2)
C40.035 (3)0.025 (3)0.029 (3)0.003 (2)0.003 (2)0.003 (2)
C50.030 (3)0.020 (3)0.026 (3)0.001 (2)0.003 (2)0.003 (2)
C60.027 (3)0.028 (3)0.024 (3)0.000 (2)0.002 (2)0.007 (2)
C70.028 (3)0.031 (3)0.027 (3)0.003 (2)0.000 (2)0.002 (2)
Geometric parameters (Å, º) top
Br—C21.897 (5)C3—C41.392 (7)
O1—C71.322 (6)C3—C71.507 (7)
O1—H10.8400C4—C51.388 (7)
O2—C71.213 (6)C4—H40.9500
N1—C21.340 (6)C5—C61.378 (7)
N1—C61.356 (6)C5—H50.9500
C2—C31.400 (7)C6—H60.9500
C7—O1—H1109.5C3—C4—H4119.5
C2—N1—C6118.4 (4)C6—C5—C4118.1 (5)
N1—C2—C3123.3 (5)C6—C5—H5121.0
N1—C2—Br113.2 (3)C4—C5—H5121.0
C3—C2—Br123.5 (4)N1—C6—C5122.6 (4)
C4—C3—C2116.7 (5)N1—C6—H6118.7
C4—C3—C7118.1 (4)C5—C6—H6118.7
C2—C3—C7125.2 (4)O2—C7—O1123.7 (5)
C5—C4—C3120.9 (5)O2—C7—C3123.8 (5)
C5—C4—H4119.5O1—C7—C3112.6 (4)
C2—C3—C7—O1161.1 (5)C2—C3—C7—O220.1 (9)
C4—C3—C7—O120.7 (7)C4—C3—C7—O2158.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.841.852.685 (5)173
C5—H5···O2ii0.952.393.258 (7)152
C6—H6···O2iii0.952.473.171 (6)131
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H4BrNO2
Mr202.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)3.9286 (3), 12.9737 (9), 12.8570 (8)
β (°) 96.695 (4)
V3)650.83 (8)
Z4
Radiation typeMo Kα
µ (mm1)6.24
Crystal size (mm)0.10 × 0.09 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.453, 0.607
No. of measured, independent and
observed [I > 2σ(I)] reflections
7699, 1147, 882
Rint0.070
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.06
No. of reflections1147
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.62

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.841.852.685 (5)173
C5—H5···O2ii0.952.393.258 (7)152
C6—H6···O2iii0.952.473.171 (6)131
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBradlow, H. L. & van der Werf, C. A. (1949). J. Org. Chem. 14, 509–515.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKutoglu, A. & Scheringer, C. (1983). Acta Cryst. C39, 232–234.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009–1017.  Web of Science PubMed Google Scholar
First citationSouza, M. V. N. de, Wardell, S. M. S. V. & Howie, R. A. (2005). Acta Cryst. E61, o1347–o1349.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWright, W. B. & King, G. S. D. (1953). Acta Cryst. 6, 305–317.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds