organic compounds
2,7-Dimethoxy-1-(4-nitrobenzoyl)-naphthalene
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp
In the title compound, C19H15NO5, the dihedral angle between the naphthalene ring system and the benzene ring is 61.97 (5)°. The dihedral between the naphthalene ring system and the bridging carbonyl C—C(=O)—C plane is 54.68 (6)°, far larger than that [12.54 (7)°] between the phenyl group and the bridging carbonyl group. The nitro group and the phenyl ring are almost coplanar [O—N—C—C torsion angle = 2.94 (19)°]. In the crystal, molecules are linked by C—H⋯π interactions and the phenyl rings are involved in a centrosymmetric π–π interaction with a perpendicular distance of 3.523 Å and a lateral offset of 1.497 Å. In addition, weak intermolecular C—H⋯O hydrogen bonds are formed between an H atom of one methoxy group and a nearby carbonyl O atom.
Related literature
For general background to the regioselective formation of peri-aroylnaphthalene compounds, see: Okamoto & Yonezawa (2009). For related structures, see: Mitsui et al. (2008, 2009); Nakaema et al. (2007, 2008); Watanabe et al. (2010a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810005398/fl2290sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810005398/fl2290Isup2.hkl
The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (1.0 mmol) and 4-nitrobenzoic acid (2.2 mmol) with phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH [1/10 w/w]; 4.4 ml) at 40°C for 0.5 hours followed by a typical work-up procedure (50% yield; Okamoto & Yonezawa, 2009). Yellow platelet single crystals suitable for X-ray diffraction were obtained by recrystallization from chloroform.
Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 3.76 (3H, s), 3.76 (3H, s), 6.87 (1H, d, J = 2.3 Hz), 7.05 (1H, dd, J = 9.0, 2.3 Hz), 7.16 (1H, d, J = 9.0 Hz), 7.75 (1H, d, J = 8.7 Hz), 7.93 (1H, d, J = 9.0 Hz), 7.98 (2H, d, J = 9.0 Hz), 8.27 (2H, d, J = 8.7 Hz); 13C NMR (75 MHz, CDCl3) δ 21.8, 22.7, 68.3, 76.4, 82.5, 83.9, 90.3, 91.0, 95.7, 96.5, 96.7, 98.8, 99.6, 109.6, 122.3, 126.0, 162.9; IR (KBr): 1357, 1594, 1267; Anal. Calcd for C19H15NO5: C 67.65, H 4.48, N 4.15. Found: C 67.52, H 4.51, N 4.06.
All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H15NO5 | F(000) = 704 |
Mr = 337.32 | Dx = 1.382 Mg m−3 |
Monoclinic, P21/c | Melting point: 440 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54187 Å |
a = 8.6877 (6) Å | Cell parameters from 28804 reflections |
b = 28.870 (2) Å | θ = 3.1–68.2° |
c = 6.4635 (5) Å | µ = 0.84 mm−1 |
β = 90.839 (5)° | T = 296 K |
V = 1621.0 (2) Å3 | Platelet, yellow |
Z = 4 | 0.60 × 0.60 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 2954 independent reflections |
Radiation source: rotating anode | 2713 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.2°, θmin = 3.1° |
ω scans | h = −10→10 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −34→34 |
Tmin = 0.632, Tmax = 0.850 | l = −7→7 |
29623 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0491P)2 + 0.3261P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2954 reflections | Δρmax = 0.17 e Å−3 |
229 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0064 (5) |
C19H15NO5 | V = 1621.0 (2) Å3 |
Mr = 337.32 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 8.6877 (6) Å | µ = 0.84 mm−1 |
b = 28.870 (2) Å | T = 296 K |
c = 6.4635 (5) Å | 0.60 × 0.60 × 0.20 mm |
β = 90.839 (5)° |
Rigaku R-AXIS RAPID diffractometer | 2954 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2713 reflections with I > 2σ(I) |
Tmin = 0.632, Tmax = 0.850 | Rint = 0.033 |
29623 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.17 e Å−3 |
2954 reflections | Δρmin = −0.19 e Å−3 |
229 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.46668 (12) | 0.12949 (4) | 0.41178 (15) | 0.0654 (3) | |
O2 | 0.72324 (18) | −0.01707 (5) | −0.4151 (2) | 0.0998 (5) | |
O3 | 0.86695 (18) | −0.03032 (5) | −0.1503 (3) | 0.1103 (5) | |
O4 | 0.52962 (12) | 0.18647 (4) | −0.08228 (16) | 0.0628 (3) | |
O5 | −0.08753 (12) | 0.11905 (5) | 0.59355 (19) | 0.0765 (3) | |
N1 | 0.76264 (15) | −0.00977 (4) | −0.2367 (2) | 0.0655 (3) | |
C1 | 0.32998 (14) | 0.15939 (4) | 0.12073 (19) | 0.0443 (3) | |
C2 | 0.37575 (16) | 0.18672 (4) | −0.0431 (2) | 0.0507 (3) | |
C3 | 0.26878 (19) | 0.21395 (5) | −0.1541 (2) | 0.0639 (4) | |
H3 | 0.3001 | 0.2317 | −0.2659 | 0.077* | |
C4 | 0.1186 (2) | 0.21401 (5) | −0.0961 (3) | 0.0652 (4) | |
H4 | 0.0477 | 0.2313 | −0.1726 | 0.078* | |
C5 | 0.06755 (16) | 0.18894 (4) | 0.0748 (2) | 0.0532 (3) | |
C6 | −0.08761 (17) | 0.19031 (5) | 0.1403 (3) | 0.0640 (4) | |
H6 | −0.1591 | 0.2076 | 0.0648 | 0.077* | |
C7 | −0.13369 (16) | 0.16718 (6) | 0.3093 (3) | 0.0650 (4) | |
H7 | −0.2357 | 0.1689 | 0.3501 | 0.078* | |
C8 | −0.02757 (16) | 0.14036 (5) | 0.4242 (2) | 0.0569 (4) | |
C9 | 0.12269 (15) | 0.13696 (4) | 0.3656 (2) | 0.0492 (3) | |
H9 | 0.1909 | 0.1185 | 0.4413 | 0.059* | |
C10 | 0.17471 (14) | 0.16139 (4) | 0.19014 (19) | 0.0445 (3) | |
C11 | 0.44394 (14) | 0.12808 (4) | 0.22566 (19) | 0.0447 (3) | |
C12 | 0.52624 (13) | 0.09236 (4) | 0.09933 (18) | 0.0418 (3) | |
C13 | 0.48124 (15) | 0.08167 (4) | −0.1027 (2) | 0.0481 (3) | |
H13 | 0.3990 | 0.0974 | −0.1642 | 0.058* | |
C14 | 0.55780 (16) | 0.04787 (5) | −0.2128 (2) | 0.0513 (3) | |
H14 | 0.5281 | 0.0405 | −0.3477 | 0.062* | |
C15 | 0.67883 (15) | 0.02546 (4) | −0.1175 (2) | 0.0488 (3) | |
C16 | 0.72680 (15) | 0.03499 (5) | 0.0825 (2) | 0.0529 (3) | |
H16 | 0.8093 | 0.0192 | 0.1426 | 0.063* | |
C17 | 0.64890 (14) | 0.06867 (4) | 0.1911 (2) | 0.0481 (3) | |
H17 | 0.6787 | 0.0755 | 0.3264 | 0.058* | |
C18 | 0.5831 (2) | 0.20964 (7) | −0.2619 (2) | 0.0781 (5) | |
H18A | 0.6892 | 0.2019 | −0.2832 | 0.094* | |
H18B | 0.5734 | 0.2425 | −0.2436 | 0.094* | |
H18C | 0.5228 | 0.2001 | −0.3801 | 0.094* | |
C19 | 0.0143 (2) | 0.09324 (6) | 0.7227 (3) | 0.0767 (5) | |
H19A | −0.0384 | 0.0838 | 0.8452 | 0.092* | |
H19B | 0.1012 | 0.1121 | 0.7607 | 0.092* | |
H19C | 0.0490 | 0.0663 | 0.6497 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0595 (6) | 0.0914 (8) | 0.0453 (5) | 0.0172 (5) | −0.0034 (4) | −0.0093 (5) |
O2 | 0.1225 (12) | 0.1010 (10) | 0.0759 (9) | 0.0427 (8) | 0.0043 (8) | −0.0265 (7) |
O3 | 0.0969 (10) | 0.1002 (10) | 0.1330 (13) | 0.0545 (8) | −0.0240 (9) | −0.0403 (9) |
O4 | 0.0602 (6) | 0.0626 (6) | 0.0659 (6) | −0.0045 (5) | 0.0160 (5) | 0.0089 (5) |
O5 | 0.0524 (6) | 0.0989 (9) | 0.0787 (8) | −0.0120 (6) | 0.0186 (5) | 0.0010 (6) |
N1 | 0.0615 (8) | 0.0523 (7) | 0.0828 (9) | 0.0089 (6) | 0.0063 (7) | −0.0100 (6) |
C1 | 0.0460 (7) | 0.0403 (6) | 0.0467 (7) | 0.0025 (5) | 0.0017 (5) | −0.0048 (5) |
C2 | 0.0564 (8) | 0.0431 (6) | 0.0527 (7) | −0.0005 (5) | 0.0056 (6) | −0.0032 (5) |
C3 | 0.0813 (11) | 0.0499 (8) | 0.0606 (9) | 0.0052 (7) | 0.0037 (7) | 0.0109 (6) |
C4 | 0.0716 (10) | 0.0545 (8) | 0.0690 (9) | 0.0141 (7) | −0.0105 (8) | 0.0069 (7) |
C5 | 0.0526 (8) | 0.0455 (7) | 0.0612 (8) | 0.0076 (5) | −0.0068 (6) | −0.0089 (6) |
C6 | 0.0481 (8) | 0.0628 (9) | 0.0806 (10) | 0.0124 (6) | −0.0127 (7) | −0.0139 (8) |
C7 | 0.0385 (7) | 0.0716 (9) | 0.0850 (11) | 0.0003 (6) | 0.0025 (7) | −0.0194 (8) |
C8 | 0.0462 (7) | 0.0607 (8) | 0.0639 (9) | −0.0073 (6) | 0.0069 (6) | −0.0128 (7) |
C9 | 0.0440 (7) | 0.0497 (7) | 0.0539 (7) | 0.0009 (5) | 0.0022 (5) | −0.0052 (6) |
C10 | 0.0446 (7) | 0.0390 (6) | 0.0498 (7) | 0.0025 (5) | −0.0012 (5) | −0.0092 (5) |
C11 | 0.0393 (6) | 0.0501 (7) | 0.0446 (7) | −0.0017 (5) | 0.0020 (5) | −0.0009 (5) |
C12 | 0.0385 (6) | 0.0413 (6) | 0.0455 (6) | −0.0021 (5) | 0.0026 (5) | 0.0037 (5) |
C13 | 0.0451 (7) | 0.0506 (7) | 0.0486 (7) | 0.0068 (5) | −0.0027 (5) | 0.0007 (5) |
C14 | 0.0549 (7) | 0.0511 (7) | 0.0478 (7) | 0.0018 (6) | 0.0011 (6) | −0.0025 (5) |
C15 | 0.0464 (7) | 0.0401 (6) | 0.0602 (8) | 0.0003 (5) | 0.0092 (6) | −0.0004 (5) |
C16 | 0.0456 (7) | 0.0482 (7) | 0.0647 (8) | 0.0066 (5) | −0.0025 (6) | 0.0067 (6) |
C17 | 0.0467 (7) | 0.0495 (7) | 0.0480 (7) | 0.0002 (5) | −0.0024 (5) | 0.0047 (5) |
C18 | 0.0854 (12) | 0.0950 (12) | 0.0545 (9) | −0.0255 (10) | 0.0178 (8) | −0.0001 (8) |
C19 | 0.0776 (11) | 0.0812 (11) | 0.0720 (11) | −0.0124 (9) | 0.0217 (9) | 0.0066 (9) |
O1—C11 | 1.2169 (15) | C7—H7 | 0.9300 |
O2—N1 | 1.2163 (18) | C8—C9 | 1.3681 (19) |
O3—N1 | 1.2126 (18) | C9—C10 | 1.4151 (18) |
O4—C2 | 1.3641 (17) | C9—H9 | 0.9300 |
O4—C18 | 1.4239 (18) | C11—C12 | 1.5027 (17) |
O5—C8 | 1.3656 (18) | C12—C17 | 1.3917 (17) |
O5—C19 | 1.419 (2) | C12—C13 | 1.3923 (18) |
N1—C15 | 1.4748 (17) | C13—C14 | 1.3837 (18) |
C1—C2 | 1.3837 (18) | C13—H13 | 0.9300 |
C1—C10 | 1.4290 (17) | C14—C15 | 1.3730 (19) |
C1—C11 | 1.4960 (17) | C14—H14 | 0.9300 |
C2—C3 | 1.406 (2) | C15—C16 | 1.380 (2) |
C3—C4 | 1.363 (2) | C16—C17 | 1.3820 (19) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.398 (2) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—H18A | 0.9600 |
C5—C6 | 1.420 (2) | C18—H18B | 0.9600 |
C5—C10 | 1.4265 (18) | C18—H18C | 0.9600 |
C6—C7 | 1.346 (2) | C19—H19A | 0.9600 |
C6—H6 | 0.9300 | C19—H19B | 0.9600 |
C7—C8 | 1.408 (2) | C19—H19C | 0.9600 |
C2—O4—C18 | 118.76 (13) | C5—C10—C1 | 118.05 (12) |
C8—O5—C19 | 117.80 (12) | O1—C11—C1 | 121.65 (11) |
O3—N1—O2 | 123.34 (14) | O1—C11—C12 | 119.24 (11) |
O3—N1—C15 | 117.93 (14) | C1—C11—C12 | 119.03 (10) |
O2—N1—C15 | 118.72 (13) | C17—C12—C13 | 119.56 (11) |
C2—C1—C10 | 120.03 (12) | C17—C12—C11 | 118.24 (11) |
C2—C1—C11 | 119.73 (11) | C13—C12—C11 | 122.17 (11) |
C10—C1—C11 | 120.24 (11) | C14—C13—C12 | 120.55 (12) |
O4—C2—C1 | 115.61 (12) | C14—C13—H13 | 119.7 |
O4—C2—C3 | 123.40 (12) | C12—C13—H13 | 119.7 |
C1—C2—C3 | 120.94 (13) | C15—C14—C13 | 118.17 (12) |
C4—C3—C2 | 119.23 (13) | C15—C14—H14 | 120.9 |
C4—C3—H3 | 120.4 | C13—C14—H14 | 120.9 |
C2—C3—H3 | 120.4 | C14—C15—C16 | 123.05 (12) |
C3—C4—C5 | 122.22 (14) | C14—C15—N1 | 118.11 (12) |
C3—C4—H4 | 118.9 | C16—C15—N1 | 118.83 (12) |
C5—C4—H4 | 118.9 | C15—C16—C17 | 118.19 (12) |
C4—C5—C6 | 122.36 (14) | C15—C16—H16 | 120.9 |
C4—C5—C10 | 119.29 (13) | C17—C16—H16 | 120.9 |
C6—C5—C10 | 118.34 (14) | C16—C17—C12 | 120.47 (12) |
C7—C6—C5 | 121.57 (14) | C16—C17—H17 | 119.8 |
C7—C6—H6 | 119.2 | C12—C17—H17 | 119.8 |
C5—C6—H6 | 119.2 | O4—C18—H18A | 109.5 |
C6—C7—C8 | 120.05 (13) | O4—C18—H18B | 109.5 |
C6—C7—H7 | 120.0 | H18A—C18—H18B | 109.5 |
C8—C7—H7 | 120.0 | O4—C18—H18C | 109.5 |
O5—C8—C9 | 124.50 (14) | H18A—C18—H18C | 109.5 |
O5—C8—C7 | 114.60 (13) | H18B—C18—H18C | 109.5 |
C9—C8—C7 | 120.90 (14) | O5—C19—H19A | 109.5 |
C8—C9—C10 | 120.22 (13) | O5—C19—H19B | 109.5 |
C8—C9—H9 | 119.9 | H19A—C19—H19B | 109.5 |
C10—C9—H9 | 119.9 | O5—C19—H19C | 109.5 |
C9—C10—C5 | 118.89 (12) | H19A—C19—H19C | 109.5 |
C9—C10—C1 | 123.06 (11) | H19B—C19—H19C | 109.5 |
C18—O4—C2—C1 | 173.20 (13) | C2—C1—C10—C9 | −175.40 (12) |
C18—O4—C2—C3 | −9.2 (2) | C11—C1—C10—C9 | 4.15 (18) |
C10—C1—C2—O4 | 172.62 (11) | C2—C1—C10—C5 | 5.40 (17) |
C11—C1—C2—O4 | −6.93 (17) | C11—C1—C10—C5 | −175.06 (11) |
C10—C1—C2—C3 | −5.08 (19) | C2—C1—C11—O1 | 125.86 (14) |
C11—C1—C2—C3 | 175.38 (12) | C10—C1—C11—O1 | −53.69 (17) |
O4—C2—C3—C4 | −176.15 (14) | C2—C1—C11—C12 | −57.33 (16) |
C1—C2—C3—C4 | 1.4 (2) | C10—C1—C11—C12 | 123.12 (12) |
C2—C3—C4—C5 | 2.0 (2) | O1—C11—C12—C17 | −13.28 (17) |
C3—C4—C5—C6 | 177.57 (14) | C1—C11—C12—C17 | 169.84 (11) |
C3—C4—C5—C10 | −1.5 (2) | O1—C11—C12—C13 | 165.11 (12) |
C4—C5—C6—C7 | −177.73 (14) | C1—C11—C12—C13 | −11.77 (17) |
C10—C5—C6—C7 | 1.4 (2) | C17—C12—C13—C14 | −0.26 (19) |
C5—C6—C7—C8 | −0.8 (2) | C11—C12—C13—C14 | −178.63 (11) |
C19—O5—C8—C9 | 2.9 (2) | C12—C13—C14—C15 | −0.14 (19) |
C19—O5—C8—C7 | −176.97 (14) | C13—C14—C15—C16 | 0.3 (2) |
C6—C7—C8—O5 | 179.19 (13) | C13—C14—C15—N1 | −178.58 (12) |
C6—C7—C8—C9 | −0.7 (2) | O3—N1—C15—C14 | −178.16 (15) |
O5—C8—C9—C10 | −178.35 (12) | O2—N1—C15—C14 | 1.2 (2) |
C7—C8—C9—C10 | 1.5 (2) | O3—N1—C15—C16 | 2.9 (2) |
C8—C9—C10—C5 | −0.86 (18) | O2—N1—C15—C16 | −177.70 (14) |
C8—C9—C10—C1 | 179.93 (12) | C14—C15—C16—C17 | 0.0 (2) |
C4—C5—C10—C9 | 178.59 (12) | N1—C15—C16—C17 | 178.86 (11) |
C6—C5—C10—C9 | −0.53 (18) | C15—C16—C17—C12 | −0.44 (19) |
C4—C5—C10—C1 | −2.16 (18) | C13—C12—C17—C16 | 0.55 (18) |
C6—C5—C10—C1 | 178.71 (11) | C11—C12—C17—C16 | 178.99 (11) |
Cg1 is the centroid of the naphthalene ring system C1–C10. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg1i | 0.93 | 2.81 | 3.5789 (15) | 141 |
C19—H19B···Cg1ii | 0.96 | 2.91 | 3.7605 (19) | 148 |
C18—H18C···O1iii | 0.96 | 2.49 | 3.281 (2) | 140 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, y, z+1; (iii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C19H15NO5 |
Mr | 337.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.6877 (6), 28.870 (2), 6.4635 (5) |
β (°) | 90.839 (5) |
V (Å3) | 1621.0 (2) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.60 × 0.60 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.632, 0.850 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29623, 2954, 2713 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.102, 1.05 |
No. of reflections | 2954 |
No. of parameters | 229 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.19 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Cg1 is the centroid of the naphthalene ring system C1–C10. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg1i | 0.93 | 2.81 | 3.5789 (15) | 141 |
C19—H19B···Cg1ii | 0.96 | 2.91 | 3.7605 (19) | 148 |
C18—H18C···O1iii | 0.96 | 2.49 | 3.281 (2) | 140 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, y, z+1; (iii) x, y, z−1. |
Acknowledgements
The authors express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Iketani Science and Technology Foundation, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o329. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o403. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone (Watanabe et al., 2010a) and bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010b). Furthermore, the crystal structures of 1-aroyl-2,7-dimethoxynaphthalenes, i. e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008) and (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al. 2009), also exhibit essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. As a part of our ongoing studies on the formation and the structure of the aroylated naphthalene derivatives, the synthesis and crystal structure of (I), a 1-monoaroylnaphthalene bearing nitro group, is discussed in this report. (I) was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-nitrobenzoyl chloride.
The molecular structure of (I) is displayed in Fig. 1. The interplanar angle between the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 61.97 (5)°. The dihedral angle between the carbonyl and the naphthalene is 54.68 (6)° [C10—C1—C11—O1 torsion angle = -53.67 (17)°]. On the other hand, the dihedral angle between the carbonyl group and the phenyl ring is 12.54 (7)° [O1—C11—C12—C17 torsion angle = -13.29 (17)°]. The nitro group and the phenyl group are almost coplanar [O3—N1—C15—C14 torsion angle = 2.94 (19)°].
The molecular packing of (I) is mainly stabilized by van der Waals interactions. The molecules are aligned consecutively in stacks along the c axis (Fig. 2). Adjacent 4-nitrophenyl groups related by crystallographic inversion centers are exactly antiparallel and the perpendicular distance between the mean planes is 3.523 Å (Fig. 3). The centroid-centroid distance between the two antiparallel phenyl rings is 3.8283 (8) Å and the lateral offset is 1.497 Å, indicating the presence of a π–π interaction.
Moreover, molecules are linked by two types of C—H···π interactions. The naphthalene ring acts as a hydrogen-bond donor and the π system of the naphthalene ring [C1—C10 ring (with centroid Cg1)] of an adjacent molecule acts as an accepter (C3—H3···πi) (Fig. 4). The methyl group acts as a hydrogen-bond donor and the π system of the naphthalene ring [C1—C10 ring (with centroid Cg1)] of an adjacent molecule acts as an accepter (C19—H19C···πii) .
The crystal packing is additionally stabilized by intermolecular weak C—H···O hydrogen bonding between the carbonyl oxygen and a hydrogen atom of a nearby methyl group (C18—H18B···O1iii; Fig. 4 and Table 1).