organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,6-Dimeth­­oxy-2-naphth­yl)(4-fluoro­benzo­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 19 February 2010; accepted 23 February 2010; online 27 February 2010)

In the title compound, C19H15FO3, the dihedral angle between the naphthalene ring system and the benzene ring is 62.93 (5)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 45.55 (6) and 28.62 (7)°, respectively, with the naphthalene ring system and the benzene ring. Weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions stabilize the crystal packing.

Related literature

For general background to the regioselective formation of peri-aroylnaphthalene compounds, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For related structures, see: Hijikata et al. (2010[Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554.]); Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.], 2008[Nakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.]); Watanabe et al. (2010a[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403.],b[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o615.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15FO3

  • Mr = 310.31

  • Monoclinic, P 21 /c

  • a = 8.3690 (2) Å

  • b = 19.7603 (5) Å

  • c = 9.3897 (2) Å

  • β = 105.126 (2)°

  • V = 1499.01 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 193 K

  • 0.55 × 0.50 × 0.45 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.657, Tmax = 0.705

  • 26258 measured reflections

  • 2738 independent reflections

  • 2530 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.02

  • 2738 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18BCg1i 0.98 2.85 3.7479 (14) 152
C17—H17⋯O1ii 0.95 2.55 3.2930 (16) 136
C18—H18A⋯O3iii 0.98 2.39 3.3603 (16) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) x-1, y, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings.

Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010a). In addition, the crystal structural analysis of 1-aroyl-2,7-dimethoxynaphthalenes, i. e., methyl 4-(2,7-dimethoxy-1-naphthoyl)benzoate (Hijikata et al., 2010) and 1-(4-nitorobenzoyl)-2,7-dimethoxynaphthalene (Watanabe et al. 2010b), also has revealed essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes.

Furthermore, the structure of 3-aroyl-2,7-dimetoxynaphthalenes such as 2-(4-chlorobenzoyl)-3,6-dimethoxynaphthalene (Nakaema et al., 2008), which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), has been also studied. As a part of our ongoing work on the formation reaction and the structure of the aroylated naphthalene derivatives, the synthesis and crystal structure of (I), a 3-monoaroylnaphthalene bearing fluoro group, is discussed in this report. (I) was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-fluorobenzoic acid.

An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is displayed in Fig. 1. The 4-fluorophenyl group is twisted away from the attached naphthalene ring. The dihedral angle between the best planes of the fluorophenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 62.93 (5)°. The bridging carbonyl plane (O1—C11—C3—C12) makes relatively large dihedral angle of 45.55 (6)° with the naphthalene ring (C1—C10) [C4—C3—C11—O1 torsion angle = 43.90 (17)°], whereas it makes rather small one of 28.62 (7)° with 4-fluorophenyl ring (C12—C17) [O1—C11—C12—C17 torsion angle = 28.69 (18)°].

Molecules are linked by C—H···π interactions (Fig. 2). The methyl group acts as an hydrogen-bond donor and π system of the naphthalene ring [C1—C5/C10 ring (with centroid Cg1)] of an adjacent molecule acts as an accepter (C18—H18B···π).

The crystal packing is additionally stabilized by two types of intermolecular weak C—H···O hydrogen bondings: One is between the aromatic hydrogen (H17) at meta position to the F group, and the carbonyl oxygen (O1) (Fig.3, Table 1). The other is between an hydrogen (H18A) of the 2-methoxy group which is situated adjacent to the fluorophenyl group, and the ethereal oxygen (O3) of the 7-methoxy group in a neighboring molecule .

Related literature top

For general background to the regioselective formation of peri-aroylnaphthalene compounds, see: Okamoto & Yonezawa (2009). For related structures, see: Hijikata et al. (2010); Mitsui et al. (2008); Nakaema et al. (2007, 2008); Watanabe et al. (2010a,b).

Experimental top

The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (0.20 mmol) and 4-fluoroobenzoic acid (0.21 mmol) with phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH [1/10 w/w]; 0.44 ml) at 60°C for 24 hours followed by a typical work-up procedure (30% yield; Okamoto & Yonezawa, 2009). Colorless block single crystals suitable for X-ray diffraction were obtained by recrystallization from chloroform.

Refinement top

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50 % probability level.
[Figure 2] Fig. 2. C—H···π interactions (green dotted lines).
[Figure 3] Fig. 3. Two types of intermolecular weak C—H···O interactions (blue dotted lines).
(3,6-Dimethoxy-2-naphthyl)(4-fluorobenzoyl)methanone top
Crystal data top
C19H15FO3F(000) = 648
Mr = 310.31Dx = 1.375 Mg m3
Monoclinic, P21/cMelting point = 409.7–410.3 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 8.3690 (2) ÅCell parameters from 20173 reflections
b = 19.7603 (5) Åθ = 4.5–68.2°
c = 9.3897 (2) ŵ = 0.84 mm1
β = 105.126 (2)°T = 193 K
V = 1499.01 (6) Å3Block, colorless
Z = 40.55 × 0.50 × 0.45 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2738 independent reflections
Radiation source: fine-focus sealed tube2530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.5°
ω scansh = 109
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2323
Tmin = 0.657, Tmax = 0.705l = 1111
26258 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3826P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2738 reflectionsΔρmax = 0.20 e Å3
211 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (5)
Crystal data top
C19H15FO3V = 1499.01 (6) Å3
Mr = 310.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.3690 (2) ŵ = 0.84 mm1
b = 19.7603 (5) ÅT = 193 K
c = 9.3897 (2) Å0.55 × 0.50 × 0.45 mm
β = 105.126 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2738 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2530 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.705Rint = 0.023
26258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2738 reflectionsΔρmin = 0.11 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.23655 (12)0.05261 (4)0.47975 (8)0.0590 (3)
O10.24071 (11)0.01533 (5)0.18556 (10)0.0455 (2)
O20.27326 (11)0.19750 (4)0.05828 (9)0.0398 (2)
O30.94318 (11)0.28084 (5)0.70653 (10)0.0440 (2)
C10.49935 (15)0.22971 (6)0.26543 (13)0.0323 (3)
H10.49040.27590.23620.039*
C20.39672 (14)0.18266 (6)0.18062 (12)0.0320 (3)
C30.41037 (14)0.11285 (6)0.22130 (12)0.0324 (3)
C40.52148 (14)0.09433 (6)0.35119 (13)0.0336 (3)
H40.52620.04830.38130.040*
C50.62836 (14)0.14138 (6)0.44084 (12)0.0318 (3)
C60.74594 (15)0.12300 (6)0.57403 (13)0.0365 (3)
H60.75420.07710.60520.044*
C70.84681 (15)0.17022 (6)0.65743 (13)0.0384 (3)
H70.92470.15710.74610.046*
C80.83613 (14)0.23878 (6)0.61265 (13)0.0349 (3)
C90.72528 (14)0.25877 (6)0.48456 (13)0.0329 (3)
H90.71990.30490.45510.039*
C100.61869 (14)0.21041 (6)0.39610 (12)0.0306 (3)
C110.30651 (14)0.05923 (6)0.12869 (13)0.0342 (3)
C120.29002 (14)0.05826 (6)0.03341 (13)0.0325 (3)
C130.41406 (15)0.08347 (6)0.09276 (14)0.0377 (3)
H130.51080.10270.02940.045*
C140.39778 (17)0.08070 (6)0.24310 (15)0.0428 (3)
H140.48310.09690.28390.051*
C150.25461 (17)0.05384 (6)0.33183 (13)0.0409 (3)
C160.13017 (16)0.02778 (7)0.27807 (14)0.0420 (3)
H160.03340.00900.34240.050*
C170.14990 (15)0.02967 (6)0.12746 (14)0.0382 (3)
H170.06630.01110.08740.046*
C180.23490 (16)0.26755 (6)0.02792 (14)0.0402 (3)
H18A0.13870.27150.05750.048*
H18B0.33000.29040.00650.048*
H18C0.20980.28870.11400.048*
C190.92919 (19)0.35155 (7)0.67676 (16)0.0505 (4)
H19A1.01010.37600.75390.061*
H19B0.81730.36680.67520.061*
H19C0.95060.36060.58080.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0822 (6)0.0620 (5)0.0351 (4)0.0059 (4)0.0196 (4)0.0056 (4)
O10.0478 (5)0.0476 (5)0.0395 (5)0.0152 (4)0.0088 (4)0.0038 (4)
O20.0411 (5)0.0351 (5)0.0353 (4)0.0021 (4)0.0042 (4)0.0002 (3)
O30.0421 (5)0.0433 (5)0.0387 (5)0.0027 (4)0.0039 (4)0.0046 (4)
C10.0351 (6)0.0297 (6)0.0313 (6)0.0017 (5)0.0071 (5)0.0016 (4)
C20.0311 (6)0.0352 (6)0.0284 (5)0.0017 (5)0.0056 (4)0.0004 (5)
C30.0319 (6)0.0340 (6)0.0315 (6)0.0009 (5)0.0085 (5)0.0006 (5)
C40.0359 (6)0.0310 (6)0.0346 (6)0.0009 (5)0.0104 (5)0.0021 (5)
C50.0314 (6)0.0334 (6)0.0310 (6)0.0023 (4)0.0090 (5)0.0009 (4)
C60.0382 (6)0.0353 (6)0.0348 (6)0.0044 (5)0.0073 (5)0.0043 (5)
C70.0368 (6)0.0433 (7)0.0311 (6)0.0059 (5)0.0015 (5)0.0031 (5)
C80.0314 (6)0.0400 (7)0.0319 (6)0.0005 (5)0.0058 (5)0.0045 (5)
C90.0335 (6)0.0321 (6)0.0325 (6)0.0012 (5)0.0078 (5)0.0004 (5)
C100.0298 (6)0.0333 (6)0.0295 (6)0.0017 (4)0.0092 (4)0.0001 (4)
C110.0316 (6)0.0320 (6)0.0383 (6)0.0011 (5)0.0081 (5)0.0018 (5)
C120.0336 (6)0.0273 (5)0.0364 (6)0.0008 (4)0.0085 (5)0.0014 (4)
C130.0374 (6)0.0334 (6)0.0427 (7)0.0064 (5)0.0111 (5)0.0051 (5)
C140.0520 (8)0.0349 (6)0.0479 (7)0.0058 (5)0.0247 (6)0.0038 (5)
C150.0562 (8)0.0339 (6)0.0336 (6)0.0034 (5)0.0136 (6)0.0033 (5)
C160.0415 (7)0.0423 (7)0.0389 (7)0.0020 (5)0.0048 (5)0.0063 (5)
C170.0356 (6)0.0387 (6)0.0403 (6)0.0061 (5)0.0103 (5)0.0026 (5)
C180.0400 (7)0.0370 (6)0.0376 (7)0.0032 (5)0.0007 (5)0.0047 (5)
C190.0513 (8)0.0409 (7)0.0509 (8)0.0057 (6)0.0018 (6)0.0071 (6)
Geometric parameters (Å, º) top
F1—C151.3575 (14)C8—C91.3715 (16)
O1—C111.2224 (15)C9—C101.4186 (16)
O2—C21.3615 (14)C9—H90.9500
O2—C181.4327 (15)C11—C121.4922 (16)
O3—C81.3632 (14)C12—C171.3906 (17)
O3—C191.4238 (16)C12—C131.3922 (17)
C1—C21.3709 (16)C13—C141.3835 (18)
C1—C101.4174 (16)C13—H130.9500
C1—H10.9500C14—C151.3750 (19)
C2—C31.4279 (16)C14—H140.9500
C3—C41.3763 (16)C15—C161.3708 (19)
C3—C111.4965 (16)C16—C171.3808 (18)
C4—C51.4072 (16)C16—H160.9500
C4—H40.9500C17—H170.9500
C5—C61.4219 (16)C18—H18A0.9800
C5—C101.4232 (16)C18—H18B0.9800
C6—C71.3608 (18)C18—H18C0.9800
C6—H60.9500C19—H19A0.9800
C7—C81.4144 (17)C19—H19B0.9800
C7—H70.9500C19—H19C0.9800
C2—O2—C18117.22 (9)O1—C11—C3120.54 (11)
C8—O3—C19117.70 (10)C12—C11—C3119.14 (10)
C2—C1—C10120.89 (11)C17—C12—C13118.98 (11)
C2—C1—H1119.6C17—C12—C11119.42 (10)
C10—C1—H1119.6C13—C12—C11121.57 (11)
O2—C2—C1124.50 (11)C14—C13—C12120.60 (12)
O2—C2—C3115.09 (10)C14—C13—H13119.7
C1—C2—C3120.37 (10)C12—C13—H13119.7
C4—C3—C2118.84 (11)C15—C14—C13118.15 (12)
C4—C3—C11118.84 (11)C15—C14—H14120.9
C2—C3—C11122.32 (10)C13—C14—H14120.9
C3—C4—C5122.10 (11)F1—C15—C16118.53 (12)
C3—C4—H4118.9F1—C15—C14118.26 (12)
C5—C4—H4118.9C16—C15—C14123.20 (12)
C4—C5—C6122.91 (11)C15—C16—C17117.88 (12)
C4—C5—C10118.57 (10)C15—C16—H16121.1
C6—C5—C10118.52 (11)C17—C16—H16121.1
C7—C6—C5120.93 (11)C16—C17—C12121.13 (11)
C7—C6—H6119.5C16—C17—H17119.4
C5—C6—H6119.5C12—C17—H17119.4
C6—C7—C8120.28 (11)O2—C18—H18A109.5
C6—C7—H7119.9O2—C18—H18B109.5
C8—C7—H7119.9H18A—C18—H18B109.5
O3—C8—C9124.86 (11)O2—C18—H18C109.5
O3—C8—C7114.32 (10)H18A—C18—H18C109.5
C9—C8—C7120.82 (11)H18B—C18—H18C109.5
C8—C9—C10119.84 (11)O3—C19—H19A109.5
C8—C9—H9120.1O3—C19—H19B109.5
C10—C9—H9120.1H19A—C19—H19B109.5
C1—C10—C9121.26 (11)O3—C19—H19C109.5
C1—C10—C5119.10 (10)H19A—C19—H19C109.5
C9—C10—C5119.61 (10)H19B—C19—H19C109.5
O1—C11—C12120.27 (11)
C18—O2—C2—C18.47 (17)C8—C9—C10—C50.31 (17)
C18—O2—C2—C3169.07 (10)C4—C5—C10—C11.65 (16)
C10—C1—C2—O2176.29 (10)C6—C5—C10—C1178.51 (11)
C10—C1—C2—C31.12 (18)C4—C5—C10—C9179.93 (10)
O2—C2—C3—C4173.95 (10)C6—C5—C10—C90.08 (16)
C1—C2—C3—C43.70 (17)C4—C3—C11—O143.90 (16)
O2—C2—C3—C115.21 (16)C2—C3—C11—O1135.26 (12)
C1—C2—C3—C11177.14 (11)C4—C3—C11—C12133.52 (12)
C2—C3—C4—C53.63 (17)C2—C3—C11—C1247.32 (16)
C11—C3—C4—C5177.18 (10)O1—C11—C12—C1728.70 (17)
C3—C4—C5—C6178.86 (11)C3—C11—C12—C17153.88 (11)
C3—C4—C5—C100.98 (17)O1—C11—C12—C13149.31 (12)
C4—C5—C6—C7179.94 (11)C3—C11—C12—C1328.11 (16)
C10—C5—C6—C70.22 (18)C17—C12—C13—C140.55 (18)
C5—C6—C7—C80.02 (19)C11—C12—C13—C14178.57 (11)
C19—O3—C8—C95.92 (18)C12—C13—C14—C151.42 (19)
C19—O3—C8—C7174.07 (11)C13—C14—C15—F1178.38 (11)
C6—C7—C8—O3179.56 (11)C13—C14—C15—C162.2 (2)
C6—C7—C8—C90.42 (18)F1—C15—C16—C17179.69 (11)
O3—C8—C9—C10179.42 (10)C14—C15—C16—C170.9 (2)
C7—C8—C9—C100.56 (17)C15—C16—C17—C121.21 (19)
C2—C1—C10—C9179.95 (10)C13—C12—C17—C161.91 (18)
C2—C1—C10—C51.55 (17)C11—C12—C17—C16179.97 (11)
C8—C9—C10—C1178.08 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5/C10 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cg1i0.982.853.7479 (14)152
C17—H17···O1ii0.952.553.2930 (16)136
C18—H18A···O3iii0.982.393.3603 (16)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC19H15FO3
Mr310.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.3690 (2), 19.7603 (5), 9.3897 (2)
β (°) 105.126 (2)
V3)1499.01 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.55 × 0.50 × 0.45
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.657, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
26258, 2738, 2530
Rint0.023
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.02
No. of reflections2738
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.11

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5/C10 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cg1i0.982.853.7479 (14)152
C17—H17···O1ii0.952.553.2930 (16)136
C18—H18A···O3iii0.982.393.3603 (16)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z; (iii) x1, y, z1.
 

Acknowledgements

The authors would express their gratitude to professor Keiichi Noguchi for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Imaizumi, M., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds