metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[lead(II)-bis­­(μ2-pyridazine-3-carboxyl­ato-κ3N2,O:O)]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 14 January 2010; accepted 18 January 2010; online 23 January 2010)

In the title structure, [Pb(C5H3N2O2)2]n, the PbII ion is six-coordinated by two pyridazine-3-carboxyl­ate ligands via N and O atoms, with the carboxyl­ato O atoms acting as bidentate and bridging adjacent PbII ions, giving rise to catenated mol­ecular ribbons propagating along the a-axis direction. The ribbons are connected by C—H⋯O hydrogen bonds and van der Waals inter­actions.

Related literature

For the structures of 3d-metal and Mg(II) complexes with pyridazine-3-carboxyl­ate and water ligands containing monomeric mol­ecules with an octa­hedral enviroment for the metal ion, see: Ardiwinata et al. (1989[Ardiwinata, E. S., Craig, D. C. & Philips, D. J. (1989). Inorg. Chim. Acta, 166, 233-238.]), Gryz et al. (2003[Gryz, M., Starosta, W., Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505-1511.], 2004[Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481-m1483.], 2006[Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m123-m124.]). Centrosymmetric dimeric mol­ecules, each with a different bridging mode, have been reported in the structure of a calcium(II) complex (Starosta & Leciejewicz, 2007[Starosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662-m1663.]), a uranyl complex (Leciejewicz & Starosta, 2009[Leciejewicz, J. & Starosta, W. (2009). Acta Cryst. E65, m94.]) as well as in the structure of a lead(II) complex with pyridazine-4-carboxyl­ate ligands (Starosta & Leciejewicz, 2009[Starosta, W. & Leciejewicz, J. (2009). Acta Cryst. E65, m1291.]). For the structure of pyridazine-3-carboxylic acid hydro­chloride, see: Gryz et al. (2003[Gryz, M., Starosta, W., Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505-1511.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C5H3N2O2)2]

  • Mr = 453.38

  • Monoclinic, P 21 /n

  • a = 8.0336 (16) Å

  • b = 10.386 (2) Å

  • c = 13.766 (3) Å

  • β = 93.72 (3)°

  • V = 1146.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.74 mm−1

  • T = 293 K

  • 0.33 × 0.09 × 0.08 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.284, Tmax = 0.379

  • 3587 measured reflections

  • 3365 independent reflections

  • 2119 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections every 200 reflections intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.05

  • 3365 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 6.57 e Å−3

  • Δρmin = −4.30 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O21 2.492 (7)
Pb1—O11 2.569 (6)
Pb1—N12 2.645 (7)
Pb1—O21i 2.662 (7)
Pb1—O11ii 2.669 (6)
Pb1—N22 2.672 (6)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O12iii 0.93 2.35 3.182 (12) 149
C14—H14⋯O21iv 0.93 2.76 3.489 (10) 136
C26—H26⋯O22v 0.93 2.42 3.201 (12) 142
C15—H15⋯O11vi 0.93 2.40 3.266 (10) 155
C25—H25⋯O12vii 0.93 2.42 3.328 (12) 165
Symmetry codes: (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x-1, y, z; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) -x, -y+1, -z+2.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the structure of the title compound (I) each PbII ion is coordinated by two symmetry independent ligand molecules via N,O atoms; their O atoms act as bidentate and bridging to adjacent metal ions (Fig. 1) to form molecular ribbons extending in the a direction (Fig.2). The second O atom of each carboxylato group does not participate in coordination. The coordination environment of a PbII ion involving O11,N12, O21, N22 and two bridging carboxylate O11(I) and O21(II) atoms (Table 1) is highly distorted. Both pyridazine rings are planar with r.m.s. of 0.0037 (2)Å and 0.0120((2)Å. The dihedral angle between the rings is 45.2 (1)°. Carboxylato planes make dihedral angles with the respective rings of 9.7 (1)° (C13/O11/O12) and of 8.8 (2)° (C23/O21/22). Bond distances and bond angles within both ligand molecules are in fair agreement with those reported for pyridazine-3-carboxylic acid chloride and other metal complexes with this ligand. The ribbons are held together by weak interactions between ring carbon atoms and carboxylato O atoms belonging to adjacent ribbons (Table 2).

Related literature top

For the structures of 3d-metal and Mg(II) complexes with pyridazine-3-carboxylate and water ligands containing monomeric molecules with an octahedral enviroment for the metal ion, see: Ardiwinata et al. (1989), Gryz et al. (2003, 2004, 2006). Centrosymmetric dimeric molecules, each with a different bridging mode, have been reported in the structure of a calcium(II) complex (Starosta & Leciejewicz, 2007), a uranyl complex Leciejewicz & Starosta (2009) as well as in the structure of a lead(II) complex with pyridazine-4-carboxylate ligands (Starosta & Leciejewicz, 2009). For the structure of pyridazine-3-carboxylic acid hydrochloride, see: Gryz et al. (2003).

Experimental top

2 mmols of pyridazine-3-carboxylic acid dissolved in 50 ml of hot water were boiled under reflux for three hours with small excess of lead hydroxide. After cooling to room temperature the mixture was filtered and left for crystallization. After evaporation to dryness, colourless single crystals were found on the bottom of the reaction vessel. They were separated, washed with cold ethanol and dried in air.

Refinement top

H atoms attached to pyridazine-ring C atoms were positioned geometrically and refined with a riding model using AFIX43 instruction. A maximum peak of 6.566 e Å3 and a deepest hole of -4.302 e Å3(each at 0.80 Å) were found on the final electron density map close to the Pb1 atom.

Structure description top

In the structure of the title compound (I) each PbII ion is coordinated by two symmetry independent ligand molecules via N,O atoms; their O atoms act as bidentate and bridging to adjacent metal ions (Fig. 1) to form molecular ribbons extending in the a direction (Fig.2). The second O atom of each carboxylato group does not participate in coordination. The coordination environment of a PbII ion involving O11,N12, O21, N22 and two bridging carboxylate O11(I) and O21(II) atoms (Table 1) is highly distorted. Both pyridazine rings are planar with r.m.s. of 0.0037 (2)Å and 0.0120((2)Å. The dihedral angle between the rings is 45.2 (1)°. Carboxylato planes make dihedral angles with the respective rings of 9.7 (1)° (C13/O11/O12) and of 8.8 (2)° (C23/O21/22). Bond distances and bond angles within both ligand molecules are in fair agreement with those reported for pyridazine-3-carboxylic acid chloride and other metal complexes with this ligand. The ribbons are held together by weak interactions between ring carbon atoms and carboxylato O atoms belonging to adjacent ribbons (Table 2).

For the structures of 3d-metal and Mg(II) complexes with pyridazine-3-carboxylate and water ligands containing monomeric molecules with an octahedral enviroment for the metal ion, see: Ardiwinata et al. (1989), Gryz et al. (2003, 2004, 2006). Centrosymmetric dimeric molecules, each with a different bridging mode, have been reported in the structure of a calcium(II) complex (Starosta & Leciejewicz, 2007), a uranyl complex Leciejewicz & Starosta (2009) as well as in the structure of a lead(II) complex with pyridazine-4-carboxylate ligands (Starosta & Leciejewicz, 2009). For the structure of pyridazine-3-carboxylic acid hydrochloride, see: Gryz et al. (2003).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of (1) with atom labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The alignement of two ribbons in the structure.
catena-Poly[lead(II)-bis(µ2-pyridazine-3-carboxylato- κ3N2,O:O)] top
Crystal data top
[Pb(C5H3N2O2)2]F(000) = 832
Mr = 453.38Dx = 2.627 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0336 (16) ÅCell parameters from 25 reflections
b = 10.386 (2) Åθ = 6–15°
c = 13.766 (3) ŵ = 14.74 mm1
β = 93.72 (3)°T = 293 K
V = 1146.2 (4) Å3Blocks, colourless
Z = 40.33 × 0.09 × 0.08 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
2119 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 30.1°, θmin = 2.5°
profile data from ω/2θ scansh = 011
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 014
Tmin = 0.284, Tmax = 0.379l = 1919
3587 measured reflections3 standard reflections every 200 reflections
3365 independent reflections intensity decay: 1.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0903P)2]
where P = (Fo2 + 2Fc2)/3
3365 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 6.57 e Å3
0 restraintsΔρmin = 4.30 e Å3
Crystal data top
[Pb(C5H3N2O2)2]V = 1146.2 (4) Å3
Mr = 453.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0336 (16) ŵ = 14.74 mm1
b = 10.386 (2) ÅT = 293 K
c = 13.766 (3) Å0.33 × 0.09 × 0.08 mm
β = 93.72 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
2119 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.040
Tmin = 0.284, Tmax = 0.3793 standard reflections every 200 reflections
3587 measured reflections intensity decay: 1.3%
3365 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 6.57 e Å3
3365 reflectionsΔρmin = 4.30 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.25237 (3)1.03613 (3)1.006155 (19)0.02242 (12)
O110.0180 (7)0.9406 (6)0.8924 (4)0.0250 (12)
N120.3296 (8)0.8553 (6)0.8814 (5)0.0224 (13)
N220.1664 (8)0.8074 (6)1.0764 (5)0.0214 (13)
O210.4781 (8)0.9011 (6)1.0862 (5)0.0301 (13)
N210.0078 (8)0.7670 (7)1.0745 (5)0.0259 (15)
O120.0827 (8)0.7546 (6)0.8339 (6)0.0388 (17)
O220.5838 (9)0.7035 (7)1.1022 (7)0.052 (2)
N110.4876 (9)0.8212 (8)0.8732 (6)0.0291 (16)
C160.5237 (12)0.7161 (9)0.8257 (7)0.033 (2)
H160.63490.69370.82030.039*
C140.2380 (10)0.6694 (8)0.7923 (6)0.0257 (16)
H140.15170.61830.76560.031*
C260.0251 (11)0.6477 (9)1.0961 (7)0.0311 (19)
H260.13580.62141.09590.037*
C170.0322 (10)0.8273 (8)0.8564 (6)0.0207 (15)
C130.2049 (9)0.7810 (7)0.8424 (5)0.0182 (14)
C230.2885 (10)0.7262 (8)1.0976 (6)0.0260 (17)
C150.3974 (11)0.6369 (9)0.7831 (6)0.0316 (19)
H150.42400.56310.74920.038*
C270.4639 (10)0.7783 (8)1.0958 (6)0.0256 (17)
C240.2584 (14)0.5976 (9)1.1172 (9)0.047 (3)
H240.34600.53991.12860.056*
C250.1003 (13)0.5593 (10)1.1192 (9)0.045 (3)
H250.07470.47511.13570.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01425 (17)0.01657 (17)0.03658 (19)0.00057 (14)0.00282 (11)0.00095 (13)
O110.016 (3)0.019 (3)0.041 (3)0.004 (2)0.008 (2)0.000 (2)
N120.013 (3)0.018 (3)0.037 (3)0.001 (3)0.004 (3)0.005 (3)
N220.018 (3)0.014 (3)0.032 (3)0.000 (3)0.005 (2)0.007 (2)
O210.025 (3)0.018 (3)0.048 (3)0.008 (3)0.004 (3)0.004 (3)
N210.006 (3)0.027 (4)0.045 (4)0.005 (3)0.003 (3)0.008 (3)
O120.011 (3)0.027 (3)0.078 (5)0.006 (3)0.004 (3)0.010 (3)
O220.024 (4)0.030 (4)0.101 (6)0.012 (3)0.002 (4)0.001 (4)
N110.017 (4)0.030 (4)0.040 (4)0.004 (3)0.003 (3)0.012 (3)
C160.022 (4)0.028 (5)0.048 (5)0.012 (4)0.001 (4)0.007 (4)
C140.017 (4)0.020 (4)0.040 (4)0.000 (3)0.002 (3)0.007 (3)
C260.019 (4)0.022 (4)0.051 (5)0.009 (4)0.000 (4)0.008 (4)
C170.017 (4)0.016 (4)0.030 (4)0.005 (3)0.002 (3)0.002 (3)
C130.013 (3)0.014 (3)0.027 (3)0.002 (3)0.000 (3)0.001 (3)
C230.017 (4)0.017 (4)0.045 (4)0.004 (3)0.005 (3)0.007 (3)
C150.022 (4)0.033 (5)0.040 (4)0.004 (4)0.009 (3)0.016 (4)
C270.010 (4)0.024 (4)0.044 (4)0.001 (3)0.004 (3)0.002 (3)
C240.031 (5)0.014 (4)0.093 (8)0.005 (4)0.008 (5)0.017 (5)
C250.028 (6)0.017 (5)0.092 (8)0.001 (4)0.010 (5)0.012 (5)
Geometric parameters (Å, º) top
Pb1—O212.492 (7)O22—C271.237 (10)
Pb1—O112.569 (6)N11—C161.315 (12)
Pb1—N122.645 (7)C16—C151.405 (12)
Pb1—O21i2.662 (7)C16—H160.9300
Pb1—O11ii2.669 (6)C14—C151.338 (12)
Pb1—N222.672 (6)C14—C131.384 (11)
O11—C171.285 (10)C14—H140.9300
O11—Pb1ii2.669 (6)C26—C251.385 (13)
N12—N111.330 (10)C26—H260.9300
N12—C131.348 (9)C17—C131.493 (11)
N22—C231.312 (10)C23—C241.386 (12)
N22—N211.340 (9)C23—C271.511 (12)
O21—C271.289 (10)C15—H150.9300
O21—Pb1i2.662 (7)C24—C251.334 (14)
N21—C261.305 (11)C24—H240.9300
O12—C171.217 (10)C25—H250.9300
O21—Pb1—O11122.4 (2)N11—C16—H16119.4
O21—Pb1—N1272.1 (2)C15—C16—H16119.4
O11—Pb1—N1261.55 (19)C15—C14—C13118.4 (8)
O21—Pb1—O21i76.0 (2)C15—C14—H14120.8
O11—Pb1—O21i112.9 (2)C13—C14—H14120.8
N12—Pb1—O21i68.4 (2)N21—C26—C25121.8 (9)
O21—Pb1—O11ii114.4 (2)N21—C26—H26119.1
O11—Pb1—O11ii76.4 (2)C25—C26—H26119.1
N12—Pb1—O11ii129.6 (2)O12—C17—O11125.6 (8)
O21i—Pb1—O11ii160.5 (2)O12—C17—C13117.6 (7)
O21—Pb1—N2262.5 (2)O11—C17—C13116.8 (7)
O11—Pb1—N2271.4 (2)N12—C13—C14121.1 (7)
N12—Pb1—N2271.4 (2)N12—C13—C17115.9 (6)
O21i—Pb1—N22128.9 (2)C14—C13—C17123.0 (7)
O11ii—Pb1—N2269.7 (2)N22—C23—C24121.7 (8)
C17—O11—Pb1120.6 (5)N22—C23—C27116.8 (7)
C17—O11—Pb1ii112.3 (5)C24—C23—C27121.5 (8)
Pb1—O11—Pb1ii103.6 (2)C14—C15—C16118.9 (8)
N11—N12—C13120.1 (7)C14—C15—H15120.6
N11—N12—Pb1120.6 (5)C16—C15—H15120.6
C13—N12—Pb1117.8 (5)O22—C27—O21123.7 (8)
C23—N22—N21119.9 (7)O22—C27—C23119.8 (8)
C23—N22—Pb1116.4 (5)O21—C27—C23116.5 (7)
N21—N22—Pb1122.6 (5)C25—C24—C23118.0 (9)
C27—O21—Pb1122.4 (5)C25—C24—H24121.0
C27—O21—Pb1i111.8 (6)C23—C24—H24121.0
Pb1—O21—Pb1i104.0 (2)C24—C25—C26118.5 (9)
C26—N21—N22120.0 (8)C24—C25—H25120.8
C16—N11—N12120.4 (7)C26—C25—H25120.8
N11—C16—C15121.1 (8)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O12iii0.932.353.182 (12)149
C14—H14···O21iv0.932.763.489 (10)136
C26—H26···O22v0.932.423.201 (12)142
C15—H15···O11vi0.932.403.266 (10)155
C25—H25···O12vii0.932.423.328 (12)165
Symmetry codes: (iii) x+1, y, z; (iv) x1/2, y+3/2, z1/2; (v) x1, y, z; (vi) x+1/2, y1/2, z+3/2; (vii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Pb(C5H3N2O2)2]
Mr453.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.0336 (16), 10.386 (2), 13.766 (3)
β (°) 93.72 (3)
V3)1146.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)14.74
Crystal size (mm)0.33 × 0.09 × 0.08
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.284, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
3587, 3365, 2119
Rint0.040
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.05
No. of reflections3365
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)6.57, 4.30

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pb1—O212.492 (7)Pb1—O21i2.662 (7)
Pb1—O112.569 (6)Pb1—O11ii2.669 (6)
Pb1—N122.645 (7)Pb1—N222.672 (6)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O12iii0.932.353.182 (12)148.5
C14—H14···O21iv0.932.763.489 (10)135.6
C26—H26···O22v0.932.423.201 (12)142.2
C15—H15···O11vi0.932.403.266 (10)155.4
C25—H25···O12vii0.932.423.328 (12)164.8
Symmetry codes: (iii) x+1, y, z; (iv) x1/2, y+3/2, z1/2; (v) x1, y, z; (vi) x+1/2, y1/2, z+3/2; (vii) x, y+1, z+2.
 

References

First citationArdiwinata, E. S., Craig, D. C. & Philips, D. J. (1989). Inorg. Chim. Acta, 166, 233–238.  CAS Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m123–m124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGryz, M., Starosta, W., Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505–1511.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationLeciejewicz, J. & Starosta, W. (2009). Acta Cryst. E65, m94.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662–m1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2009). Acta Cryst. E65, m1291.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds