organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Phenyl-3-(3-phenyl-1H-1-pyrazol­yl)-2-propenal

aDepartment of Lighthouses & Lightships, Ministry of Shipping, Nagapattinam Lighthouse & DGPS station, Nagapattinam 611 001, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University Tirunelveli, Nagercoil 629 004, India, cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India, dLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and eDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: s_a_bahadur@yahoo.co.in

(Received 2 January 2010; accepted 3 February 2010; online 10 February 2010)

In the title compound C18H14N2O, the pendant rings make dihedral angles of 66.1 (1)° and 13.9 (1) with the central ring. In the crystal, two mol­ecules form a cyclic centrosymmetric R22(22) dimer through pairs of C—H⋯O bonds. These dimers are further connected into zigzag chains extending along the b axis through C—H⋯π and C—H⋯O inter­actions.

Related literature

For the pharmacological and medicinal properties of the title compound, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147-66.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199-200.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]). For hybridization and electron delocalization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]); Jin et al. (2004[Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642-o643.]). For ring and chain motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O

  • Mr = 274.31

  • Monoclinic, P 21 /c

  • a = 8.6157 (7) Å

  • b = 18.0969 (12) Å

  • c = 10.0861 (6) Å

  • β = 113.091 (6)°

  • V = 1446.61 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.863, Tmax = 0.994

  • 13719 measured reflections

  • 2547 independent reflections

  • 2262 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.05

  • 2547 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35⋯O1i 0.93 2.59 3.358 (2) 140
C13—H13⋯O1ii 0.93 2.66 3.360 (2) 133
C14—H14⋯Cgiii 0.93 2.95 3.703 (2) 139
Symmetry codes: (i) -x+2, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Pyrazole refers both to the class of simple aromatic ring organic compounds and of the heterocyclic series characterized by a 5-membered ring structure composed of three carbon atoms and two nitrogen atoms in adjacent positions and to the unsubstituted parent compound. Being so composed and having pharmacological effects on humans, they are classified as alkaloids although they are rare in nature. Pyrazole and its derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al.,1998), anti-inflammatory (Smith et al., 2001), antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998) and pesticidal (Londershausen, 1996) activities.

An ORTEP plot of the molecule is shown in Fig. 1. The pyrazole ring adopts planar conformation. The phenyl rings and the plane of the pyrazole ring are making the dihedral angles of 66.1 (1)° (with C12/C17 ring) and 13.9 (1)° (with C31/C36 ring). The two phenyl rings are oriented with the dihedral angle of 79.9 (1)°. Further, pyrazole ring is making an angle of 15.8 (2)° with the propenal plane (C11,C1A,C2A,O1). The sum of the angles at N1 of the pyrazole ring (359.8 (1)°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.326 (2) and 1.355 (2) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å, (Jin et al.,2004), indicating electron delocalization.

The crystal packing is stabilized through moderate C—H···O, C—H···N and C—H···π interactions (Table 1). Two symmetry-related molecules form a cyclic centrosymmetric R22(22) dimer through C35—H35···O1i bond around the inversion centers of the unit cell (Fig 2). These dimers are connected into two zigzag chains extending along the b axis through C—H···π and another C—H···O interaction (Bernstein et al., 1995).

Related literature top

For the pharmacological and medicinal properties of the title compound, see: Baraldi et al. (1998); Bruno et al. (1990); Chen & Li (1998); Cottineau et al. (2002); Londershausen (1996); Mishra et al. (1998); Smith et al. (2001). For hybridization and electron delocalization, see: Beddoes et al. (1986); Jin et al. (2004). For ring and chain motifs, see: Bernstein et al. (1995).

Experimental top

To a mixture of 1-phenyl-1-ethanone N-[(E)-1-phenylethylidene]hydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in ice bath at 0 °C, phosphorous oxycholride (0.024 mole) was added dropwise for 5 to 10 minutes. The reaction mixture was then irradiated under microwaves for 30 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate. The different compound was separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized to obtain the title compound.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq (parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis.
(E)-3-Phenyl-3-(3-phenyl-1H-1-pyrazolyl)-2-propenal top
Crystal data top
C18H14N2OF(000) = 576
Mr = 274.31Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5126 reflections
a = 8.6157 (7) Åθ = 1.7–27.6°
b = 18.0969 (12) ŵ = 0.08 mm1
c = 10.0861 (6) ÅT = 293 K
β = 113.091 (6)°Block, colourless
V = 1446.61 (19) Å30.23 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2547 independent reflections
Radiation source: fine-focus sealed tube2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.863, Tmax = 0.994k = 2121
13719 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.2744P]
where P = (Fo2 + 2Fc2)/3
2547 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H14N2OV = 1446.61 (19) Å3
Mr = 274.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6157 (7) ŵ = 0.08 mm1
b = 18.0969 (12) ÅT = 293 K
c = 10.0861 (6) Å0.23 × 0.21 × 0.18 mm
β = 113.091 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2547 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2262 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.994Rint = 0.024
13719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
2547 reflectionsΔρmin = 0.15 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61426 (14)0.02209 (6)0.24676 (12)0.0463 (3)
N20.74924 (13)0.01152 (6)0.23393 (12)0.0447 (3)
C30.81474 (17)0.05400 (8)0.34980 (14)0.0467 (3)
C40.7236 (2)0.04724 (11)0.43775 (17)0.0663 (5)
H40.74480.07120.52470.080*
C50.5990 (2)0.00119 (10)0.37010 (17)0.0649 (5)
H50.51720.01740.40220.078*
C110.52083 (16)0.07517 (7)0.14569 (14)0.0432 (3)
C120.36253 (17)0.10037 (7)0.15681 (14)0.0442 (3)
C130.3380 (2)0.17479 (9)0.17313 (18)0.0573 (4)
H130.42300.20850.18210.069*
C140.1874 (2)0.19915 (10)0.17617 (19)0.0690 (5)
H140.17160.24930.18710.083*
C150.0613 (2)0.14992 (10)0.16317 (18)0.0653 (5)
H150.04060.16670.16330.078*
C160.08564 (19)0.07612 (10)0.14998 (17)0.0595 (4)
H160.00080.04270.14280.071*
C170.23541 (18)0.05101 (8)0.14726 (15)0.0510 (4)
H170.25130.00070.13900.061*
C310.96351 (17)0.09984 (7)0.37111 (16)0.0478 (4)
C321.0553 (2)0.13183 (9)0.50393 (17)0.0626 (4)
H321.02150.12500.58010.075*
C331.1966 (2)0.17376 (10)0.5237 (2)0.0757 (5)
H331.25670.19550.61280.091*
C341.2482 (2)0.18350 (11)0.4134 (3)0.0815 (6)
H341.34540.21060.42810.098*
C351.1569 (2)0.15340 (10)0.2805 (2)0.0772 (5)
H351.19130.16080.20480.093*
C361.0147 (2)0.11233 (9)0.25925 (19)0.0598 (4)
H360.95240.09280.16860.072*
C1A0.57622 (17)0.10007 (8)0.04689 (15)0.0483 (3)
H1A0.68310.08540.05520.058*
C2A0.48155 (19)0.14796 (8)0.07132 (16)0.0524 (4)
H2A0.37330.16170.08190.063*
O10.53501 (16)0.17125 (7)0.15736 (13)0.0747 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0437 (6)0.0521 (7)0.0449 (6)0.0073 (5)0.0193 (5)0.0021 (5)
N20.0409 (6)0.0464 (7)0.0471 (7)0.0035 (5)0.0174 (5)0.0006 (5)
C30.0451 (8)0.0474 (8)0.0438 (8)0.0006 (6)0.0133 (6)0.0000 (6)
C40.0683 (10)0.0862 (12)0.0498 (9)0.0222 (9)0.0291 (8)0.0186 (8)
C50.0647 (10)0.0859 (12)0.0543 (9)0.0226 (9)0.0344 (8)0.0143 (8)
C110.0404 (7)0.0424 (7)0.0439 (7)0.0005 (6)0.0136 (6)0.0044 (6)
C120.0424 (7)0.0479 (8)0.0406 (7)0.0033 (6)0.0147 (6)0.0014 (6)
C130.0544 (9)0.0491 (8)0.0668 (10)0.0023 (7)0.0221 (8)0.0055 (7)
C140.0715 (11)0.0548 (10)0.0816 (12)0.0193 (8)0.0312 (9)0.0035 (8)
C150.0508 (9)0.0807 (12)0.0679 (11)0.0188 (8)0.0270 (8)0.0051 (9)
C160.0470 (8)0.0715 (11)0.0627 (10)0.0010 (7)0.0244 (7)0.0055 (8)
C170.0495 (8)0.0499 (8)0.0554 (9)0.0015 (6)0.0227 (7)0.0002 (7)
C310.0434 (8)0.0411 (7)0.0539 (8)0.0011 (6)0.0137 (6)0.0006 (6)
C320.0595 (10)0.0632 (10)0.0544 (9)0.0050 (8)0.0106 (8)0.0007 (7)
C330.0610 (11)0.0675 (11)0.0761 (12)0.0148 (9)0.0025 (9)0.0085 (9)
C340.0601 (11)0.0664 (11)0.1134 (17)0.0207 (9)0.0290 (11)0.0097 (11)
C350.0775 (12)0.0679 (11)0.1003 (15)0.0211 (9)0.0500 (11)0.0127 (10)
C360.0612 (10)0.0552 (9)0.0675 (10)0.0123 (7)0.0301 (8)0.0106 (7)
C1A0.0406 (7)0.0501 (8)0.0541 (8)0.0016 (6)0.0186 (6)0.0003 (6)
C2A0.0518 (8)0.0488 (8)0.0570 (9)0.0003 (7)0.0216 (7)0.0008 (7)
O10.0825 (9)0.0766 (8)0.0753 (8)0.0041 (6)0.0420 (7)0.0219 (6)
Geometric parameters (Å, º) top
N1—C51.3552 (19)C16—C171.378 (2)
N1—N21.3627 (15)C16—H160.9300
N1—C111.4023 (18)C17—H170.9300
N2—C31.3259 (17)C31—C361.382 (2)
C3—C41.402 (2)C31—C321.387 (2)
C3—C311.470 (2)C32—C331.380 (2)
C4—C51.346 (2)C32—H320.9300
C4—H40.9300C33—C341.363 (3)
C5—H50.9300C33—H330.9300
C11—C1A1.340 (2)C34—C351.373 (3)
C11—C121.4835 (18)C34—H340.9300
C12—C131.383 (2)C35—C361.376 (2)
C12—C171.387 (2)C35—H350.9300
C13—C141.381 (2)C36—H360.9300
C13—H130.9300C1A—C2A1.440 (2)
C14—C151.371 (3)C1A—H1A0.9300
C14—H140.9300C2A—O11.2068 (18)
C15—C161.366 (2)C2A—H2A0.9300
C15—H150.9300
C5—N1—N2110.89 (11)C15—C16—H16119.8
C5—N1—C11128.59 (12)C17—C16—H16119.8
N2—N1—C11120.31 (11)C16—C17—C12120.40 (14)
C3—N2—N1105.02 (11)C16—C17—H17119.8
N2—C3—C4110.90 (13)C12—C17—H17119.8
N2—C3—C31120.10 (13)C36—C31—C32118.46 (14)
C4—C3—C31129.01 (13)C36—C31—C3120.81 (13)
C5—C4—C3105.64 (14)C32—C31—C3120.73 (14)
C5—C4—H4127.2C33—C32—C31120.37 (17)
C3—C4—H4127.2C33—C32—H32119.8
C4—C5—N1107.55 (14)C31—C32—H32119.8
C4—C5—H5126.2C34—C33—C32120.31 (17)
N1—C5—H5126.2C34—C33—H33119.8
C1A—C11—N1120.03 (12)C32—C33—H33119.8
C1A—C11—C12123.97 (13)C33—C34—C35120.04 (17)
N1—C11—C12116.00 (12)C33—C34—H34120.0
C13—C12—C17118.80 (13)C35—C34—H34120.0
C13—C12—C11119.78 (13)C34—C35—C36120.04 (18)
C17—C12—C11121.40 (12)C34—C35—H35120.0
C14—C13—C12120.15 (15)C36—C35—H35120.0
C14—C13—H13119.9C35—C36—C31120.73 (16)
C12—C13—H13119.9C35—C36—H36119.6
C15—C14—C13120.42 (16)C31—C36—H36119.6
C15—C14—H14119.8C11—C1A—C2A124.51 (13)
C13—C14—H14119.8C11—C1A—H1A117.7
C16—C15—C14119.87 (15)C2A—C1A—H1A117.7
C16—C15—H15120.1O1—C2A—C1A123.61 (14)
C14—C15—H15120.1O1—C2A—H2A118.2
C15—C16—C17120.33 (16)C1A—C2A—H2A118.2
C5—N1—N2—C30.88 (16)C13—C14—C15—C161.3 (3)
C11—N1—N2—C3175.96 (12)C14—C15—C16—C171.1 (3)
N1—N2—C3—C40.64 (16)C15—C16—C17—C120.5 (2)
N1—N2—C3—C31179.26 (12)C13—C12—C17—C161.8 (2)
N2—C3—C4—C50.2 (2)C11—C12—C17—C16176.44 (13)
C31—C3—C4—C5179.71 (15)N2—C3—C31—C3614.4 (2)
C3—C4—C5—N10.4 (2)C4—C3—C31—C36165.51 (16)
N2—N1—C5—C40.8 (2)N2—C3—C31—C32165.91 (14)
C11—N1—C5—C4175.36 (15)C4—C3—C31—C3214.2 (2)
C5—N1—C11—C1A165.51 (15)C36—C31—C32—C331.4 (2)
N2—N1—C11—C1A8.60 (19)C3—C31—C32—C33178.88 (15)
C5—N1—C11—C1214.5 (2)C31—C32—C33—C340.7 (3)
N2—N1—C11—C12171.43 (11)C32—C33—C34—C351.9 (3)
C1A—C11—C12—C1356.2 (2)C33—C34—C35—C361.1 (3)
N1—C11—C12—C13123.79 (15)C34—C35—C36—C311.1 (3)
C1A—C11—C12—C17122.03 (16)C32—C31—C36—C352.3 (2)
N1—C11—C12—C1758.00 (17)C3—C31—C36—C35178.02 (15)
C17—C12—C13—C141.6 (2)N1—C11—C1A—C2A172.66 (13)
C11—C12—C13—C14176.68 (14)C12—C11—C1A—C2A7.4 (2)
C12—C13—C14—C150.0 (3)C11—C1A—C2A—O1178.19 (15)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C35—H35···O1i0.932.593.358 (2)140
C13—H13···O1ii0.932.663.360 (2)133
C14—H14···Cgiii0.932.953.703 (2)139
Symmetry codes: (i) x+2, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14N2O
Mr274.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6157 (7), 18.0969 (12), 10.0861 (6)
β (°) 113.091 (6)
V3)1446.61 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.863, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
13719, 2547, 2262
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.05
No. of reflections2547
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C35—H35···O1i0.932.593.358 (2)140
C13—H13···O1ii0.932.663.360 (2)133
C14—H14···Cgiii0.932.953.703 (2)139
Symmetry codes: (i) x+2, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

VS and SAB sincerely thank the Vice Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. SA thanks the Vice-Chancellor of Anna University Tirunelveli for his support and encouragement.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationJin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds