organic compounds
N-Benzoyl-N′-phenylurea
aDepartment of Inorganic Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
*Correspondence e-mail: barbara.becker@pg.gda.pl
In the title compound, C14H12N2O2, the molecular conformation is determined by a strong intramolecular N—H⋯O=C hydrogen bond. In the crystal, pairs of molecules are connected by intermolecular N—H⋯O=C hydrogen bonds, forming centrosymmetric dimers. No specific interactions between dimers could be found.
Related literature
For related structures, see: Bart et al. (1989); Zhong et al. (1998); Moon et al. (2002), Yamin & Mardi (2003); Chen et al. (2004); Su (2005); Yan et al. (2007, 2008); Liu et al. (2008, 2008a,b). For graph-set notation, see: Etter (1990). The title compound was obtained as a byproduct during the synthesis of a copper(I) complex with N-benzoyl-N′-phenylthiourea prepared according to Frank & Smith (1948).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810001807/im2175sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810001807/im2175Isup2.hkl
N-benzoyl-N'-phenylurea was obtained as a byproduct during the synthesis of a copper(I) complex with N-Benzoyl-N'-phenylthiourea prepared according to Frank & Smith (1948). Obviously the ligand underwent basic hydrolysis with CH3ONa in acetone. Colourless single crystals suitable for X-ray
were isolated from the reaction mixture after it was kept at room temperature for a few days. From 5.12 g (0.02 mol) of thiourea derivative 0.87 g of N-benzoyl-N'-phenylurea was obtained. Yield: 18%.All hydrogen atoms were found from difference Fourier map and refined without constraints.
N-Benzoyl-N'-phenylurea halogeno derivatives are used as pesticides. For instance 1-(3,5-dichloro-2,4-difluorophenyl)-3-(2,6-difluorobenzoyl)urea was found to act as chitin synthesis inhibitor (Zhong et al.,1998).
N-benzoyl-N'-phenylurea molecules adopt a conformation that allows formation of N—H···O═C intramolecular hydrogen bonds, denoted as R(6) in graph set notation (Etter, 1990). This conformation is commonly noted among all N'-monosubstituted or N'-unsubstituted N-benzoylureas and N-benzoylthioureas (see: related structures). Additional N—H···O═C intermolecular R22(8) hydrogen bonds bind two urea derivative molecules to form a centrosymmetric dimer (Fig. 1), which is also common. Only one known structure does not exhibit such a motif (Moon et al., 2002).
No π-π stacking interactions can be found in this structure (closest ring centroids distance is about 5.60 Å with the dihedral angle between the rings α about 80°).
The dihedral angle N1—C1—N2—C2 describing the twist of two amide subunits of urea derivatives is equal to 3.0 (2)°. This value is in the range known from other studies: from 0.07° (Yan et al., 2007) to 7.45° (Su, 2005).
For related structures, see: Bart et al. (1989); Zhong et al. (1998); Moon et al. (2002), Yamin & Mardi (2003); Chen et al. (2004); Su (2005); Yan et al. (2007, 2008); Liu et al. (2008, 2008a,b). For graph-set notation, see: Etter (1990). The title compound was obtained as a byproduct during the synthesis of a copper(I) complex with N-benzoyl-N'-phenylthiourea prepared according to Frank & Smith (1948).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. Structure of centrosymmetric N-benzoyl-N'-phenylurea dimer. Ellipsoids are drawn at 50% probability level. Symmetry code: (i) –x+1, –y+1, –z. |
C14H12N2O2 | F(000) = 504 |
Mr = 240.26 | Dx = 1.337 Mg m−3 |
Monoclinic, P21/c | Melting point: 482(2) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.5641 (8) Å | Cell parameters from 2481 reflections |
b = 4.6564 (3) Å | θ = 2.5–28.4° |
c = 21.1029 (15) Å | µ = 0.09 mm−1 |
β = 128.716 (4)° | T = 150 K |
V = 1193.31 (15) Å3 | Needle, colourless |
Z = 4 | 0.54 × 0.10 × 0.09 mm |
Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector | 2221 independent reflections |
Radiation source: Mo Kα radiation | 1575 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 8.1883 pixels mm-1 | θmax = 25.5°, θmin = 2.5° |
ω scans | h = −18→9 |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] | k = −3→5 |
Tmin = 0.971, Tmax = 0.993 | l = −21→25 |
4425 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.098 | Only H-atom coordinates refined |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0656P)2] where P = (Fo2 + 2Fc2)/3 |
2221 reflections | (Δ/σ)max < 0.001 |
211 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C14H12N2O2 | V = 1193.31 (15) Å3 |
Mr = 240.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.5641 (8) Å | µ = 0.09 mm−1 |
b = 4.6564 (3) Å | T = 150 K |
c = 21.1029 (15) Å | 0.54 × 0.10 × 0.09 mm |
β = 128.716 (4)° |
Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector | 2221 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] | 1575 reflections with I > 2σ(I) |
Tmin = 0.971, Tmax = 0.993 | Rint = 0.022 |
4425 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.098 | Only H-atom coordinates refined |
S = 0.94 | Δρmax = 0.22 e Å−3 |
2221 reflections | Δρmin = −0.14 e Å−3 |
211 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.58625 (7) | 0.6582 (2) | −0.00745 (6) | 0.0384 (3) | |
O2 | 0.82393 (7) | 0.2951 (2) | 0.21526 (6) | 0.0396 (3) | |
N1 | 0.77093 (9) | 0.6517 (3) | 0.09887 (7) | 0.0295 (3) | |
N2 | 0.64890 (9) | 0.3566 (3) | 0.09771 (7) | 0.0284 (3) | |
C1 | 0.66640 (10) | 0.5660 (3) | 0.05886 (8) | 0.0274 (3) | |
C2 | 0.72519 (10) | 0.2381 (3) | 0.17319 (8) | 0.0282 (3) | |
C11 | 0.81196 (11) | 0.8530 (3) | 0.07373 (9) | 0.0297 (4) | |
C12 | 0.74750 (12) | 0.9966 (3) | −0.00011 (9) | 0.0330 (4) | |
C13 | 0.79673 (13) | 1.1897 (4) | −0.01876 (10) | 0.0393 (4) | |
C14 | 0.90876 (14) | 1.2390 (4) | 0.03479 (11) | 0.0469 (5) | |
C15 | 0.97228 (13) | 1.0949 (4) | 0.10784 (12) | 0.0516 (5) | |
C16 | 0.92476 (12) | 0.9038 (4) | 0.12780 (11) | 0.0411 (4) | |
C21 | 0.68355 (10) | 0.0351 (3) | 0.20329 (8) | 0.0275 (3) | |
C22 | 0.75435 (12) | −0.0253 (3) | 0.28626 (9) | 0.0336 (4) | |
C23 | 0.72257 (13) | −0.2128 (4) | 0.31894 (10) | 0.0389 (4) | |
C24 | 0.61969 (13) | −0.3423 (4) | 0.26921 (10) | 0.0390 (4) | |
C25 | 0.54898 (12) | −0.2851 (3) | 0.18661 (10) | 0.0368 (4) | |
C26 | 0.58046 (11) | −0.0960 (3) | 0.15362 (9) | 0.0316 (4) | |
H1 | 0.8205 (12) | 0.559 (3) | 0.1480 (10) | 0.039 (4)* | |
H13 | 0.7502 (12) | 1.291 (4) | −0.0711 (10) | 0.041 (4)* | |
H12 | 0.6663 (12) | 0.961 (3) | −0.0395 (8) | 0.032 (4)* | |
H2 | 0.5745 (13) | 0.328 (3) | 0.0717 (9) | 0.041 (4)* | |
H23 | 0.7751 (12) | −0.257 (3) | 0.3782 (10) | 0.040 (4)* | |
H26 | 0.5289 (12) | −0.059 (3) | 0.0951 (9) | 0.032 (4)* | |
H22 | 0.8256 (13) | 0.077 (4) | 0.3210 (9) | 0.044 (4)* | |
H25 | 0.4762 (13) | −0.375 (3) | 0.1504 (9) | 0.043 (4)* | |
H24 | 0.5963 (12) | −0.477 (4) | 0.2916 (9) | 0.043 (4)* | |
H14 | 0.9397 (13) | 1.385 (4) | 0.0187 (10) | 0.056 (5)* | |
H15 | 1.0520 (15) | 1.117 (4) | 0.1465 (10) | 0.060 (5)* | |
H16 | 0.9654 (14) | 0.800 (4) | 0.1778 (11) | 0.055 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0223 (5) | 0.0518 (7) | 0.0288 (6) | −0.0014 (4) | 0.0100 (5) | 0.0106 (5) |
O2 | 0.0231 (5) | 0.0527 (7) | 0.0304 (6) | −0.0018 (5) | 0.0107 (5) | 0.0068 (5) |
N1 | 0.0205 (6) | 0.0363 (7) | 0.0235 (6) | −0.0025 (5) | 0.0097 (5) | 0.0026 (6) |
N2 | 0.0199 (6) | 0.0351 (7) | 0.0239 (6) | −0.0017 (5) | 0.0106 (5) | 0.0007 (6) |
C1 | 0.0234 (7) | 0.0333 (8) | 0.0226 (7) | −0.0020 (6) | 0.0130 (6) | −0.0018 (7) |
C2 | 0.0237 (7) | 0.0320 (8) | 0.0243 (7) | 0.0018 (6) | 0.0128 (6) | −0.0015 (7) |
C11 | 0.0275 (7) | 0.0316 (8) | 0.0297 (8) | −0.0041 (6) | 0.0178 (6) | −0.0048 (7) |
C12 | 0.0308 (8) | 0.0373 (9) | 0.0289 (8) | −0.0040 (6) | 0.0178 (7) | −0.0030 (7) |
C13 | 0.0443 (9) | 0.0417 (10) | 0.0360 (9) | −0.0046 (7) | 0.0270 (8) | −0.0006 (8) |
C14 | 0.0473 (10) | 0.0458 (11) | 0.0562 (11) | −0.0118 (8) | 0.0366 (9) | −0.0009 (9) |
C15 | 0.0303 (9) | 0.0560 (12) | 0.0579 (12) | −0.0089 (8) | 0.0223 (9) | 0.0049 (10) |
C16 | 0.0273 (8) | 0.0438 (10) | 0.0413 (10) | −0.0041 (7) | 0.0162 (7) | 0.0051 (9) |
C21 | 0.0279 (7) | 0.0267 (8) | 0.0276 (7) | 0.0058 (6) | 0.0173 (6) | 0.0011 (7) |
C22 | 0.0333 (8) | 0.0339 (9) | 0.0286 (8) | 0.0037 (6) | 0.0169 (7) | 0.0011 (7) |
C23 | 0.0441 (9) | 0.0422 (10) | 0.0296 (8) | 0.0067 (7) | 0.0227 (7) | 0.0047 (8) |
C24 | 0.0471 (9) | 0.0367 (9) | 0.0444 (9) | 0.0052 (7) | 0.0340 (8) | 0.0080 (8) |
C25 | 0.0357 (8) | 0.0356 (9) | 0.0425 (9) | 0.0002 (7) | 0.0261 (8) | 0.0015 (8) |
C26 | 0.0282 (7) | 0.0355 (9) | 0.0286 (8) | 0.0033 (6) | 0.0165 (7) | 0.0026 (7) |
O1—C1 | 1.2308 (16) | C14—H14 | 1.007 (19) |
O2—C2 | 1.2304 (15) | C15—C16 | 1.381 (2) |
N1—C1 | 1.3419 (16) | C15—H15 | 0.975 (18) |
N1—C11 | 1.4114 (18) | C16—H16 | 0.956 (19) |
N1—H1 | 0.926 (16) | C21—C26 | 1.394 (2) |
N2—C2 | 1.3731 (18) | C21—C22 | 1.3950 (19) |
N2—C1 | 1.4058 (18) | C22—C23 | 1.382 (2) |
N2—H2 | 0.930 (15) | C22—H22 | 0.988 (16) |
C2—C21 | 1.494 (2) | C23—C24 | 1.388 (2) |
C11—C12 | 1.388 (2) | C23—H23 | 0.998 (16) |
C11—C16 | 1.3907 (19) | C24—C25 | 1.386 (2) |
C12—C13 | 1.388 (2) | C24—H24 | 0.983 (17) |
C12—H12 | 1.001 (14) | C25—C26 | 1.388 (2) |
C13—C14 | 1.380 (2) | C25—H25 | 0.980 (16) |
C13—H13 | 0.984 (17) | C26—H26 | 0.979 (15) |
C14—C15 | 1.378 (3) | ||
C1—N1—C11 | 128.07 (12) | C14—C15—C16 | 120.59 (15) |
C1—N1—H1 | 113.5 (9) | C14—C15—H15 | 122.2 (10) |
C11—N1—H1 | 118.4 (9) | C16—C15—H15 | 117.2 (11) |
C2—N2—C1 | 127.79 (11) | C15—C16—C11 | 120.10 (16) |
C2—N2—H2 | 118.7 (9) | C15—C16—H16 | 123.5 (10) |
C1—N2—H2 | 112.3 (10) | C11—C16—H16 | 116.4 (10) |
O1—C1—N1 | 125.41 (14) | C26—C21—C22 | 119.31 (14) |
O1—C1—N2 | 118.47 (11) | C26—C21—C2 | 123.99 (13) |
N1—C1—N2 | 116.12 (12) | C22—C21—C2 | 116.69 (13) |
O2—C2—N2 | 122.27 (13) | C23—C22—C21 | 120.37 (14) |
O2—C2—C21 | 120.53 (12) | C23—C22—H22 | 121.3 (9) |
N2—C2—C21 | 117.20 (12) | C21—C22—H22 | 118.3 (9) |
C12—C11—C16 | 119.63 (14) | C22—C23—C24 | 120.06 (15) |
C12—C11—N1 | 124.25 (12) | C22—C23—H23 | 119.3 (9) |
C16—C11—N1 | 116.12 (13) | C24—C23—H23 | 120.7 (9) |
C11—C12—C13 | 119.38 (14) | C25—C24—C23 | 120.03 (15) |
C11—C12—H12 | 120.2 (8) | C25—C24—H24 | 119.1 (9) |
C13—C12—H12 | 120.4 (8) | C23—C24—H24 | 120.9 (9) |
C14—C13—C12 | 120.96 (16) | C24—C25—C26 | 120.07 (15) |
C14—C13—H13 | 120.3 (9) | C24—C25—H25 | 121.3 (9) |
C12—C13—H13 | 118.7 (9) | C26—C25—H25 | 118.6 (9) |
C15—C14—C13 | 119.33 (16) | C25—C26—C21 | 120.16 (14) |
C15—C14—H14 | 123.1 (10) | C25—C26—H26 | 118.5 (9) |
C13—C14—H14 | 117.5 (10) | C21—C26—H26 | 121.4 (9) |
N1—C1—N2—C2 | 3.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.93 (2) | 1.85 (2) | 2.634 (2) | 140 (1) |
N2—H2···O1i | 0.93 (2) | 1.97 (2) | 2.882 (1) | 169 (1) |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H12N2O2 |
Mr | 240.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 15.5641 (8), 4.6564 (3), 21.1029 (15) |
β (°) | 128.716 (4) |
V (Å3) | 1193.31 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.54 × 0.10 × 0.09 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.971, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4425, 2221, 1575 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.098, 0.94 |
No. of reflections | 2221 |
No. of parameters | 211 |
H-atom treatment | Only H-atom coordinates refined |
Δρmax, Δρmin (e Å−3) | 0.22, −0.14 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.93 (2) | 1.85 (2) | 2.634 (2) | 140 (1) |
N2—H2···O1i | 0.93 (2) | 1.97 (2) | 2.882 (1) | 169 (1) |
Symmetry code: (i) −x+1, −y+1, −z. |
References
Bart, J. C. J., Calcaterra, M., Cavigiolo, W. & Massardo, P. (1989). J. Crystallogr. Spectrosc. Res. 19, 99–108. CSD CrossRef CAS Web of Science Google Scholar
Chen, L., Song, H.-B., Wang, Q.-M., Huang, R.-Q., Shang, J. & Mao, C.-H. (2004). Acta Cryst. E60, o1865–o1867. Web of Science CSD CrossRef IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Frank, R. L. & Smith, P. V. (1948). Org. Synth. 28, 89–91. CAS Google Scholar
Liu, Y., Li, F. & Li, Y. (2008). Acta Cryst. E64, o1756. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Y.-H., Li, F.-S., Li, Y., Yu, D.-S. & Lu, C. (2008a). Acta Cryst. E64, o1729. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Y., Li, F., Yin, L. & Yu, D. (2008b). Acta Cryst. E64, o1218. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moon, J. K., Kim, J.-H., Rhee, S., Kim, G., Yun, H., Chung, B.-J., Lee, S. & Lim, Y. (2002). Bull. Korean Chem. Soc. 23, 1545–1547. CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, B.-Q. (2005). Acta Cryst. E61, o3492–o3494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yamin, B. M. & Mardi, A. S. (2003). Acta Cryst. E59, o399–o400. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yan, S.-J., Huang, C., Li, Y.-M., Yan, Y.-Y. & Lin, J. (2008). Acta Cryst. E64, o2102. Web of Science CrossRef IUCr Journals Google Scholar
Yan, S.-J., Yan, Y.-Y., Li, Y.-M., Xie, M.-J. & Lin, J. (2007). Acta Cryst. E63, o2944. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhong, L., Xuhong, Q., Zhixiang, Z., Zongxiang, X. & Jie, S. (1998). J. Chem. Res. pp. 478–479. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-Benzoyl-N'-phenylurea halogeno derivatives are used as pesticides. For instance 1-(3,5-dichloro-2,4-difluorophenyl)-3-(2,6-difluorobenzoyl)urea was found to act as chitin synthesis inhibitor (Zhong et al.,1998).
N-benzoyl-N'-phenylurea molecules adopt a conformation that allows formation of N—H···O═C intramolecular hydrogen bonds, denoted as R(6) in graph set notation (Etter, 1990). This conformation is commonly noted among all N'-monosubstituted or N'-unsubstituted N-benzoylureas and N-benzoylthioureas (see: related structures). Additional N—H···O═C intermolecular R22(8) hydrogen bonds bind two urea derivative molecules to form a centrosymmetric dimer (Fig. 1), which is also common. Only one known structure does not exhibit such a motif (Moon et al., 2002).
No π-π stacking interactions can be found in this structure (closest ring centroids distance is about 5.60 Å with the dihedral angle between the rings α about 80°).
The dihedral angle N1—C1—N2—C2 describing the twist of two amide subunits of urea derivatives is equal to 3.0 (2)°. This value is in the range known from other studies: from 0.07° (Yan et al., 2007) to 7.45° (Su, 2005).