organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-Benzyl­­idene-4H-1,2,4-triazol-4-amine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 29 December 2009; accepted 1 February 2010; online 6 February 2010)

The title compound, C9H8N4, crystallizes with three independent mol­ecules (A, B and C) per asymmetric unit. The independent mol­ecules differ slightly in their conformations, the dihedral angles between the triazole and phenyl rings in mol­ecules A, B and C being 4.8 (2), 9.7 (2) and 7.2 (2)°, respectively. In the crystal, the independent mol­ecules are linked into a trimer by C—H⋯N hydrogen bonds.

Related literature

For the biological activity of triazole derivatives, see: Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Foroumadi et al. (2003[Foroumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851-854.]); He et al. (2006[He, X., Lu, C. Z., Wu, C. D. & Chen, L. J. (2006). Eur. J. Inorg. Chem. pp. 2491-2503.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou- Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253-257.]); Manfredini et al. (2000[Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343-2346.]). For C—N and C=N bond-length data, see: Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]); Xiang et al. (2004[Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. & Hu, M.-L. (2004). Acta Cryst. E60, o2249-o2251.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N4

  • Mr = 172.19

  • Monoclinic, C 2

  • a = 33.0059 (11) Å

  • b = 4.0639 (1) Å

  • c = 20.6535 (7) Å

  • β = 111.067 (2)°

  • V = 2585.14 (14) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.990

  • 14802 measured reflections

  • 3418 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.133

  • S = 0.99

  • 3418 reflections

  • 352 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3C—H3C⋯N1B 0.93 2.54 3.414 (4) 157
C7C—H7C⋯N1B 0.93 2.49 3.405 (3) 167
C3A—H3A⋯N2Ci 0.93 2.47 3.387 (4) 169
C7A—H7A⋯N2Ci 0.93 2.58 3.503 (3) 174
C5B—H5B⋯N2Aii 0.93 2.47 3.371 (4) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,4-Triazole is a basic aromatic ring and possesses good coordination ability due to the presence of nitrogen atoms. The 1,2,4-triazole derivatives are used to build polymetallic complexes (He et al., 2006). Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties (Foroumadi et al., 2003). Some triazole Schiff bases also exhibit antiproliferative and anticancer activities (Manfredini et al., 2000). Due to their significant biological applications, triazoles have gained much attention in bioinorganic and metal-based drug discovery (Demirbas et al., 2002; Kritsanida et al., 2002).

There are three crystallographically independent molecules (A, B and C) in the asymmetric unit (Fig. 1). The 1,2,4-triazole ring (N1/N2/C3/N4/C5) is planar and attached to the phenyl ring (C8-C13) through the CN bond. The dihedral angles between triazole and phenyl rings are 4.8 (2)°, 9.7 (2)° and 7.2 (2)° for molecules A, B and C, respectively. The C—N bond lengths in the triazole ring of all molecules lie in the range of 1.260 (3)–1.349 (4) Å. These are longer than a typical double CN bond [1.269 (2) Å] (Xiang et al., 2004), but shorter than a C—N single bond [1.443 (4) Å] (Jin et al., 2004), indicating the possibility of electron delocalization.

The crystal packing (Fig 2) shows that the indepentent molecules exist as C—H···N hydrogen-bonded trimers.

Related literature top

For the biological activity of triazole derivatives, see: Demirbas et al. (2002); Foroumadi et al. (2003); He et al. (2006); Kritsanida et al. (2002); Manfredini et al. (2000). For C—N and CN bond-length data, see: Jin et al. (2004); Xiang et al. (2004). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

A mixture of benzaldehyde (10 mmol) and 4-amino-4H-1,2,4-triazole (10 mmol) in ethanol was refluxed on a steam-bath for 30 min. The colour of the solution changed to reddish-orange and was kept under ice-cold conditions to obtain a white solid product. Single crystals were formed in the mother liquor after five days.

Refinement top

H atoms were positioned geometrically (C-H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the formation of hydrogen-bonded (dashed lines) trimers.
(E)-N-Benzylidene-4H-1,2,4-triazol-4-amine top
Crystal data top
C9H8N4F(000) = 1080
Mr = 172.19Dx = 1.327 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 14802 reflections
a = 33.0059 (11) Åθ = 2.1–27.6°
b = 4.0639 (1) ŵ = 0.09 mm1
c = 20.6535 (7) ÅT = 293 K
β = 111.067 (2)°Block, colourless
V = 2585.14 (14) Å30.20 × 0.15 × 0.12 mm
Z = 12
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3418 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 4242
Tmin = 0.983, Tmax = 0.990k = 45
14802 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0936P)2]
where P = (Fo2 + 2Fc2)/3
3418 reflections(Δ/σ)max = 0.005
352 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C9H8N4V = 2585.14 (14) Å3
Mr = 172.19Z = 12
Monoclinic, C2Mo Kα radiation
a = 33.0059 (11) ŵ = 0.09 mm1
b = 4.0639 (1) ÅT = 293 K
c = 20.6535 (7) Å0.20 × 0.15 × 0.12 mm
β = 111.067 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3418 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2582 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.990Rint = 0.032
14802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.133H-atom parameters constrained
S = 0.99Δρmax = 0.13 e Å3
3418 reflectionsΔρmin = 0.16 e Å3
352 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A1.09649 (8)0.8835 (8)0.61511 (13)0.0763 (7)
N2A1.10029 (7)0.8972 (8)0.68405 (12)0.0759 (7)
C3A1.06740 (8)0.7385 (9)0.68915 (13)0.0669 (8)
H3A1.06220.71060.73020.080*
N4A1.04188 (6)0.6199 (6)0.62682 (10)0.0531 (5)
C5A1.06160 (9)0.7183 (9)0.58349 (14)0.0683 (8)
H5A1.05130.67260.53620.082*
N6A1.00305 (6)0.4455 (6)0.60450 (10)0.0534 (5)
C7A0.98725 (7)0.3748 (7)0.64995 (11)0.0499 (5)
H7A1.00220.43440.69590.060*
C8A0.94615 (7)0.2018 (6)0.63197 (11)0.0480 (5)
C9A0.92932 (8)0.1395 (8)0.68311 (12)0.0566 (6)
H9A0.94480.20180.72870.068*
C10A0.88964 (9)0.0149 (8)0.66666 (14)0.0678 (8)
H10A0.87820.05230.70110.081*
C11A0.86711 (8)0.1130 (8)0.60023 (14)0.0643 (7)
H11A0.84040.21690.58950.077*
C12A0.88395 (8)0.0582 (8)0.54891 (13)0.0601 (6)
H12A0.86890.12930.50380.072*
C13A0.92287 (8)0.1007 (7)0.56441 (12)0.0533 (6)
H13A0.93380.14150.52950.064*
N1B0.65846 (7)0.6473 (9)0.90074 (12)0.0818 (9)
N2B0.69659 (7)0.7618 (10)0.94996 (11)0.0836 (9)
C3B0.71899 (8)0.8843 (11)0.91654 (12)0.0724 (9)
H3B0.74610.98090.93740.087*
N4B0.69836 (6)0.8560 (7)0.84744 (9)0.0559 (6)
C5B0.66061 (8)0.7056 (10)0.84063 (13)0.0710 (9)
H5B0.63910.65150.79850.085*
N6B0.71639 (6)0.9630 (7)0.79949 (9)0.0548 (5)
C7B0.69559 (7)0.8917 (7)0.73663 (11)0.0500 (6)
H7B0.66910.78350.72440.060*
C8B0.71297 (7)0.9785 (7)0.68307 (11)0.0474 (5)
C9B0.75212 (8)1.1431 (8)0.69885 (13)0.0561 (6)
H9B0.76731.21180.74410.067*
C10B0.76865 (8)1.2052 (8)0.64756 (14)0.0630 (7)
H10B0.79511.31280.65830.076*
C11B0.74595 (9)1.1078 (8)0.58065 (13)0.0636 (7)
H11B0.75701.15160.54600.076*
C12B0.70704 (8)0.9466 (8)0.56432 (12)0.0601 (7)
H12B0.69190.88080.51890.072*
C13B0.69040 (7)0.8821 (7)0.61552 (11)0.0535 (6)
H13B0.66400.77370.60450.064*
N1C0.49788 (8)0.0614 (8)0.83722 (13)0.0784 (7)
N2C0.53653 (9)0.0797 (9)0.82568 (12)0.0807 (8)
C3C0.56350 (9)0.2426 (10)0.87673 (13)0.0710 (8)
H3C0.59200.29020.88170.085*
N4C0.54458 (6)0.3340 (6)0.92178 (10)0.0537 (5)
C5C0.50405 (9)0.2134 (9)0.89449 (15)0.0684 (8)
H5C0.48310.23700.91450.082*
N6C0.55923 (6)0.5052 (6)0.98418 (10)0.0539 (5)
C7C0.59724 (7)0.6207 (7)1.00274 (11)0.0515 (6)
H7C0.61340.58970.97450.062*
C8C0.61623 (7)0.8013 (6)1.06753 (11)0.0470 (5)
C9C0.65723 (7)0.9332 (8)1.08465 (12)0.0563 (6)
H9C0.67220.90771.05450.068*
C10C0.67619 (8)1.1023 (8)1.14589 (13)0.0597 (6)
H10C0.70381.19121.15700.072*
C11C0.65420 (8)1.1391 (8)1.19040 (13)0.0610 (7)
H11C0.66711.25171.23200.073*
C12C0.61298 (8)1.0098 (8)1.17387 (13)0.0600 (7)
H12C0.59811.03671.20410.072*
C13C0.59415 (7)0.8429 (7)1.11312 (12)0.0539 (6)
H13C0.56640.75631.10210.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0707 (14)0.0899 (19)0.0753 (15)0.0164 (15)0.0347 (12)0.0053 (15)
N2A0.0619 (13)0.095 (2)0.0652 (13)0.0217 (15)0.0155 (11)0.0066 (14)
C3A0.0572 (14)0.087 (2)0.0529 (13)0.0134 (16)0.0155 (11)0.0027 (15)
N4A0.0480 (10)0.0627 (13)0.0492 (10)0.0038 (10)0.0182 (8)0.0027 (10)
C5A0.0688 (16)0.082 (2)0.0625 (14)0.0130 (17)0.0333 (13)0.0075 (15)
N6A0.0476 (10)0.0621 (13)0.0494 (10)0.0056 (10)0.0161 (8)0.0055 (10)
C7A0.0499 (12)0.0533 (14)0.0449 (11)0.0011 (11)0.0152 (9)0.0030 (11)
C8A0.0477 (12)0.0482 (13)0.0464 (11)0.0034 (11)0.0150 (9)0.0016 (10)
C9A0.0611 (14)0.0658 (17)0.0431 (11)0.0012 (13)0.0191 (11)0.0038 (12)
C10A0.0656 (15)0.078 (2)0.0652 (15)0.0065 (16)0.0305 (13)0.0109 (16)
C11A0.0503 (13)0.0653 (17)0.0736 (16)0.0079 (14)0.0177 (12)0.0058 (15)
C12A0.0560 (14)0.0621 (16)0.0549 (13)0.0034 (13)0.0109 (11)0.0022 (13)
C13A0.0560 (13)0.0593 (15)0.0451 (11)0.0007 (12)0.0190 (10)0.0021 (11)
N1B0.0627 (13)0.129 (3)0.0611 (13)0.0159 (17)0.0309 (11)0.0037 (16)
N2B0.0653 (14)0.138 (3)0.0515 (11)0.0044 (17)0.0259 (11)0.0004 (16)
C3B0.0552 (14)0.117 (3)0.0464 (12)0.0110 (18)0.0202 (11)0.0078 (16)
N4B0.0439 (10)0.0822 (16)0.0428 (9)0.0034 (11)0.0171 (8)0.0026 (11)
C5B0.0501 (13)0.112 (3)0.0515 (13)0.0165 (17)0.0192 (11)0.0008 (16)
N6B0.0440 (10)0.0778 (16)0.0455 (10)0.0073 (11)0.0195 (8)0.0016 (10)
C7B0.0395 (10)0.0629 (15)0.0464 (11)0.0009 (11)0.0141 (9)0.0009 (11)
C8B0.0421 (11)0.0538 (14)0.0459 (11)0.0053 (10)0.0153 (9)0.0042 (11)
C9B0.0500 (12)0.0650 (17)0.0522 (12)0.0025 (12)0.0171 (10)0.0005 (12)
C10B0.0571 (14)0.0670 (17)0.0684 (15)0.0072 (14)0.0267 (12)0.0075 (14)
C11B0.0725 (16)0.0701 (18)0.0584 (14)0.0083 (15)0.0359 (13)0.0132 (14)
C12B0.0618 (14)0.0728 (18)0.0436 (11)0.0079 (15)0.0163 (10)0.0030 (13)
C13B0.0472 (12)0.0651 (16)0.0459 (11)0.0025 (12)0.0138 (9)0.0010 (12)
N1C0.0705 (15)0.0883 (19)0.0681 (14)0.0135 (14)0.0149 (12)0.0114 (15)
N2C0.0887 (17)0.096 (2)0.0575 (12)0.0238 (17)0.0267 (12)0.0143 (15)
C3C0.0706 (16)0.093 (2)0.0567 (14)0.0223 (17)0.0310 (13)0.0140 (16)
N4C0.0526 (11)0.0584 (13)0.0481 (10)0.0033 (10)0.0159 (8)0.0010 (10)
C5C0.0530 (14)0.077 (2)0.0696 (16)0.0061 (15)0.0148 (13)0.0102 (16)
N6C0.0498 (10)0.0622 (14)0.0493 (10)0.0010 (10)0.0173 (8)0.0001 (10)
C7C0.0500 (12)0.0584 (15)0.0483 (11)0.0014 (12)0.0203 (10)0.0027 (12)
C8C0.0430 (11)0.0496 (13)0.0475 (11)0.0048 (10)0.0152 (9)0.0060 (10)
C9C0.0470 (12)0.0671 (16)0.0562 (12)0.0006 (13)0.0201 (10)0.0000 (13)
C10C0.0447 (12)0.0682 (17)0.0610 (14)0.0027 (13)0.0128 (11)0.0013 (14)
C11C0.0598 (14)0.0662 (18)0.0509 (12)0.0048 (14)0.0123 (11)0.0057 (13)
C12C0.0619 (14)0.0639 (17)0.0604 (14)0.0010 (13)0.0296 (12)0.0061 (13)
C13C0.0467 (12)0.0607 (16)0.0565 (13)0.0009 (12)0.0213 (10)0.0012 (12)
Geometric parameters (Å, º) top
N1A—C5A1.290 (4)C8B—C13B1.381 (3)
N1A—N2A1.385 (3)C8B—C9B1.386 (3)
N2A—C3A1.299 (4)C9B—C10B1.378 (3)
C3A—N4A1.349 (3)C9B—H9B0.93
C3A—H3A0.93C10B—C11B1.372 (4)
N4A—C5A1.343 (3)C10B—H10B0.93
N4A—N6A1.390 (3)C11B—C12B1.371 (4)
C5A—H5A0.93C11B—H11B0.93
N6A—C7A1.260 (3)C12B—C13B1.380 (3)
C7A—C8A1.452 (3)C12B—H12B0.93
C7A—H7A0.93C13B—H13B0.93
C8A—C9A1.382 (3)N1C—C5C1.284 (4)
C8A—C13A1.391 (3)N1C—N2C1.381 (3)
C9A—C10A1.380 (4)N2C—C3C1.292 (4)
C9A—H9A0.93C3C—N4C1.346 (3)
C10A—C11A1.364 (4)C3C—H3C0.93
C10A—H10A0.93N4C—C5C1.344 (3)
C11A—C12A1.380 (4)N4C—N6C1.389 (3)
C11A—H11A0.93C5C—H5C0.93
C12A—C13A1.369 (4)N6C—C7C1.263 (3)
C12A—H12A0.93C7C—C8C1.456 (3)
C13A—H13A0.93C7C—H7C0.93
N1B—C5B1.291 (3)C8C—C9C1.379 (3)
N1B—N2B1.384 (4)C8C—C13C1.393 (3)
N2B—C3B1.280 (4)C9C—C10C1.376 (4)
C3B—N4B1.347 (3)C9C—H9C0.93
C3B—H3B0.93C10C—C11C1.369 (3)
N4B—C5B1.349 (3)C10C—H10C0.93
N4B—N6B1.396 (2)C11C—C12C1.382 (4)
C5B—H5B0.93C11C—H11C0.93
N6B—C7B1.265 (3)C12C—C13C1.364 (4)
C7B—C8B1.461 (3)C12C—H12C0.93
C7B—H7B0.93C13C—H13C0.93
C5A—N1A—N2A106.0 (2)C9B—C8B—C7B121.7 (2)
C3A—N2A—N1A107.1 (2)C10B—C9B—C8B120.1 (2)
N2A—C3A—N4A110.7 (2)C10B—C9B—H9B120.0
N2A—C3A—H3A124.7C8B—C9B—H9B120.0
N4A—C3A—H3A124.7C11B—C10B—C9B119.8 (2)
C5A—N4A—C3A104.1 (2)C11B—C10B—H10B120.1
C5A—N4A—N6A122.7 (2)C9B—C10B—H10B120.1
C3A—N4A—N6A133.1 (2)C12B—C11B—C10B120.6 (2)
N1A—C5A—N4A112.1 (2)C12B—C11B—H11B119.7
N1A—C5A—H5A124.0C10B—C11B—H11B119.7
N4A—C5A—H5A124.0C11B—C12B—C13B119.8 (2)
C7A—N6A—N4A116.64 (18)C11B—C12B—H12B120.1
N6A—C7A—C8A121.2 (2)C13B—C12B—H12B120.1
N6A—C7A—H7A119.4C8B—C13B—C12B120.1 (2)
C8A—C7A—H7A119.4C8B—C13B—H13B120.0
C9A—C8A—C13A118.9 (2)C12B—C13B—H13B120.0
C9A—C8A—C7A119.2 (2)C5C—N1C—N2C106.4 (2)
C13A—C8A—C7A121.9 (2)C3C—N2C—N1C107.2 (2)
C10A—C9A—C8A120.1 (2)N2C—C3C—N4C110.5 (2)
C10A—C9A—H9A119.9N2C—C3C—H3C124.7
C8A—C9A—H9A119.9N4C—C3C—H3C124.7
C11A—C10A—C9A120.4 (2)C5C—N4C—C3C104.4 (2)
C11A—C10A—H10A119.8C5C—N4C—N6C122.2 (2)
C9A—C10A—H10A119.8C3C—N4C—N6C133.3 (2)
C10A—C11A—C12A120.0 (2)N1C—C5C—N4C111.5 (2)
C10A—C11A—H11A120.0N1C—C5C—H5C124.3
C12A—C11A—H11A120.0N4C—C5C—H5C124.3
C13A—C12A—C11A120.0 (2)C7C—N6C—N4C116.35 (18)
C13A—C12A—H12A120.0N6C—C7C—C8C121.2 (2)
C11A—C12A—H12A120.0N6C—C7C—H7C119.4
C12A—C13A—C8A120.5 (2)C8C—C7C—H7C119.4
C12A—C13A—H13A119.7C9C—C8C—C13C118.9 (2)
C8A—C13A—H13A119.7C9C—C8C—C7C119.4 (2)
C5B—N1B—N2B107.2 (2)C13C—C8C—C7C121.7 (2)
C3B—N2B—N1B106.5 (2)C10C—C9C—C8C120.7 (2)
N2B—C3B—N4B111.6 (3)C10C—C9C—H9C119.7
N2B—C3B—H3B124.2C8C—C9C—H9C119.7
N4B—C3B—H3B124.2C11C—C10C—C9C119.7 (2)
C3B—N4B—C5B104.2 (2)C11C—C10C—H10C120.1
C3B—N4B—N6B122.9 (2)C9C—C10C—H10C120.1
C5B—N4B—N6B132.90 (19)C10C—C11C—C12C120.3 (2)
N1B—C5B—N4B110.6 (2)C10C—C11C—H11C119.8
N1B—C5B—H5B124.7C12C—C11C—H11C119.8
N4B—C5B—H5B124.7C13C—C12C—C11C119.9 (2)
C7B—N6B—N4B116.38 (19)C13C—C12C—H12C120.0
N6B—C7B—C8B120.4 (2)C11C—C12C—H12C120.0
N6B—C7B—H7B119.8C12C—C13C—C8C120.4 (2)
C8B—C7B—H7B119.8C12C—C13C—H13C119.8
C13B—C8B—C9B119.6 (2)C8C—C13C—H13C119.8
C13B—C8B—C7B118.7 (2)
C5A—N1A—N2A—C3A0.1 (4)N6B—C7B—C8B—C13B176.8 (3)
N1A—N2A—C3A—N4A0.0 (4)N6B—C7B—C8B—C9B0.7 (4)
N2A—C3A—N4A—C5A0.1 (4)C13B—C8B—C9B—C10B1.0 (4)
N2A—C3A—N4A—N6A177.9 (3)C7B—C8B—C9B—C10B176.5 (3)
N2A—N1A—C5A—N4A0.2 (4)C8B—C9B—C10B—C11B0.9 (4)
C3A—N4A—C5A—N1A0.2 (4)C9B—C10B—C11B—C12B0.5 (5)
N6A—N4A—C5A—N1A178.2 (3)C10B—C11B—C12B—C13B0.2 (5)
C5A—N4A—N6A—C7A178.2 (3)C9B—C8B—C13B—C12B0.7 (4)
C3A—N4A—N6A—C7A0.8 (4)C7B—C8B—C13B—C12B176.9 (3)
N4A—N6A—C7A—C8A178.1 (2)C11B—C12B—C13B—C8B0.3 (4)
N6A—C7A—C8A—C9A177.8 (3)C5C—N1C—N2C—C3C0.2 (4)
N6A—C7A—C8A—C13A1.3 (4)N1C—N2C—C3C—N4C0.0 (4)
C13A—C8A—C9A—C10A1.2 (4)N2C—C3C—N4C—C5C0.2 (4)
C7A—C8A—C9A—C10A177.9 (3)N2C—C3C—N4C—N6C178.9 (3)
C8A—C9A—C10A—C11A1.3 (5)N2C—N1C—C5C—N4C0.3 (4)
C9A—C10A—C11A—C12A0.0 (5)C3C—N4C—C5C—N1C0.3 (4)
C10A—C11A—C12A—C13A1.4 (5)N6C—N4C—C5C—N1C179.2 (3)
C11A—C12A—C13A—C8A1.4 (4)C5C—N4C—N6C—C7C176.6 (3)
C9A—C8A—C13A—C12A0.1 (4)C3C—N4C—N6C—C7C4.9 (4)
C7A—C8A—C13A—C12A179.2 (3)N4C—N6C—C7C—C8C179.3 (2)
C5B—N1B—N2B—C3B0.6 (5)N6C—C7C—C8C—C9C177.7 (3)
N1B—N2B—C3B—N4B0.7 (5)N6C—C7C—C8C—C13C2.7 (4)
N2B—C3B—N4B—C5B0.4 (4)C13C—C8C—C9C—C10C0.3 (4)
N2B—C3B—N4B—N6B178.3 (3)C7C—C8C—C9C—C10C179.3 (3)
N2B—N1B—C5B—N4B0.4 (4)C8C—C9C—C10C—C11C0.2 (4)
C3B—N4B—C5B—N1B0.0 (4)C9C—C10C—C11C—C12C0.5 (4)
N6B—N4B—C5B—N1B178.6 (3)C10C—C11C—C12C—C13C0.4 (4)
C3B—N4B—N6B—C7B173.0 (3)C11C—C12C—C13C—C8C0.1 (4)
C5B—N4B—N6B—C7B5.3 (5)C9C—C8C—C13C—C12C0.4 (4)
N4B—N6B—C7B—C8B176.9 (2)C7C—C8C—C13C—C12C179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3C—H3C···N1B0.932.543.414 (4)157
C7C—H7C···N1B0.932.493.405 (3)167
C3A—H3A···N2Ci0.932.473.387 (4)169
C7A—H7A···N2Ci0.932.583.503 (3)174
C5B—H5B···N2Aii0.932.473.371 (4)162
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H8N4
Mr172.19
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)33.0059 (11), 4.0639 (1), 20.6535 (7)
β (°) 111.067 (2)
V3)2585.14 (14)
Z12
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.983, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
14802, 3418, 2582
Rint0.032
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.133, 0.99
No. of reflections3418
No. of parameters352
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3C—H3C···N1B0.932.543.414 (4)157
C7C—H7C···N1B0.932.493.405 (3)167
C3A—H3A···N2Ci0.932.473.387 (4)169
C7A—H7A···N2Ci0.932.583.503 (3)174
C5B—H5B···N2Aii0.932.473.371 (4)162
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.
 

Acknowledgements

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationForoumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851–854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHe, X., Lu, C. Z., Wu, C. D. & Chen, L. J. (2006). Eur. J. Inorg. Chem. pp. 2491–2503.  Web of Science CSD CrossRef Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou- Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343–2346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. & Hu, M.-L. (2004). Acta Cryst. E60, o2249–o2251.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds