metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ4-tetra­zole-1-acetato-κ4N3:N4:O:O′)silver(I)]

aCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, bCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and cCollege of Agriculture, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 29 December 2009; accepted 11 January 2010; online 16 January 2010)

In the title complex, [Ag(C3H3N4O2)]n, the AgI atom is four-coordinated in a slightly distorted tetra­hedral coordination geometry by two N atoms from two tetra­zole-1-acetate (tza) ligands and two O atoms from the other two tza ligands. The tza ligand bridges two Ag atoms through the carboxyl­ate O atoms and simultaneously binds to the other two Ag atoms through the tetra­zole N atoms, forming a two-dimensional network parallel to (100).

Related literature

For the diverse coordination modes and potential applications of metal complexes with tetra­zole derivatives, see: Stagni et al. (2006[Stagni, S., Palazzi, A., Zacchini, S., Ballarin, B., Bruno, C., Marcaccio, M., Paolucci, F., Monari, M., Carano, M. & Bard, A. J. (2006). Inorg. Chem. 45, 695-709.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C3H3N4O2)]

  • Mr = 234.96

  • Triclinic, [P \overline 1]

  • a = 5.1584 (10) Å

  • b = 7.7805 (16) Å

  • c = 7.8711 (16) Å

  • α = 109.40 (3)°

  • β = 98.87 (3)°

  • γ = 104.85 (3)°

  • V = 277.92 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.56 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.470, Tmax = 0.522

  • 2722 measured reflections

  • 1267 independent reflections

  • 1150 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.177

  • S = 1.23

  • 1267 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 2.15 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—O1 2.330 (7)
Ag1—O2i 2.282 (7)
Ag1—N3ii 2.494 (9)
Ag1—N4iii 2.442 (8)
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y-1, z-1; (iii) -x+1, -y, -z+1.

Data collection: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, organic ligands with a tetrazole functional group have been greatly used in coordination chemistry for construction of metal-organic frameworks due to their diverse coordination modes and potential applications in varied fields (Stagni et al., 2006; Ye et al., 2006). The reaction of tetrazole-1-acetic acid (Htza) with AgNO3 in an alkaline aqueous solution yielded a new AgI coordination polymer, whose crystal structure is reported here.

In the title complex, the AgI atom is four-coordinated in a slightly distorted tetrahedral coordination geometry by two N atoms and two O atoms from four different tza ligands (Table 1), as illustrated in Fig. 1. The adjacent AgI atoms are co-bridged by tza liands. The tza ligand acts as a tetradentate ligand, bridging two Ag atoms through its carboxylate O atoms, while simultaneously binding to the other two Ag atoms through two N atoms of the tetrazole group, forming a two-dimensional network parallel to (1 0 0).

Related literature top

For the diverse coordination modes and potential applications of metal complexes with tetrazole derivatives, see: Stagni et al. (2006); Ye et al. (2006).

Experimental top

A mixture of AgNO3 (0.073 g, 0.5 mmol) and Htza (0.990 g, 0.5 mmol) in 15 ml of H2O solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 373 K for 4 d. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

H atoms were placed at calculated positions and treated as riding on the parent C atoms, with C—H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 1.40 Å from N4 and the deepest hole 1.12 Å from Ag1.

Structure description top

In recent years, organic ligands with a tetrazole functional group have been greatly used in coordination chemistry for construction of metal-organic frameworks due to their diverse coordination modes and potential applications in varied fields (Stagni et al., 2006; Ye et al., 2006). The reaction of tetrazole-1-acetic acid (Htza) with AgNO3 in an alkaline aqueous solution yielded a new AgI coordination polymer, whose crystal structure is reported here.

In the title complex, the AgI atom is four-coordinated in a slightly distorted tetrahedral coordination geometry by two N atoms and two O atoms from four different tza ligands (Table 1), as illustrated in Fig. 1. The adjacent AgI atoms are co-bridged by tza liands. The tza ligand acts as a tetradentate ligand, bridging two Ag atoms through its carboxylate O atoms, while simultaneously binding to the other two Ag atoms through two N atoms of the tetrazole group, forming a two-dimensional network parallel to (1 0 0).

For the diverse coordination modes and potential applications of metal complexes with tetrazole derivatives, see: Stagni et al. (2006); Ye et al. (2006).

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2002); cell refinement: CrystalStructure (Rigaku/MSC, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with symmetrically related atoms to complete the Ag coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x, -y, -z; (ii) x, -1+y, -1+z; (iii) 1-x, -y, 1-z; (iv) 1-x, 1-y, 1-z; (v) x, y, -1+z.]
[Figure 2] Fig. 2. A view of the layer structure of the title compound.
Poly[(µ4-tetrazole-1-acetato- κ4N3:N4:O:O')silver(I)] top
Crystal data top
[Ag(C3H3N4O2)]Z = 2
Mr = 234.96F(000) = 224
Triclinic, P1Dx = 2.808 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1584 (10) ÅCell parameters from 3600 reflections
b = 7.7805 (16) Åθ = 1.4–28°
c = 7.8711 (16) ŵ = 3.56 mm1
α = 109.40 (3)°T = 293 K
β = 98.87 (3)°Block, blue
γ = 104.85 (3)°0.25 × 0.23 × 0.21 mm
V = 277.92 (14) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1267 independent reflections
Radiation source: fine-focus sealed tube1150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 66
Tmin = 0.470, Tmax = 0.522k = 910
2722 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0519P)2 + 3.2858P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max < 0.001
1267 reflectionsΔρmax = 2.15 e Å3
92 parametersΔρmin = 0.97 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (15)
Crystal data top
[Ag(C3H3N4O2)]γ = 104.85 (3)°
Mr = 234.96V = 277.92 (14) Å3
Triclinic, P1Z = 2
a = 5.1584 (10) ÅMo Kα radiation
b = 7.7805 (16) ŵ = 3.56 mm1
c = 7.8711 (16) ÅT = 293 K
α = 109.40 (3)°0.25 × 0.23 × 0.21 mm
β = 98.87 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
1267 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1150 reflections with I > 2σ(I)
Tmin = 0.470, Tmax = 0.522Rint = 0.056
2722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.23Δρmax = 2.15 e Å3
1267 reflectionsΔρmin = 0.97 e Å3
92 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.61189 (17)0.19436 (12)0.05077 (10)0.0387 (5)
O10.9281 (15)0.0639 (10)0.2082 (10)0.0365 (16)
O20.6195 (14)0.1949 (12)0.3227 (10)0.0360 (16)
N10.9120 (16)0.3243 (11)0.6770 (10)0.0277 (16)
N20.872 (2)0.4946 (12)0.7248 (12)0.0376 (19)
N30.7161 (19)0.4973 (12)0.8396 (12)0.0363 (19)
N40.656 (2)0.3322 (13)0.8697 (12)0.0351 (18)
C10.8444 (18)0.1645 (13)0.3374 (12)0.0265 (17)
C21.0509 (18)0.2615 (13)0.5323 (12)0.0267 (17)
H2A1.13680.17100.55450.032*
H2B1.19640.37190.53730.032*
C30.781 (2)0.2254 (15)0.7646 (14)0.034 (2)
H30.77750.10220.75450.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0430 (6)0.0441 (6)0.0259 (5)0.0145 (4)0.0071 (3)0.0105 (3)
O10.033 (3)0.031 (3)0.034 (4)0.013 (3)0.010 (3)0.003 (3)
O20.028 (3)0.055 (4)0.029 (3)0.020 (3)0.008 (3)0.016 (3)
N10.033 (4)0.030 (4)0.021 (3)0.011 (3)0.008 (3)0.009 (3)
N20.051 (5)0.027 (4)0.033 (4)0.013 (4)0.017 (4)0.008 (3)
N30.045 (5)0.030 (4)0.030 (4)0.010 (4)0.012 (4)0.008 (3)
N40.048 (5)0.034 (4)0.030 (4)0.020 (4)0.017 (4)0.014 (3)
C10.026 (4)0.028 (4)0.025 (4)0.010 (3)0.005 (3)0.009 (3)
C20.023 (4)0.032 (4)0.022 (4)0.010 (3)0.003 (3)0.007 (3)
C30.041 (5)0.033 (5)0.032 (5)0.014 (4)0.013 (4)0.015 (4)
Geometric parameters (Å, º) top
Ag1—O12.330 (7)N1—C21.453 (11)
Ag1—O2i2.282 (7)N2—N31.297 (12)
Ag1—N3ii2.494 (9)N3—N41.350 (12)
Ag1—N4iii2.442 (8)N4—C31.331 (13)
O1—C11.270 (11)C1—C21.540 (12)
O2—C11.238 (11)C2—H2A0.9700
N1—C31.324 (12)C2—H2B0.9700
N1—N21.331 (12)C3—H30.9300
O2i—Ag1—O1129.2 (3)C3—N4—N3105.1 (8)
O2i—Ag1—N4iii118.7 (3)C3—N4—Ag1iii117.8 (6)
O1—Ag1—N4iii95.0 (3)N3—N4—Ag1iii137.0 (6)
O2i—Ag1—N3ii102.2 (3)O2—C1—O1127.3 (9)
O1—Ag1—N3ii118.0 (3)O2—C1—C2117.2 (8)
N4iii—Ag1—N3ii86.0 (3)O1—C1—C2115.5 (8)
C1—O1—Ag1120.6 (6)N1—C2—C1111.1 (7)
C1—O2—Ag1i121.2 (6)N1—C2—H2A109
C3—N1—N2109.2 (8)C1—C2—H2A109
C3—N1—C2128.9 (8)N1—C2—H2B109
N2—N1—C2121.4 (8)C1—C2—H2B109
N3—N2—N1106.3 (8)H2A—C2—H2B108
N2—N3—N4111.0 (8)N1—C3—N4108.4 (9)
N2—N3—Ag1iv112.1 (6)N1—C3—H3126
N4—N3—Ag1iv136.9 (6)N4—C3—H3126
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z1; (iii) x+1, y, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C3H3N4O2)]
Mr234.96
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.1584 (10), 7.7805 (16), 7.8711 (16)
α, β, γ (°)109.40 (3), 98.87 (3), 104.85 (3)
V3)277.92 (14)
Z2
Radiation typeMo Kα
µ (mm1)3.56
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.470, 0.522
No. of measured, independent and
observed [I > 2σ(I)] reflections
2722, 1267, 1150
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.177, 1.23
No. of reflections1267
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.15, 0.97

Computer programs: CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Ag1—O12.330 (7)Ag1—N3ii2.494 (9)
Ag1—O2i2.282 (7)Ag1—N4iii2.442 (8)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStagni, S., Palazzi, A., Zacchini, S., Ballarin, B., Bruno, C., Marcaccio, M., Paolucci, F., Monari, M., Carano, M. & Bard, A. J. (2006). Inorg. Chem. 45, 695–709.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds