organic compounds
(3,6-Dimethoxy-2-naphthyl)(4-fluorobenzoyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp
In the title compound, C19H15FO3, the dihedral angle between the naphthalene ring system and the benzene ring is 62.93 (5)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 45.55 (6) and 28.62 (7)°, respectively, with the naphthalene ring system and the benzene ring. Weak intermolecular C—H⋯O hydrogen bonds and C—H⋯π interactions stabilize the crystal packing.
Related literature
For general background to the regioselective formation of peri-aroylnaphthalene compounds, see: Okamoto & Yonezawa (2009). For related structures, see: Hijikata et al. (2010); Mitsui et al. (2008); Nakaema et al. (2007, 2008); Watanabe et al. (2010a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810006859/bt5198sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006859/bt5198Isup2.hkl
The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (0.20 mmol) and 4-fluoroobenzoic acid (0.21 mmol) with phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH [1/10 w/w]; 0.44 ml) at 60°C for 24 hours followed by a typical work-up procedure (30% yield; Okamoto & Yonezawa, 2009). Colorless block single crystals suitable for X-ray diffraction were obtained by recrystallization from chloroform.
All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H15FO3 | F(000) = 648 |
Mr = 310.31 | Dx = 1.375 Mg m−3 |
Monoclinic, P21/c | Melting point = 409.7–410.3 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54187 Å |
a = 8.3690 (2) Å | Cell parameters from 20173 reflections |
b = 19.7603 (5) Å | θ = 4.5–68.2° |
c = 9.3897 (2) Å | µ = 0.84 mm−1 |
β = 105.126 (2)° | T = 193 K |
V = 1499.01 (6) Å3 | Block, colorless |
Z = 4 | 0.55 × 0.50 × 0.45 mm |
Rigaku R-AXIS RAPID diffractometer | 2738 independent reflections |
Radiation source: fine-focus sealed tube | 2530 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.2°, θmin = 4.5° |
ω scans | h = −10→9 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −23→23 |
Tmin = 0.657, Tmax = 0.705 | l = −11→11 |
26258 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3826P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2738 reflections | Δρmax = 0.20 e Å−3 |
211 parameters | Δρmin = −0.11 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0068 (5) |
C19H15FO3 | V = 1499.01 (6) Å3 |
Mr = 310.31 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 8.3690 (2) Å | µ = 0.84 mm−1 |
b = 19.7603 (5) Å | T = 193 K |
c = 9.3897 (2) Å | 0.55 × 0.50 × 0.45 mm |
β = 105.126 (2)° |
Rigaku R-AXIS RAPID diffractometer | 2738 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2530 reflections with I > 2σ(I) |
Tmin = 0.657, Tmax = 0.705 | Rint = 0.023 |
26258 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.20 e Å−3 |
2738 reflections | Δρmin = −0.11 e Å−3 |
211 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.23655 (12) | 0.05261 (4) | −0.47975 (8) | 0.0590 (3) | |
O1 | 0.24071 (11) | 0.01533 (5) | 0.18556 (10) | 0.0455 (2) | |
O2 | 0.27326 (11) | 0.19750 (4) | 0.05828 (9) | 0.0398 (2) | |
O3 | 0.94318 (11) | 0.28084 (5) | 0.70653 (10) | 0.0440 (2) | |
C1 | 0.49935 (15) | 0.22971 (6) | 0.26543 (13) | 0.0323 (3) | |
H1 | 0.4904 | 0.2759 | 0.2362 | 0.039* | |
C2 | 0.39672 (14) | 0.18266 (6) | 0.18062 (12) | 0.0320 (3) | |
C3 | 0.41037 (14) | 0.11285 (6) | 0.22130 (12) | 0.0324 (3) | |
C4 | 0.52148 (14) | 0.09433 (6) | 0.35119 (13) | 0.0336 (3) | |
H4 | 0.5262 | 0.0483 | 0.3813 | 0.040* | |
C5 | 0.62836 (14) | 0.14138 (6) | 0.44084 (12) | 0.0318 (3) | |
C6 | 0.74594 (15) | 0.12300 (6) | 0.57403 (13) | 0.0365 (3) | |
H6 | 0.7542 | 0.0771 | 0.6052 | 0.044* | |
C7 | 0.84681 (15) | 0.17022 (6) | 0.65743 (13) | 0.0384 (3) | |
H7 | 0.9247 | 0.1571 | 0.7461 | 0.046* | |
C8 | 0.83613 (14) | 0.23878 (6) | 0.61265 (13) | 0.0349 (3) | |
C9 | 0.72528 (14) | 0.25877 (6) | 0.48456 (13) | 0.0329 (3) | |
H9 | 0.7199 | 0.3049 | 0.4551 | 0.039* | |
C10 | 0.61869 (14) | 0.21041 (6) | 0.39610 (12) | 0.0306 (3) | |
C11 | 0.30651 (14) | 0.05923 (6) | 0.12869 (13) | 0.0342 (3) | |
C12 | 0.29002 (14) | 0.05826 (6) | −0.03341 (13) | 0.0325 (3) | |
C13 | 0.41406 (15) | 0.08347 (6) | −0.09276 (14) | 0.0377 (3) | |
H13 | 0.5108 | 0.1027 | −0.0294 | 0.045* | |
C14 | 0.39778 (17) | 0.08070 (6) | −0.24310 (15) | 0.0428 (3) | |
H14 | 0.4831 | 0.0969 | −0.2839 | 0.051* | |
C15 | 0.25461 (17) | 0.05384 (6) | −0.33183 (13) | 0.0409 (3) | |
C16 | 0.13017 (16) | 0.02778 (7) | −0.27807 (14) | 0.0420 (3) | |
H16 | 0.0334 | 0.0090 | −0.3424 | 0.050* | |
C17 | 0.14990 (15) | 0.02967 (6) | −0.12746 (14) | 0.0382 (3) | |
H17 | 0.0663 | 0.0111 | −0.0874 | 0.046* | |
C18 | 0.23490 (16) | 0.26755 (6) | 0.02792 (14) | 0.0402 (3) | |
H18A | 0.1387 | 0.2715 | −0.0575 | 0.048* | |
H18B | 0.3300 | 0.2904 | 0.0065 | 0.048* | |
H18C | 0.2098 | 0.2887 | 0.1140 | 0.048* | |
C19 | 0.92919 (19) | 0.35155 (7) | 0.67676 (16) | 0.0505 (4) | |
H19A | 1.0101 | 0.3760 | 0.7539 | 0.061* | |
H19B | 0.8173 | 0.3668 | 0.6752 | 0.061* | |
H19C | 0.9506 | 0.3606 | 0.5808 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0822 (6) | 0.0620 (5) | 0.0351 (4) | −0.0059 (4) | 0.0196 (4) | −0.0056 (4) |
O1 | 0.0478 (5) | 0.0476 (5) | 0.0395 (5) | −0.0152 (4) | 0.0088 (4) | 0.0038 (4) |
O2 | 0.0411 (5) | 0.0351 (5) | 0.0353 (4) | 0.0021 (4) | −0.0042 (4) | −0.0002 (3) |
O3 | 0.0421 (5) | 0.0433 (5) | 0.0387 (5) | −0.0027 (4) | −0.0039 (4) | −0.0046 (4) |
C1 | 0.0351 (6) | 0.0297 (6) | 0.0313 (6) | 0.0017 (5) | 0.0071 (5) | 0.0016 (4) |
C2 | 0.0311 (6) | 0.0352 (6) | 0.0284 (5) | 0.0017 (5) | 0.0056 (4) | 0.0004 (5) |
C3 | 0.0319 (6) | 0.0340 (6) | 0.0315 (6) | −0.0009 (5) | 0.0085 (5) | −0.0006 (5) |
C4 | 0.0359 (6) | 0.0310 (6) | 0.0346 (6) | 0.0009 (5) | 0.0104 (5) | 0.0021 (5) |
C5 | 0.0314 (6) | 0.0334 (6) | 0.0310 (6) | 0.0023 (4) | 0.0090 (5) | 0.0009 (4) |
C6 | 0.0382 (6) | 0.0353 (6) | 0.0348 (6) | 0.0044 (5) | 0.0073 (5) | 0.0043 (5) |
C7 | 0.0368 (6) | 0.0433 (7) | 0.0311 (6) | 0.0059 (5) | 0.0015 (5) | 0.0031 (5) |
C8 | 0.0314 (6) | 0.0400 (7) | 0.0319 (6) | 0.0005 (5) | 0.0058 (5) | −0.0045 (5) |
C9 | 0.0335 (6) | 0.0321 (6) | 0.0325 (6) | 0.0012 (5) | 0.0078 (5) | −0.0004 (5) |
C10 | 0.0298 (6) | 0.0333 (6) | 0.0295 (6) | 0.0017 (4) | 0.0092 (4) | −0.0001 (4) |
C11 | 0.0316 (6) | 0.0320 (6) | 0.0383 (6) | −0.0011 (5) | 0.0081 (5) | 0.0018 (5) |
C12 | 0.0336 (6) | 0.0273 (5) | 0.0364 (6) | −0.0008 (4) | 0.0085 (5) | −0.0014 (4) |
C13 | 0.0374 (6) | 0.0334 (6) | 0.0427 (7) | −0.0064 (5) | 0.0111 (5) | −0.0051 (5) |
C14 | 0.0520 (8) | 0.0349 (6) | 0.0479 (7) | −0.0058 (5) | 0.0247 (6) | −0.0038 (5) |
C15 | 0.0562 (8) | 0.0339 (6) | 0.0336 (6) | 0.0034 (5) | 0.0136 (6) | −0.0033 (5) |
C16 | 0.0415 (7) | 0.0423 (7) | 0.0389 (7) | −0.0020 (5) | 0.0048 (5) | −0.0063 (5) |
C17 | 0.0356 (6) | 0.0387 (6) | 0.0403 (6) | −0.0061 (5) | 0.0103 (5) | −0.0026 (5) |
C18 | 0.0400 (7) | 0.0370 (6) | 0.0376 (7) | 0.0032 (5) | −0.0007 (5) | 0.0047 (5) |
C19 | 0.0513 (8) | 0.0409 (7) | 0.0509 (8) | −0.0057 (6) | −0.0018 (6) | −0.0071 (6) |
F1—C15 | 1.3575 (14) | C8—C9 | 1.3715 (16) |
O1—C11 | 1.2224 (15) | C9—C10 | 1.4186 (16) |
O2—C2 | 1.3615 (14) | C9—H9 | 0.9500 |
O2—C18 | 1.4327 (15) | C11—C12 | 1.4922 (16) |
O3—C8 | 1.3632 (14) | C12—C17 | 1.3906 (17) |
O3—C19 | 1.4238 (16) | C12—C13 | 1.3922 (17) |
C1—C2 | 1.3709 (16) | C13—C14 | 1.3835 (18) |
C1—C10 | 1.4174 (16) | C13—H13 | 0.9500 |
C1—H1 | 0.9500 | C14—C15 | 1.3750 (19) |
C2—C3 | 1.4279 (16) | C14—H14 | 0.9500 |
C3—C4 | 1.3763 (16) | C15—C16 | 1.3708 (19) |
C3—C11 | 1.4965 (16) | C16—C17 | 1.3808 (18) |
C4—C5 | 1.4072 (16) | C16—H16 | 0.9500 |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.4219 (16) | C18—H18A | 0.9800 |
C5—C10 | 1.4232 (16) | C18—H18B | 0.9800 |
C6—C7 | 1.3608 (18) | C18—H18C | 0.9800 |
C6—H6 | 0.9500 | C19—H19A | 0.9800 |
C7—C8 | 1.4144 (17) | C19—H19B | 0.9800 |
C7—H7 | 0.9500 | C19—H19C | 0.9800 |
C2—O2—C18 | 117.22 (9) | O1—C11—C3 | 120.54 (11) |
C8—O3—C19 | 117.70 (10) | C12—C11—C3 | 119.14 (10) |
C2—C1—C10 | 120.89 (11) | C17—C12—C13 | 118.98 (11) |
C2—C1—H1 | 119.6 | C17—C12—C11 | 119.42 (10) |
C10—C1—H1 | 119.6 | C13—C12—C11 | 121.57 (11) |
O2—C2—C1 | 124.50 (11) | C14—C13—C12 | 120.60 (12) |
O2—C2—C3 | 115.09 (10) | C14—C13—H13 | 119.7 |
C1—C2—C3 | 120.37 (10) | C12—C13—H13 | 119.7 |
C4—C3—C2 | 118.84 (11) | C15—C14—C13 | 118.15 (12) |
C4—C3—C11 | 118.84 (11) | C15—C14—H14 | 120.9 |
C2—C3—C11 | 122.32 (10) | C13—C14—H14 | 120.9 |
C3—C4—C5 | 122.10 (11) | F1—C15—C16 | 118.53 (12) |
C3—C4—H4 | 118.9 | F1—C15—C14 | 118.26 (12) |
C5—C4—H4 | 118.9 | C16—C15—C14 | 123.20 (12) |
C4—C5—C6 | 122.91 (11) | C15—C16—C17 | 117.88 (12) |
C4—C5—C10 | 118.57 (10) | C15—C16—H16 | 121.1 |
C6—C5—C10 | 118.52 (11) | C17—C16—H16 | 121.1 |
C7—C6—C5 | 120.93 (11) | C16—C17—C12 | 121.13 (11) |
C7—C6—H6 | 119.5 | C16—C17—H17 | 119.4 |
C5—C6—H6 | 119.5 | C12—C17—H17 | 119.4 |
C6—C7—C8 | 120.28 (11) | O2—C18—H18A | 109.5 |
C6—C7—H7 | 119.9 | O2—C18—H18B | 109.5 |
C8—C7—H7 | 119.9 | H18A—C18—H18B | 109.5 |
O3—C8—C9 | 124.86 (11) | O2—C18—H18C | 109.5 |
O3—C8—C7 | 114.32 (10) | H18A—C18—H18C | 109.5 |
C9—C8—C7 | 120.82 (11) | H18B—C18—H18C | 109.5 |
C8—C9—C10 | 119.84 (11) | O3—C19—H19A | 109.5 |
C8—C9—H9 | 120.1 | O3—C19—H19B | 109.5 |
C10—C9—H9 | 120.1 | H19A—C19—H19B | 109.5 |
C1—C10—C9 | 121.26 (11) | O3—C19—H19C | 109.5 |
C1—C10—C5 | 119.10 (10) | H19A—C19—H19C | 109.5 |
C9—C10—C5 | 119.61 (10) | H19B—C19—H19C | 109.5 |
O1—C11—C12 | 120.27 (11) | ||
C18—O2—C2—C1 | −8.47 (17) | C8—C9—C10—C5 | −0.31 (17) |
C18—O2—C2—C3 | 169.07 (10) | C4—C5—C10—C1 | 1.65 (16) |
C10—C1—C2—O2 | 176.29 (10) | C6—C5—C10—C1 | −178.51 (11) |
C10—C1—C2—C3 | −1.12 (18) | C4—C5—C10—C9 | −179.93 (10) |
O2—C2—C3—C4 | −173.95 (10) | C6—C5—C10—C9 | −0.08 (16) |
C1—C2—C3—C4 | 3.70 (17) | C4—C3—C11—O1 | 43.90 (16) |
O2—C2—C3—C11 | 5.21 (16) | C2—C3—C11—O1 | −135.26 (12) |
C1—C2—C3—C11 | −177.14 (11) | C4—C3—C11—C12 | −133.52 (12) |
C2—C3—C4—C5 | −3.63 (17) | C2—C3—C11—C12 | 47.32 (16) |
C11—C3—C4—C5 | 177.18 (10) | O1—C11—C12—C17 | 28.70 (17) |
C3—C4—C5—C6 | −178.86 (11) | C3—C11—C12—C17 | −153.88 (11) |
C3—C4—C5—C10 | 0.98 (17) | O1—C11—C12—C13 | −149.31 (12) |
C4—C5—C6—C7 | −179.94 (11) | C3—C11—C12—C13 | 28.11 (16) |
C10—C5—C6—C7 | 0.22 (18) | C17—C12—C13—C14 | 0.55 (18) |
C5—C6—C7—C8 | 0.02 (19) | C11—C12—C13—C14 | 178.57 (11) |
C19—O3—C8—C9 | 5.92 (18) | C12—C13—C14—C15 | 1.42 (19) |
C19—O3—C8—C7 | −174.07 (11) | C13—C14—C15—F1 | 178.38 (11) |
C6—C7—C8—O3 | 179.56 (11) | C13—C14—C15—C16 | −2.2 (2) |
C6—C7—C8—C9 | −0.42 (18) | F1—C15—C16—C17 | −179.69 (11) |
O3—C8—C9—C10 | −179.42 (10) | C14—C15—C16—C17 | 0.9 (2) |
C7—C8—C9—C10 | 0.56 (17) | C15—C16—C17—C12 | 1.21 (19) |
C2—C1—C10—C9 | −179.95 (10) | C13—C12—C17—C16 | −1.91 (18) |
C2—C1—C10—C5 | −1.55 (17) | C11—C12—C17—C16 | −179.97 (11) |
C8—C9—C10—C1 | 178.08 (11) |
Cg1 is the centroid of the C1–C5/C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18B···Cg1i | 0.98 | 2.85 | 3.7479 (14) | 152 |
C17—H17···O1ii | 0.95 | 2.55 | 3.2930 (16) | 136 |
C18—H18A···O3iii | 0.98 | 2.39 | 3.3603 (16) | 169 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z; (iii) x−1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C19H15FO3 |
Mr | 310.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 8.3690 (2), 19.7603 (5), 9.3897 (2) |
β (°) | 105.126 (2) |
V (Å3) | 1499.01 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.55 × 0.50 × 0.45 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.657, 0.705 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26258, 2738, 2530 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.090, 1.02 |
No. of reflections | 2738 |
No. of parameters | 211 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.11 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Cg1 is the centroid of the C1–C5/C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18B···Cg1i | 0.98 | 2.85 | 3.7479 (14) | 152 |
C17—H17···O1ii | 0.95 | 2.55 | 3.2930 (16) | 136 |
C18—H18A···O3iii | 0.98 | 2.39 | 3.3603 (16) | 169 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z; (iii) x−1, y, z−1. |
Acknowledgements
The authors would express their gratitude to professor Keiichi Noguchi for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o615. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings.
Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a). In addition, the crystal structural analysis of 1-aroyl-2,7-dimethoxynaphthalenes, i. e., methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010) and 1-(4-nitorobenzoyl)-2,7-dimethoxynaphthalene (Watanabe et al. 2010b), also has revealed essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes.
Furthermore, the structure of 3-aroyl-2,7-dimetoxynaphthalenes such as 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema et al., 2008), which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), has been also studied. As a part of our ongoing work on the formation reaction and the structure of the aroylated naphthalene derivatives, the synthesis and crystal structure of (I), a 3-monoaroylnaphthalene bearing fluoro group, is discussed in this report. (I) was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-fluorobenzoic acid.
An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is displayed in Fig. 1. The 4-fluorophenyl group is twisted away from the attached naphthalene ring. The dihedral angle between the best planes of the fluorophenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 62.93 (5)°. The bridging carbonyl plane (O1—C11—C3—C12) makes relatively large dihedral angle of 45.55 (6)° with the naphthalene ring (C1—C10) [C4—C3—C11—O1 torsion angle = 43.90 (17)°], whereas it makes rather small one of 28.62 (7)° with 4-fluorophenyl ring (C12—C17) [O1—C11—C12—C17 torsion angle = 28.69 (18)°].
Molecules are linked by C—H···π interactions (Fig. 2). The methyl group acts as an hydrogen-bond donor and π system of the naphthalene ring [C1—C5/C10 ring (with centroid Cg1)] of an adjacent molecule acts as an accepter (C18—H18B···π).
The crystal packing is additionally stabilized by two types of intermolecular weak C—H···O hydrogen bondings: One is between the aromatic hydrogen (H17) at meta position to the F group, and the carbonyl oxygen (O1) (Fig.3, Table 1). The other is between an hydrogen (H18A) of the 2-methoxy group which is situated adjacent to the fluorophenyl group, and the ethereal oxygen (O3) of the 7-methoxy group in a neighboring molecule .