metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tris­­(μ3-2-oxidopyridinium-3-carboxyl­ato)manganese(II)sodium(I)] monohydrate]

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 21 January 2010; accepted 24 January 2010; online 30 January 2010)

In the crystal structure of the title compound, {[MnNa(C6H4NO3)3]·H2O}n, the MnII cation is located on a threefold rotation axis and is chelated by three 2-oxidopyridinium-3-carboxyl­ate (opc) anions in an octa­hedal coordination. The NaI cation is located on a threefold rotation axis and is surrounded by six O atoms from three opc anions. The opc anions link the Mn and Na cations, forming a three-dimensional polymeric structure. The uncoordinated water mol­ecule, located on a threefold rotation axis, is equally disordered over two sites. The three-dimensional network is consolidated by N—H⋯O hydrogen bonds.

Related literature

For related NiII and CoII complexes, see: Zhang et al. (2009a[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009a). Acta Cryst. E65, m977.],b[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009b). Acta Cryst. E65, m987-m988.]). For comparison C—O bond distances in 2-oxidopyridinium-3-carboxyl­ate and 2-hydroxy­pyridine­carboxyl­ate complexes, see: Yao et al. (2004[Yao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett. 33, 1270-1271.]); Yan & Hu (2007a[Yan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.],b[Yan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.]); Wen & Liu (2007[Wen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem. 26, 1281-1284.]); Quintal et al. (2002[Quintal, S. M. O., Nogueira, H. I. S., Felix, V. & Drew, M. G. B. (2002). Polyhedron, 21, 2783-2791.]). For comparison C—O bond distances in 2-hydroxy­benzoic acid and 2-hydroxy­benzoate complexes, see: Munshi & Guru Row (2006[Munshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612-626.]); Su & Xu (2005[Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256-m258.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]).

[Scheme 1]

Experimental

Crystal data
  • [MnNa(C6H4NO3)3]·H2O

  • Mr = 510.25

  • Trigonal, R 3c

  • a = 10.1478 (18) Å

  • c = 37.420 (13) Å

  • V = 3337.1 (15) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 294 K

  • 0.33 × 0.28 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.822, Tmax = 0.840

  • 6825 measured reflections

  • 1315 independent reflections

  • 1236 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.099

  • S = 1.16

  • 1315 reflections

  • 103 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 649 Friedel pairs

  • Flack parameter: −0.01 (3)

Table 1
Selected bond lengths (Å)

Mn—O2 2.123 (3)
Mn—O3 2.168 (2)
Na1—O1i 2.331 (2)
Na1—O3 2.459 (3)
Symmetry code: (i) [-x+y+{\script{4\over 3}}, y+{\script{2\over 3}}, z+{\script{1\over 6}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1ii 0.90 2.12 2.983 (4) 161
N1—H1N⋯O2ii 0.90 2.37 3.113 (4) 140
Symmetry code: (ii) [x+{\script{1\over 3}}, x-y-{\script{1\over 3}}, z+{\script{1\over 6}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of ongoing investigation on π-π stacking (Li et al., 2005), the title complex has been prepared in the laboratory and its crystal structure is reported here.

In the crystal structure the MnII cation is located in a three-fold ratation axis and is chelated by three 2-oxidopyridinium-3-carboxylate (opc) anions in a distorted anti-triprism geometry (Fig. 1). The NaI cation is located on the same three-fold rotation axis and is surrounded by six O atoms from three opc anions (Table 1). The opc anions link the Mn and Na cations to form the three dimensional polymeric structure.

The shorter C—O bond distance of 1.251 (4) Å is observed between the deprotonated hydroxy group and pyridinium ring. This is similar to those found in the related complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan & Hu, 2007a,b; Wen & Liu, 2007; Zhang et al. 2009a,b), it is also consistent with that found in hydroxy-pyridinecarboxylate complex (Quintal et al. 2002). This finding suggests the electron delocalization between pyridine ring and hydroxy group. But this shorter C—O bond is much different from the C—O bond distance of ca. 1.35 Å between benzene ring and hydroxy-O atom found in hydroxy-benzencarboxylic acid (Munshi & Guru Row, 2006) and in hydroxy-benzenecarboxylate complexes of metals (Su & Xu, 2005; Li et al., 2005).

The lattice water molecule located on the three-fold rotation axis is disordered over two sites with o.5 occupancies for each component. The N—H···O hydrogen bondings are present in the polymeric structure. No π-π stacking is observed in the crystal structure.

Related literature top

For related NiII and CoII complexes, see: Zhang et al. (2009a,b). For comparison C—O bond distances in 2-oxidopyridinium-3-carboxylate and 2-hydroxypyridinecarboxylate complexes, see: Yao et al. (2004); Yan & Hu (2007a,b); Wen & Liu (2007); Quintal et al. (2002). For comparison C—O bond distances in 2-hydroxybenzoic acid and 2-hydroxybenzoate complexes, see: Munshi & Guru Row (2006); Su & Xu (2005); Li et al. (2005).

Experimental top

2-Hydroxy-pyridine-3-carboxylic acid (0.13 g, 1 mmol), NaOH (0.04 g, 1 mmol), imidazole (0.14 g, 2 mmol) and Mn(NO3)2 (0.18 g, 1 mmol) and water (8 ml) and ethanol (2 ml) were sealed in a 25 ml stainless steel reactor with a Teflon liner. The reaction system was heated at 433 K for 9 h. After the mixture was cooled to room temperature the single crystals of the title complex were obtained.

Refinement top

The lattice water molecule is disordered over two sites with 0.5 occupancy for each component, the water H atom was placed in a chemical sensitive position and refined in a riding mode with Uiso(H) = 1.2Ueq(O1W). The H atom bonded to the pyridine N was located in a difference Fourier map and refined as riding in as-found relative position with Uiso(H) = 1.2Ueq(N). Other H atoms were placed in calculated positions with C—H = 0.93 and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

As a part of ongoing investigation on π-π stacking (Li et al., 2005), the title complex has been prepared in the laboratory and its crystal structure is reported here.

In the crystal structure the MnII cation is located in a three-fold ratation axis and is chelated by three 2-oxidopyridinium-3-carboxylate (opc) anions in a distorted anti-triprism geometry (Fig. 1). The NaI cation is located on the same three-fold rotation axis and is surrounded by six O atoms from three opc anions (Table 1). The opc anions link the Mn and Na cations to form the three dimensional polymeric structure.

The shorter C—O bond distance of 1.251 (4) Å is observed between the deprotonated hydroxy group and pyridinium ring. This is similar to those found in the related complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan & Hu, 2007a,b; Wen & Liu, 2007; Zhang et al. 2009a,b), it is also consistent with that found in hydroxy-pyridinecarboxylate complex (Quintal et al. 2002). This finding suggests the electron delocalization between pyridine ring and hydroxy group. But this shorter C—O bond is much different from the C—O bond distance of ca. 1.35 Å between benzene ring and hydroxy-O atom found in hydroxy-benzencarboxylic acid (Munshi & Guru Row, 2006) and in hydroxy-benzenecarboxylate complexes of metals (Su & Xu, 2005; Li et al., 2005).

The lattice water molecule located on the three-fold rotation axis is disordered over two sites with o.5 occupancies for each component. The N—H···O hydrogen bondings are present in the polymeric structure. No π-π stacking is observed in the crystal structure.

For related NiII and CoII complexes, see: Zhang et al. (2009a,b). For comparison C—O bond distances in 2-oxidopyridinium-3-carboxylate and 2-hydroxypyridinecarboxylate complexes, see: Yao et al. (2004); Yan & Hu (2007a,b); Wen & Liu (2007); Quintal et al. (2002). For comparison C—O bond distances in 2-hydroxybenzoic acid and 2-hydroxybenzoate complexes, see: Munshi & Guru Row (2006); Su & Xu (2005); Li et al. (2005).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The coordination environment around a Mn cation and a Na cation with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (i) 1-y, x-y, z; (ii) 1-x+y, 1-x, z].
Poly[[tris(µ3-2-oxidopyridinium-3-carboxylato)manganese(II)sodium(I)] monohydrate] top
Crystal data top
[MnNa(C6H4NO3)3]·H2ODx = 1.523 Mg m3
Mr = 510.25Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 1286 reflections
Hall symbol: R 3 -2"cθ = 2.6–25.0°
a = 10.1478 (18) ŵ = 0.67 mm1
c = 37.420 (13) ÅT = 294 K
V = 3337.1 (15) Å3Prism, brown
Z = 60.33 × 0.28 × 0.26 mm
F(000) = 1554
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1315 independent reflections
Radiation source: fine-focus sealed tube1236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 2.6°
ω scanh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.822, Tmax = 0.840l = 4444
6825 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.0175P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
1315 reflectionsΔρmax = 0.35 e Å3
103 parametersΔρmin = 0.49 e Å3
1 restraintAbsolute structure: Flack (1983), 649 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
[MnNa(C6H4NO3)3]·H2OZ = 6
Mr = 510.25Mo Kα radiation
Trigonal, R3cµ = 0.67 mm1
a = 10.1478 (18) ÅT = 294 K
c = 37.420 (13) Å0.33 × 0.28 × 0.26 mm
V = 3337.1 (15) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1315 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1236 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.840Rint = 0.027
6825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.35 e Å3
S = 1.16Δρmin = 0.49 e Å3
1315 reflectionsAbsolute structure: Flack (1983), 649 Friedel pairs
103 parametersAbsolute structure parameter: 0.01 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.66670.33330.87519 (2)0.0258 (2)
Na10.66670.33330.96375 (5)0.0283 (5)
N10.7336 (3)0.0138 (3)0.93953 (7)0.0401 (6)
H1N0.76550.07500.95890.048*
O10.4925 (3)0.1044 (3)0.82611 (6)0.0464 (6)
O20.5735 (3)0.1281 (3)0.84538 (6)0.0377 (6)
O30.6999 (3)0.1941 (3)0.91404 (6)0.0425 (6)
C10.5566 (3)0.0028 (3)0.84910 (7)0.0292 (6)
C20.6173 (3)0.0412 (3)0.88206 (8)0.0321 (6)
C30.6828 (3)0.0635 (3)0.91133 (8)0.0293 (6)
C40.7283 (6)0.1207 (4)0.94099 (12)0.0596 (12)
H40.76640.14540.96090.072*
C50.6677 (6)0.2210 (4)0.91359 (12)0.0689 (13)
H50.66510.31390.91410.083*
C60.6092 (6)0.1799 (4)0.88440 (12)0.0581 (12)
H60.56310.24940.86590.070*
O1W0.66670.33330.6735 (14)0.26 (3)0.50
H1W0.58950.32880.66010.310*0.6667
O2W0.66670.33330.6459 (14)0.30 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0289 (3)0.0289 (3)0.0195 (4)0.01446 (13)0.0000.000
Na10.0312 (7)0.0312 (7)0.0225 (11)0.0156 (4)0.0000.000
N10.0555 (16)0.0401 (14)0.0283 (13)0.0266 (13)0.0171 (12)0.0075 (10)
O10.0624 (15)0.0393 (12)0.0297 (12)0.0195 (12)0.0221 (12)0.0113 (10)
O20.0536 (14)0.0337 (13)0.0250 (11)0.0213 (9)0.0148 (10)0.0030 (10)
O30.0703 (17)0.0398 (13)0.0283 (12)0.0358 (13)0.0199 (12)0.0107 (11)
C10.0288 (14)0.0302 (16)0.0235 (13)0.0110 (12)0.0031 (12)0.0034 (12)
C20.0360 (14)0.0296 (14)0.0269 (15)0.0135 (13)0.0089 (12)0.0046 (12)
C30.0348 (15)0.0314 (15)0.0238 (13)0.0180 (13)0.0069 (11)0.0005 (11)
C40.094 (3)0.050 (2)0.044 (2)0.043 (2)0.031 (2)0.0023 (17)
C50.113 (4)0.042 (2)0.063 (2)0.047 (3)0.041 (2)0.011 (2)
C60.091 (3)0.0422 (19)0.048 (2)0.038 (2)0.034 (2)0.0189 (17)
O1W0.31 (4)0.31 (4)0.16 (4)0.15 (2)0.0000.000
O2W0.34 (5)0.34 (5)0.23 (6)0.17 (2)0.0000.000
Geometric parameters (Å, º) top
Mn—O22.123 (3)N1—H1N0.9033
Mn—O2i2.123 (3)O1—C11.247 (4)
Mn—O2ii2.123 (3)O2—C11.260 (4)
Mn—O32.168 (2)O3—C31.251 (4)
Mn—O3i2.168 (2)C1—C21.514 (4)
Mn—O3ii2.168 (2)C2—C61.370 (4)
Mn—Na13.314 (2)C2—C31.437 (4)
Na1—O1iii2.331 (2)C4—C51.356 (6)
Na1—O1iv2.331 (3)C4—H40.9300
Na1—O1v2.331 (2)C5—C61.403 (6)
Na1—O32.459 (3)C5—H50.9300
Na1—O3i2.459 (3)C6—H60.9300
Na1—O3ii2.459 (3)O1W—H1W0.9106
N1—C41.339 (5)O2W—H1W0.9294
N1—C31.376 (4)
O2—Mn—O2i94.91 (9)O3—Na1—O3ii69.00 (10)
O2—Mn—O2ii94.91 (9)O3i—Na1—O3ii69.00 (10)
O2i—Mn—O2ii94.91 (9)O1iii—Na1—Mn117.77 (8)
O2—Mn—O381.45 (8)O1iv—Na1—Mn117.77 (8)
O2i—Mn—O3105.70 (10)O1v—Na1—Mn117.77 (8)
O2ii—Mn—O3159.28 (9)O3—Na1—Mn40.85 (6)
O2—Mn—O3i159.28 (9)O3i—Na1—Mn40.85 (6)
O2i—Mn—O3i81.45 (8)O3ii—Na1—Mn40.85 (6)
O2ii—Mn—O3i105.70 (10)C4—N1—C3125.0 (3)
O3—Mn—O3i79.96 (10)C4—N1—H1N119.0
O2—Mn—O3ii105.70 (11)C3—N1—H1N115.8
O2i—Mn—O3ii159.28 (9)C1—O1—Na1vi163.8 (2)
O2ii—Mn—O3ii81.45 (8)C1—O2—Mn137.3 (2)
O3—Mn—O3ii79.96 (10)C3—O3—Mn130.64 (19)
O3i—Mn—O3ii79.96 (10)C3—O3—Na1133.1 (2)
O2—Mn—Na1121.71 (7)Mn—O3—Na191.26 (9)
O2i—Mn—Na1121.71 (7)O1—C1—O2122.4 (3)
O2ii—Mn—Na1121.71 (7)O1—C1—C2117.4 (3)
O3—Mn—Na147.89 (6)O2—C1—C2120.3 (3)
O3i—Mn—Na147.89 (7)C6—C2—C3118.6 (3)
O3ii—Mn—Na147.89 (6)C6—C2—C1119.5 (3)
O1iii—Na1—O1iv100.04 (10)C3—C2—C1121.8 (2)
O1iii—Na1—O1v100.04 (10)O3—C3—N1116.6 (3)
O1iv—Na1—O1v100.04 (10)O3—C3—C2127.8 (3)
O1iii—Na1—O3149.83 (11)N1—C3—C2115.6 (2)
O1iv—Na1—O3109.27 (10)N1—C4—C5120.4 (4)
O1v—Na1—O382.12 (8)N1—C4—H4119.8
O1iii—Na1—O3i82.12 (8)C5—C4—H4119.8
O1iv—Na1—O3i149.83 (11)C4—C5—C6117.8 (3)
O1v—Na1—O3i109.27 (10)C4—C5—H5121.1
O3—Na1—O3i69.00 (10)C6—C5—H5121.1
O1iii—Na1—O3ii109.27 (10)C2—C6—C5122.5 (4)
O1iv—Na1—O3ii82.12 (8)C2—C6—H6118.7
O1v—Na1—O3ii149.83 (11)C5—C6—H6118.7
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) x+y+4/3, y+2/3, z+1/6; (iv) y+1/3, x+2/3, z+1/6; (v) x+1/3, xy1/3, z+1/6; (vi) x+y+2/3, y2/3, z1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1v0.902.122.983 (4)161
N1—H1N···O2v0.902.373.113 (4)140
Symmetry code: (v) x+1/3, xy1/3, z+1/6.

Experimental details

Crystal data
Chemical formula[MnNa(C6H4NO3)3]·H2O
Mr510.25
Crystal system, space groupTrigonal, R3c
Temperature (K)294
a, c (Å)10.1478 (18), 37.420 (13)
V3)3337.1 (15)
Z6
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.33 × 0.28 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.822, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
6825, 1315, 1236
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.099, 1.16
No. of reflections1315
No. of parameters103
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.49
Absolute structureFlack (1983), 649 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Mn—O22.123 (3)Na1—O1i2.331 (2)
Mn—O32.168 (2)Na1—O32.459 (3)
Symmetry code: (i) x+y+4/3, y+2/3, z+1/6.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.902.122.983 (4)161
N1—H1N···O2ii0.902.373.113 (4)140
Symmetry code: (ii) x+1/3, xy1/3, z+1/6.
 

Acknowledgements

The project was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMunshi, P. & Guru Row, T. N. (2006). Acta Cryst. B62, 612–626.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQuintal, S. M. O., Nogueira, H. I. S., Felix, V. & Drew, M. G. B. (2002). Polyhedron, 21, 2783–2791.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256–m258.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWen, D.-C. & Liu, S.-X. (2007). Chin. J. Struct. Chem. 26, 1281–1284.  CAS Google Scholar
First citationYan, H.-Y. & Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, H.-Y. & Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. & Xing, X. (2004). Chem. Lett. 33, 1270–1271.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009a). Acta Cryst. E65, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009b). Acta Cryst. E65, m987–m988.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds