organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-N′-phenyl­urea

aDepartment of Inorganic Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
*Correspondence e-mail: barbara.becker@pg.gda.pl

(Received 8 January 2010; accepted 14 January 2010; online 20 January 2010)

In the title compound, C14H12N2O2, the mol­ecular conformation is determined by a strong intra­molecular N—H⋯O=C hydrogen bond. In the crystal, pairs of mol­ecules are connected by inter­molecular N—H⋯O=C hydrogen bonds, forming centrosymmetric dimers. No specific inter­actions between dimers could be found.

Related literature

For related structures, see: Bart et al. (1989[Bart, J. C. J., Calcaterra, M., Cavigiolo, W. & Massardo, P. (1989). J. Crystallogr. Spectrosc. Res. 19, 99-108.]); Zhong et al. (1998[Zhong, L., Xuhong, Q., Zhixiang, Z., Zongxiang, X. & Jie, S. (1998). J. Chem. Res. pp. 478-479.]); Moon et al. (2002[Moon, J. K., Kim, J.-H., Rhee, S., Kim, G., Yun, H., Chung, B.-J., Lee, S. & Lim, Y. (2002). Bull. Korean Chem. Soc. 23, 1545-1547.]), Yamin & Mardi (2003[Yamin, B. M. & Mardi, A. S. (2003). Acta Cryst. E59, o399-o400.]); Chen et al. (2004[Chen, L., Song, H.-B., Wang, Q.-M., Huang, R.-Q., Shang, J. & Mao, C.-H. (2004). Acta Cryst. E60, o1865-o1867.]); Su (2005[Su, B.-Q. (2005). Acta Cryst. E61, o3492-o3494.]); Yan et al. (2007[Yan, S.-J., Yan, Y.-Y., Li, Y.-M., Xie, M.-J. & Lin, J. (2007). Acta Cryst. E63, o2944.], 2008[Yan, S.-J., Huang, C., Li, Y.-M., Yan, Y.-Y. & Lin, J. (2008). Acta Cryst. E64, o2102.]); Liu et al. (2008[Liu, Y., Li, F. & Li, Y. (2008). Acta Cryst. E64, o1756.], 2008a[Liu, Y.-H., Li, F.-S., Li, Y., Yu, D.-S. & Lu, C. (2008a). Acta Cryst. E64, o1729.],b[Liu, Y., Li, F., Yin, L. & Yu, D. (2008b). Acta Cryst. E64, o1218.]). For graph-set notation, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). The title compound was obtained as a byproduct during the synthesis of a copper(I) complex with N-benzoyl-N′-phenyl­thio­urea prepared according to Frank & Smith (1948[Frank, R. L. & Smith, P. V. (1948). Org. Synth. 28, 89-91.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O2

  • Mr = 240.26

  • Monoclinic, P 21 /c

  • a = 15.5641 (8) Å

  • b = 4.6564 (3) Å

  • c = 21.1029 (15) Å

  • β = 128.716 (4)°

  • V = 1193.31 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.54 × 0.10 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.971, Tmax = 0.993

  • 4425 measured reflections

  • 2221 independent reflections

  • 1575 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 0.94

  • 2221 reflections

  • 211 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.93 (2) 1.85 (2) 2.634 (2) 140 (1)
N2—H2⋯O1i 0.93 (2) 1.97 (2) 2.882 (1) 169 (1)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Benzoyl-N'-phenylurea halogeno derivatives are used as pesticides. For instance 1-(3,5-dichloro-2,4-difluorophenyl)-3-(2,6-difluorobenzoyl)urea was found to act as chitin synthesis inhibitor (Zhong et al.,1998).

N-benzoyl-N'-phenylurea molecules adopt a conformation that allows formation of N—H···OC intramolecular hydrogen bonds, denoted as R(6) in graph set notation (Etter, 1990). This conformation is commonly noted among all N'-monosubstituted or N'-unsubstituted N-benzoylureas and N-benzoylthioureas (see: related structures). Additional N—H···OC intermolecular R22(8) hydrogen bonds bind two urea derivative molecules to form a centrosymmetric dimer (Fig. 1), which is also common. Only one known structure does not exhibit such a motif (Moon et al., 2002).

No π-π stacking interactions can be found in this structure (closest ring centroids distance is about 5.60 Å with the dihedral angle between the rings α about 80°).

The dihedral angle N1—C1—N2—C2 describing the twist of two amide subunits of urea derivatives is equal to 3.0 (2)°. This value is in the range known from other studies: from 0.07° (Yan et al., 2007) to 7.45° (Su, 2005).

Related literature top

For related structures, see: Bart et al. (1989); Zhong et al. (1998); Moon et al. (2002), Yamin & Mardi (2003); Chen et al. (2004); Su (2005); Yan et al. (2007, 2008); Liu et al. (2008, 2008a,b). For graph-set notation, see: Etter (1990). The title compound was obtained as a byproduct during the synthesis of a copper(I) complex with N-benzoyl-N'-phenylthiourea prepared according to Frank & Smith (1948).

Experimental top

N-benzoyl-N'-phenylurea was obtained as a byproduct during the synthesis of a copper(I) complex with N-Benzoyl-N'-phenylthiourea prepared according to Frank & Smith (1948). Obviously the ligand underwent basic hydrolysis with CH3ONa in acetone. Colourless single crystals suitable for X-ray diffraction analysis were isolated from the reaction mixture after it was kept at room temperature for a few days. From 5.12 g (0.02 mol) of thiourea derivative 0.87 g of N-benzoyl-N'-phenylurea was obtained. Yield: 18%.

Refinement top

All hydrogen atoms were found from difference Fourier map and refined without constraints.

Structure description top

N-Benzoyl-N'-phenylurea halogeno derivatives are used as pesticides. For instance 1-(3,5-dichloro-2,4-difluorophenyl)-3-(2,6-difluorobenzoyl)urea was found to act as chitin synthesis inhibitor (Zhong et al.,1998).

N-benzoyl-N'-phenylurea molecules adopt a conformation that allows formation of N—H···OC intramolecular hydrogen bonds, denoted as R(6) in graph set notation (Etter, 1990). This conformation is commonly noted among all N'-monosubstituted or N'-unsubstituted N-benzoylureas and N-benzoylthioureas (see: related structures). Additional N—H···OC intermolecular R22(8) hydrogen bonds bind two urea derivative molecules to form a centrosymmetric dimer (Fig. 1), which is also common. Only one known structure does not exhibit such a motif (Moon et al., 2002).

No π-π stacking interactions can be found in this structure (closest ring centroids distance is about 5.60 Å with the dihedral angle between the rings α about 80°).

The dihedral angle N1—C1—N2—C2 describing the twist of two amide subunits of urea derivatives is equal to 3.0 (2)°. This value is in the range known from other studies: from 0.07° (Yan et al., 2007) to 7.45° (Su, 2005).

For related structures, see: Bart et al. (1989); Zhong et al. (1998); Moon et al. (2002), Yamin & Mardi (2003); Chen et al. (2004); Su (2005); Yan et al. (2007, 2008); Liu et al. (2008, 2008a,b). For graph-set notation, see: Etter (1990). The title compound was obtained as a byproduct during the synthesis of a copper(I) complex with N-benzoyl-N'-phenylthiourea prepared according to Frank & Smith (1948).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Structure of centrosymmetric N-benzoyl-N'-phenylurea dimer. Ellipsoids are drawn at 50% probability level. Symmetry code: (i) –x+1, –y+1, –z.
N-Benzoyl-N'-phenylurea top
Crystal data top
C14H12N2O2F(000) = 504
Mr = 240.26Dx = 1.337 Mg m3
Monoclinic, P21/cMelting point: 482(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.5641 (8) ÅCell parameters from 2481 reflections
b = 4.6564 (3) Åθ = 2.5–28.4°
c = 21.1029 (15) ŵ = 0.09 mm1
β = 128.716 (4)°T = 150 K
V = 1193.31 (15) Å3Needle, colourless
Z = 40.54 × 0.10 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
2221 independent reflections
Radiation source: Mo Kα radiation1575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.1883 pixels mm-1θmax = 25.5°, θmin = 2.5°
ω scansh = 189
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 35
Tmin = 0.971, Tmax = 0.993l = 2125
4425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.098Only H-atom coordinates refined
S = 0.94 w = 1/[σ2(Fo2) + (0.0656P)2]
where P = (Fo2 + 2Fc2)/3
2221 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H12N2O2V = 1193.31 (15) Å3
Mr = 240.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.5641 (8) ŵ = 0.09 mm1
b = 4.6564 (3) ÅT = 150 K
c = 21.1029 (15) Å0.54 × 0.10 × 0.09 mm
β = 128.716 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
2221 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
1575 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.993Rint = 0.022
4425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098Only H-atom coordinates refined
S = 0.94Δρmax = 0.22 e Å3
2221 reflectionsΔρmin = 0.14 e Å3
211 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58625 (7)0.6582 (2)0.00745 (6)0.0384 (3)
O20.82393 (7)0.2951 (2)0.21526 (6)0.0396 (3)
N10.77093 (9)0.6517 (3)0.09887 (7)0.0295 (3)
N20.64890 (9)0.3566 (3)0.09771 (7)0.0284 (3)
C10.66640 (10)0.5660 (3)0.05886 (8)0.0274 (3)
C20.72519 (10)0.2381 (3)0.17319 (8)0.0282 (3)
C110.81196 (11)0.8530 (3)0.07373 (9)0.0297 (4)
C120.74750 (12)0.9966 (3)0.00011 (9)0.0330 (4)
C130.79673 (13)1.1897 (4)0.01876 (10)0.0393 (4)
C140.90876 (14)1.2390 (4)0.03479 (11)0.0469 (5)
C150.97228 (13)1.0949 (4)0.10784 (12)0.0516 (5)
C160.92476 (12)0.9038 (4)0.12780 (11)0.0411 (4)
C210.68355 (10)0.0351 (3)0.20329 (8)0.0275 (3)
C220.75435 (12)0.0253 (3)0.28626 (9)0.0336 (4)
C230.72257 (13)0.2128 (4)0.31894 (10)0.0389 (4)
C240.61969 (13)0.3423 (4)0.26921 (10)0.0390 (4)
C250.54898 (12)0.2851 (3)0.18661 (10)0.0368 (4)
C260.58046 (11)0.0960 (3)0.15362 (9)0.0316 (4)
H10.8205 (12)0.559 (3)0.1480 (10)0.039 (4)*
H130.7502 (12)1.291 (4)0.0711 (10)0.041 (4)*
H120.6663 (12)0.961 (3)0.0395 (8)0.032 (4)*
H20.5745 (13)0.328 (3)0.0717 (9)0.041 (4)*
H230.7751 (12)0.257 (3)0.3782 (10)0.040 (4)*
H260.5289 (12)0.059 (3)0.0951 (9)0.032 (4)*
H220.8256 (13)0.077 (4)0.3210 (9)0.044 (4)*
H250.4762 (13)0.375 (3)0.1504 (9)0.043 (4)*
H240.5963 (12)0.477 (4)0.2916 (9)0.043 (4)*
H140.9397 (13)1.385 (4)0.0187 (10)0.056 (5)*
H151.0520 (15)1.117 (4)0.1465 (10)0.060 (5)*
H160.9654 (14)0.800 (4)0.1778 (11)0.055 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0223 (5)0.0518 (7)0.0288 (6)0.0014 (4)0.0100 (5)0.0106 (5)
O20.0231 (5)0.0527 (7)0.0304 (6)0.0018 (5)0.0107 (5)0.0068 (5)
N10.0205 (6)0.0363 (7)0.0235 (6)0.0025 (5)0.0097 (5)0.0026 (6)
N20.0199 (6)0.0351 (7)0.0239 (6)0.0017 (5)0.0106 (5)0.0007 (6)
C10.0234 (7)0.0333 (8)0.0226 (7)0.0020 (6)0.0130 (6)0.0018 (7)
C20.0237 (7)0.0320 (8)0.0243 (7)0.0018 (6)0.0128 (6)0.0015 (7)
C110.0275 (7)0.0316 (8)0.0297 (8)0.0041 (6)0.0178 (6)0.0048 (7)
C120.0308 (8)0.0373 (9)0.0289 (8)0.0040 (6)0.0178 (7)0.0030 (7)
C130.0443 (9)0.0417 (10)0.0360 (9)0.0046 (7)0.0270 (8)0.0006 (8)
C140.0473 (10)0.0458 (11)0.0562 (11)0.0118 (8)0.0366 (9)0.0009 (9)
C150.0303 (9)0.0560 (12)0.0579 (12)0.0089 (8)0.0223 (9)0.0049 (10)
C160.0273 (8)0.0438 (10)0.0413 (10)0.0041 (7)0.0162 (7)0.0051 (9)
C210.0279 (7)0.0267 (8)0.0276 (7)0.0058 (6)0.0173 (6)0.0011 (7)
C220.0333 (8)0.0339 (9)0.0286 (8)0.0037 (6)0.0169 (7)0.0011 (7)
C230.0441 (9)0.0422 (10)0.0296 (8)0.0067 (7)0.0227 (7)0.0047 (8)
C240.0471 (9)0.0367 (9)0.0444 (9)0.0052 (7)0.0340 (8)0.0080 (8)
C250.0357 (8)0.0356 (9)0.0425 (9)0.0002 (7)0.0261 (8)0.0015 (8)
C260.0282 (7)0.0355 (9)0.0286 (8)0.0033 (6)0.0165 (7)0.0026 (7)
Geometric parameters (Å, º) top
O1—C11.2308 (16)C14—H141.007 (19)
O2—C21.2304 (15)C15—C161.381 (2)
N1—C11.3419 (16)C15—H150.975 (18)
N1—C111.4114 (18)C16—H160.956 (19)
N1—H10.926 (16)C21—C261.394 (2)
N2—C21.3731 (18)C21—C221.3950 (19)
N2—C11.4058 (18)C22—C231.382 (2)
N2—H20.930 (15)C22—H220.988 (16)
C2—C211.494 (2)C23—C241.388 (2)
C11—C121.388 (2)C23—H230.998 (16)
C11—C161.3907 (19)C24—C251.386 (2)
C12—C131.388 (2)C24—H240.983 (17)
C12—H121.001 (14)C25—C261.388 (2)
C13—C141.380 (2)C25—H250.980 (16)
C13—H130.984 (17)C26—H260.979 (15)
C14—C151.378 (3)
C1—N1—C11128.07 (12)C14—C15—C16120.59 (15)
C1—N1—H1113.5 (9)C14—C15—H15122.2 (10)
C11—N1—H1118.4 (9)C16—C15—H15117.2 (11)
C2—N2—C1127.79 (11)C15—C16—C11120.10 (16)
C2—N2—H2118.7 (9)C15—C16—H16123.5 (10)
C1—N2—H2112.3 (10)C11—C16—H16116.4 (10)
O1—C1—N1125.41 (14)C26—C21—C22119.31 (14)
O1—C1—N2118.47 (11)C26—C21—C2123.99 (13)
N1—C1—N2116.12 (12)C22—C21—C2116.69 (13)
O2—C2—N2122.27 (13)C23—C22—C21120.37 (14)
O2—C2—C21120.53 (12)C23—C22—H22121.3 (9)
N2—C2—C21117.20 (12)C21—C22—H22118.3 (9)
C12—C11—C16119.63 (14)C22—C23—C24120.06 (15)
C12—C11—N1124.25 (12)C22—C23—H23119.3 (9)
C16—C11—N1116.12 (13)C24—C23—H23120.7 (9)
C11—C12—C13119.38 (14)C25—C24—C23120.03 (15)
C11—C12—H12120.2 (8)C25—C24—H24119.1 (9)
C13—C12—H12120.4 (8)C23—C24—H24120.9 (9)
C14—C13—C12120.96 (16)C24—C25—C26120.07 (15)
C14—C13—H13120.3 (9)C24—C25—H25121.3 (9)
C12—C13—H13118.7 (9)C26—C25—H25118.6 (9)
C15—C14—C13119.33 (16)C25—C26—C21120.16 (14)
C15—C14—H14123.1 (10)C25—C26—H26118.5 (9)
C13—C14—H14117.5 (10)C21—C26—H26121.4 (9)
N1—C1—N2—C23.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.93 (2)1.85 (2)2.634 (2)140 (1)
N2—H2···O1i0.93 (2)1.97 (2)2.882 (1)169 (1)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)15.5641 (8), 4.6564 (3), 21.1029 (15)
β (°) 128.716 (4)
V3)1193.31 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.54 × 0.10 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009); analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.971, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
4425, 2221, 1575
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 0.94
No. of reflections2221
No. of parameters211
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.22, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.93 (2)1.85 (2)2.634 (2)140 (1)
N2—H2···O1i0.93 (2)1.97 (2)2.882 (1)169 (1)
Symmetry code: (i) x+1, y+1, z.
 

References

First citationBart, J. C. J., Calcaterra, M., Cavigiolo, W. & Massardo, P. (1989). J. Crystallogr. Spectrosc. Res. 19, 99–108.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, L., Song, H.-B., Wang, Q.-M., Huang, R.-Q., Shang, J. & Mao, C.-H. (2004). Acta Cryst. E60, o1865–o1867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrank, R. L. & Smith, P. V. (1948). Org. Synth. 28, 89–91.  CAS Google Scholar
First citationLiu, Y., Li, F. & Li, Y. (2008). Acta Cryst. E64, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-H., Li, F.-S., Li, Y., Yu, D.-S. & Lu, C. (2008a). Acta Cryst. E64, o1729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Li, F., Yin, L. & Yu, D. (2008b). Acta Cryst. E64, o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, J. K., Kim, J.-H., Rhee, S., Kim, G., Yun, H., Chung, B.-J., Lee, S. & Lim, Y. (2002). Bull. Korean Chem. Soc. 23, 1545–1547.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B.-Q. (2005). Acta Cryst. E61, o3492–o3494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M. & Mardi, A. S. (2003). Acta Cryst. E59, o399–o400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, S.-J., Huang, C., Li, Y.-M., Yan, Y.-Y. & Lin, J. (2008). Acta Cryst. E64, o2102.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYan, S.-J., Yan, Y.-Y., Li, Y.-M., Xie, M.-J. & Lin, J. (2007). Acta Cryst. E63, o2944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, L., Xuhong, Q., Zhixiang, Z., Zongxiang, X. & Jie, S. (1998). J. Chem. Res. pp. 478–479.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds