organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Di­meth­oxy­-1-(4-nitro­benzo­yl)-naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 22 January 2010; accepted 9 February 2010; online 13 February 2010)

In the title compound, C19H15NO5, the dihedral angle between the naphthalene ring system and the benzene ring is 61.97 (5)°. The dihedral between the naphthalene ring system and the bridging carbonyl C—C(=O)—C plane is 54.68 (6)°, far larger than that [12.54 (7)°] between the phenyl group and the bridging carbonyl group. The nitro group and the phenyl ring are almost coplanar [O—N—C—C torsion angle = 2.94 (19)°]. In the crystal, mol­ecules are linked by C—H⋯π inter­actions and the phenyl rings are involved in a centrosymmetric ππ inter­action with a perpendicular distance of 3.523 Å and a lateral offset of 1.497 Å. In addition, weak inter­molecular C—H⋯O hydrogen bonds are formed between an H atom of one meth­oxy group and a nearby carbonyl O atom.

Related literature

For general background to the regioselective formation of peri-aroylnaphthalene compounds, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For related structures, see: Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.], 2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.]); Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.], 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Watanabe et al. (2010a[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o329.],b[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o403.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NO5

  • Mr = 337.32

  • Monoclinic, P 21 /c

  • a = 8.6877 (6) Å

  • b = 28.870 (2) Å

  • c = 6.4635 (5) Å

  • β = 90.839 (5)°

  • V = 1621.0 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 296 K

  • 0.60 × 0.60 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.632, Tmax = 0.850

  • 29623 measured reflections

  • 2954 independent reflections

  • 2713 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.05

  • 2954 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the naphthalene ring system C1–C5,C10.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.81 3.5789 (15) 141
C19—H19BCg1ii 0.96 2.91 3.7605 (19) 148
C18—H18C⋯O1iii 0.96 2.49 3.281 (2) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1; (iii) x, y, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., 1,8-bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Nakaema et al., 2007), 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone (Watanabe et al., 2010a) and bis(4-bromobenzoyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe et al., 2010b). Furthermore, the crystal structures of 1-aroyl-2,7-dimethoxynaphthalenes, i. e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008) and (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al. 2009), also exhibit essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. As a part of our ongoing studies on the formation and the structure of the aroylated naphthalene derivatives, the synthesis and crystal structure of (I), a 1-monoaroylnaphthalene bearing nitro group, is discussed in this report. (I) was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-nitrobenzoyl chloride.

The molecular structure of (I) is displayed in Fig. 1. The interplanar angle between the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 61.97 (5)°. The dihedral angle between the carbonyl and the naphthalene is 54.68 (6)° [C10—C1—C11—O1 torsion angle = -53.67 (17)°]. On the other hand, the dihedral angle between the carbonyl group and the phenyl ring is 12.54 (7)° [O1—C11—C12—C17 torsion angle = -13.29 (17)°]. The nitro group and the phenyl group are almost coplanar [O3—N1—C15—C14 torsion angle = 2.94 (19)°].

The molecular packing of (I) is mainly stabilized by van der Waals interactions. The molecules are aligned consecutively in stacks along the c axis (Fig. 2). Adjacent 4-nitrophenyl groups related by crystallographic inversion centers are exactly antiparallel and the perpendicular distance between the mean planes is 3.523 Å (Fig. 3). The centroid-centroid distance between the two antiparallel phenyl rings is 3.8283 (8) Å and the lateral offset is 1.497 Å, indicating the presence of a ππ interaction.

Moreover, molecules are linked by two types of C—H···π interactions. The naphthalene ring acts as a hydrogen-bond donor and the π system of the naphthalene ring [C1—C10 ring (with centroid Cg1)] of an adjacent molecule acts as an accepter (C3—H3···πi) (Fig. 4). The methyl group acts as a hydrogen-bond donor and the π system of the naphthalene ring [C1—C10 ring (with centroid Cg1)] of an adjacent molecule acts as an accepter (C19—H19C···πii) .

The crystal packing is additionally stabilized by intermolecular weak C—H···O hydrogen bonding between the carbonyl oxygen and a hydrogen atom of a nearby methyl group (C18—H18B···O1iii; Fig. 4 and Table 1).

Related literature top

For general background to the regioselective formation of peri-aroylnaphthalene compounds, see: Okamoto & Yonezawa (2009). For related structures, see: Mitsui et al. (2008, 2009); Nakaema et al. (2007, 2008); Watanabe et al. (2010a,b).

Experimental top

The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (1.0 mmol) and 4-nitrobenzoic acid (2.2 mmol) with phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH [1/10 w/w]; 4.4 ml) at 40°C for 0.5 hours followed by a typical work-up procedure (50% yield; Okamoto & Yonezawa, 2009). Yellow platelet single crystals suitable for X-ray diffraction were obtained by recrystallization from chloroform.

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 3.76 (3H, s), 3.76 (3H, s), 6.87 (1H, d, J = 2.3 Hz), 7.05 (1H, dd, J = 9.0, 2.3 Hz), 7.16 (1H, d, J = 9.0 Hz), 7.75 (1H, d, J = 8.7 Hz), 7.93 (1H, d, J = 9.0 Hz), 7.98 (2H, d, J = 9.0 Hz), 8.27 (2H, d, J = 8.7 Hz); 13C NMR (75 MHz, CDCl3) δ 21.8, 22.7, 68.3, 76.4, 82.5, 83.9, 90.3, 91.0, 95.7, 96.5, 96.7, 98.8, 99.6, 109.6, 122.3, 126.0, 162.9; IR (KBr): 1357, 1594, 1267; Anal. Calcd for C19H15NO5: C 67.65, H 4.48, N 4.15. Found: C 67.52, H 4.51, N 4.06.

Refinement top

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The alignment of the molecules in the crystal structure, viewed along c axis.
[Figure 3] Fig. 3. Side-on view of the ππ interaction.
[Figure 4] Fig. 4. Two types of C—H···π interactions (Green Copper dotted lines, Violet Red dotted lines) and weak C—H···O interactions (Blue dotted lines).
2,7-Dimethoxy-1-(4-nitrobenzoyl)-naphthalene top
Crystal data top
C19H15NO5F(000) = 704
Mr = 337.32Dx = 1.382 Mg m3
Monoclinic, P21/cMelting point: 440 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 8.6877 (6) ÅCell parameters from 28804 reflections
b = 28.870 (2) Åθ = 3.1–68.2°
c = 6.4635 (5) ŵ = 0.84 mm1
β = 90.839 (5)°T = 296 K
V = 1621.0 (2) Å3Platelet, yellow
Z = 40.60 × 0.60 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2954 independent reflections
Radiation source: rotating anode2713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 3.1°
ω scansh = 1010
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 3434
Tmin = 0.632, Tmax = 0.850l = 77
29623 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.3261P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2954 reflectionsΔρmax = 0.17 e Å3
229 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (5)
Crystal data top
C19H15NO5V = 1621.0 (2) Å3
Mr = 337.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.6877 (6) ŵ = 0.84 mm1
b = 28.870 (2) ÅT = 296 K
c = 6.4635 (5) Å0.60 × 0.60 × 0.20 mm
β = 90.839 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2954 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2713 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.850Rint = 0.033
29623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2954 reflectionsΔρmin = 0.19 e Å3
229 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46668 (12)0.12949 (4)0.41178 (15)0.0654 (3)
O20.72324 (18)0.01707 (5)0.4151 (2)0.0998 (5)
O30.86695 (18)0.03032 (5)0.1503 (3)0.1103 (5)
O40.52962 (12)0.18647 (4)0.08228 (16)0.0628 (3)
O50.08753 (12)0.11905 (5)0.59355 (19)0.0765 (3)
N10.76264 (15)0.00977 (4)0.2367 (2)0.0655 (3)
C10.32998 (14)0.15939 (4)0.12073 (19)0.0443 (3)
C20.37575 (16)0.18672 (4)0.0431 (2)0.0507 (3)
C30.26878 (19)0.21395 (5)0.1541 (2)0.0639 (4)
H30.30010.23170.26590.077*
C40.1186 (2)0.21401 (5)0.0961 (3)0.0652 (4)
H40.04770.23130.17260.078*
C50.06755 (16)0.18894 (4)0.0748 (2)0.0532 (3)
C60.08761 (17)0.19031 (5)0.1403 (3)0.0640 (4)
H60.15910.20760.06480.077*
C70.13369 (16)0.16718 (6)0.3093 (3)0.0650 (4)
H70.23570.16890.35010.078*
C80.02757 (16)0.14036 (5)0.4242 (2)0.0569 (4)
C90.12269 (15)0.13696 (4)0.3656 (2)0.0492 (3)
H90.19090.11850.44130.059*
C100.17471 (14)0.16139 (4)0.19014 (19)0.0445 (3)
C110.44394 (14)0.12808 (4)0.22566 (19)0.0447 (3)
C120.52624 (13)0.09236 (4)0.09933 (18)0.0418 (3)
C130.48124 (15)0.08167 (4)0.1027 (2)0.0481 (3)
H130.39900.09740.16420.058*
C140.55780 (16)0.04787 (5)0.2128 (2)0.0513 (3)
H140.52810.04050.34770.062*
C150.67883 (15)0.02546 (4)0.1175 (2)0.0488 (3)
C160.72680 (15)0.03499 (5)0.0825 (2)0.0529 (3)
H160.80930.01920.14260.063*
C170.64890 (14)0.06867 (4)0.1911 (2)0.0481 (3)
H170.67870.07550.32640.058*
C180.5831 (2)0.20964 (7)0.2619 (2)0.0781 (5)
H18A0.68920.20190.28320.094*
H18B0.57340.24250.24360.094*
H18C0.52280.20010.38010.094*
C190.0143 (2)0.09324 (6)0.7227 (3)0.0767 (5)
H19A0.03840.08380.84520.092*
H19B0.10120.11210.76070.092*
H19C0.04900.06630.64970.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0595 (6)0.0914 (8)0.0453 (5)0.0172 (5)0.0034 (4)0.0093 (5)
O20.1225 (12)0.1010 (10)0.0759 (9)0.0427 (8)0.0043 (8)0.0265 (7)
O30.0969 (10)0.1002 (10)0.1330 (13)0.0545 (8)0.0240 (9)0.0403 (9)
O40.0602 (6)0.0626 (6)0.0659 (6)0.0045 (5)0.0160 (5)0.0089 (5)
O50.0524 (6)0.0989 (9)0.0787 (8)0.0120 (6)0.0186 (5)0.0010 (6)
N10.0615 (8)0.0523 (7)0.0828 (9)0.0089 (6)0.0063 (7)0.0100 (6)
C10.0460 (7)0.0403 (6)0.0467 (7)0.0025 (5)0.0017 (5)0.0048 (5)
C20.0564 (8)0.0431 (6)0.0527 (7)0.0005 (5)0.0056 (6)0.0032 (5)
C30.0813 (11)0.0499 (8)0.0606 (9)0.0052 (7)0.0037 (7)0.0109 (6)
C40.0716 (10)0.0545 (8)0.0690 (9)0.0141 (7)0.0105 (8)0.0069 (7)
C50.0526 (8)0.0455 (7)0.0612 (8)0.0076 (5)0.0068 (6)0.0089 (6)
C60.0481 (8)0.0628 (9)0.0806 (10)0.0124 (6)0.0127 (7)0.0139 (8)
C70.0385 (7)0.0716 (9)0.0850 (11)0.0003 (6)0.0025 (7)0.0194 (8)
C80.0462 (7)0.0607 (8)0.0639 (9)0.0073 (6)0.0069 (6)0.0128 (7)
C90.0440 (7)0.0497 (7)0.0539 (7)0.0009 (5)0.0022 (5)0.0052 (6)
C100.0446 (7)0.0390 (6)0.0498 (7)0.0025 (5)0.0012 (5)0.0092 (5)
C110.0393 (6)0.0501 (7)0.0446 (7)0.0017 (5)0.0020 (5)0.0009 (5)
C120.0385 (6)0.0413 (6)0.0455 (6)0.0021 (5)0.0026 (5)0.0037 (5)
C130.0451 (7)0.0506 (7)0.0486 (7)0.0068 (5)0.0027 (5)0.0007 (5)
C140.0549 (7)0.0511 (7)0.0478 (7)0.0018 (6)0.0011 (6)0.0025 (5)
C150.0464 (7)0.0401 (6)0.0602 (8)0.0003 (5)0.0092 (6)0.0004 (5)
C160.0456 (7)0.0482 (7)0.0647 (8)0.0066 (5)0.0025 (6)0.0067 (6)
C170.0467 (7)0.0495 (7)0.0480 (7)0.0002 (5)0.0024 (5)0.0047 (5)
C180.0854 (12)0.0950 (12)0.0545 (9)0.0255 (10)0.0178 (8)0.0001 (8)
C190.0776 (11)0.0812 (11)0.0720 (11)0.0124 (9)0.0217 (9)0.0066 (9)
Geometric parameters (Å, º) top
O1—C111.2169 (15)C7—H70.9300
O2—N11.2163 (18)C8—C91.3681 (19)
O3—N11.2126 (18)C9—C101.4151 (18)
O4—C21.3641 (17)C9—H90.9300
O4—C181.4239 (18)C11—C121.5027 (17)
O5—C81.3656 (18)C12—C171.3917 (17)
O5—C191.419 (2)C12—C131.3923 (18)
N1—C151.4748 (17)C13—C141.3837 (18)
C1—C21.3837 (18)C13—H130.9300
C1—C101.4290 (17)C14—C151.3730 (19)
C1—C111.4960 (17)C14—H140.9300
C2—C31.406 (2)C15—C161.380 (2)
C3—C41.363 (2)C16—C171.3820 (19)
C3—H30.9300C16—H160.9300
C4—C51.398 (2)C17—H170.9300
C4—H40.9300C18—H18A0.9600
C5—C61.420 (2)C18—H18B0.9600
C5—C101.4265 (18)C18—H18C0.9600
C6—C71.346 (2)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C81.408 (2)C19—H19C0.9600
C2—O4—C18118.76 (13)C5—C10—C1118.05 (12)
C8—O5—C19117.80 (12)O1—C11—C1121.65 (11)
O3—N1—O2123.34 (14)O1—C11—C12119.24 (11)
O3—N1—C15117.93 (14)C1—C11—C12119.03 (10)
O2—N1—C15118.72 (13)C17—C12—C13119.56 (11)
C2—C1—C10120.03 (12)C17—C12—C11118.24 (11)
C2—C1—C11119.73 (11)C13—C12—C11122.17 (11)
C10—C1—C11120.24 (11)C14—C13—C12120.55 (12)
O4—C2—C1115.61 (12)C14—C13—H13119.7
O4—C2—C3123.40 (12)C12—C13—H13119.7
C1—C2—C3120.94 (13)C15—C14—C13118.17 (12)
C4—C3—C2119.23 (13)C15—C14—H14120.9
C4—C3—H3120.4C13—C14—H14120.9
C2—C3—H3120.4C14—C15—C16123.05 (12)
C3—C4—C5122.22 (14)C14—C15—N1118.11 (12)
C3—C4—H4118.9C16—C15—N1118.83 (12)
C5—C4—H4118.9C15—C16—C17118.19 (12)
C4—C5—C6122.36 (14)C15—C16—H16120.9
C4—C5—C10119.29 (13)C17—C16—H16120.9
C6—C5—C10118.34 (14)C16—C17—C12120.47 (12)
C7—C6—C5121.57 (14)C16—C17—H17119.8
C7—C6—H6119.2C12—C17—H17119.8
C5—C6—H6119.2O4—C18—H18A109.5
C6—C7—C8120.05 (13)O4—C18—H18B109.5
C6—C7—H7120.0H18A—C18—H18B109.5
C8—C7—H7120.0O4—C18—H18C109.5
O5—C8—C9124.50 (14)H18A—C18—H18C109.5
O5—C8—C7114.60 (13)H18B—C18—H18C109.5
C9—C8—C7120.90 (14)O5—C19—H19A109.5
C8—C9—C10120.22 (13)O5—C19—H19B109.5
C8—C9—H9119.9H19A—C19—H19B109.5
C10—C9—H9119.9O5—C19—H19C109.5
C9—C10—C5118.89 (12)H19A—C19—H19C109.5
C9—C10—C1123.06 (11)H19B—C19—H19C109.5
C18—O4—C2—C1173.20 (13)C2—C1—C10—C9175.40 (12)
C18—O4—C2—C39.2 (2)C11—C1—C10—C94.15 (18)
C10—C1—C2—O4172.62 (11)C2—C1—C10—C55.40 (17)
C11—C1—C2—O46.93 (17)C11—C1—C10—C5175.06 (11)
C10—C1—C2—C35.08 (19)C2—C1—C11—O1125.86 (14)
C11—C1—C2—C3175.38 (12)C10—C1—C11—O153.69 (17)
O4—C2—C3—C4176.15 (14)C2—C1—C11—C1257.33 (16)
C1—C2—C3—C41.4 (2)C10—C1—C11—C12123.12 (12)
C2—C3—C4—C52.0 (2)O1—C11—C12—C1713.28 (17)
C3—C4—C5—C6177.57 (14)C1—C11—C12—C17169.84 (11)
C3—C4—C5—C101.5 (2)O1—C11—C12—C13165.11 (12)
C4—C5—C6—C7177.73 (14)C1—C11—C12—C1311.77 (17)
C10—C5—C6—C71.4 (2)C17—C12—C13—C140.26 (19)
C5—C6—C7—C80.8 (2)C11—C12—C13—C14178.63 (11)
C19—O5—C8—C92.9 (2)C12—C13—C14—C150.14 (19)
C19—O5—C8—C7176.97 (14)C13—C14—C15—C160.3 (2)
C6—C7—C8—O5179.19 (13)C13—C14—C15—N1178.58 (12)
C6—C7—C8—C90.7 (2)O3—N1—C15—C14178.16 (15)
O5—C8—C9—C10178.35 (12)O2—N1—C15—C141.2 (2)
C7—C8—C9—C101.5 (2)O3—N1—C15—C162.9 (2)
C8—C9—C10—C50.86 (18)O2—N1—C15—C16177.70 (14)
C8—C9—C10—C1179.93 (12)C14—C15—C16—C170.0 (2)
C4—C5—C10—C9178.59 (12)N1—C15—C16—C17178.86 (11)
C6—C5—C10—C90.53 (18)C15—C16—C17—C120.44 (19)
C4—C5—C10—C12.16 (18)C13—C12—C17—C160.55 (18)
C6—C5—C10—C1178.71 (11)C11—C12—C17—C16178.99 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the naphthalene ring system C1–C10.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.813.5789 (15)141
C19—H19B···Cg1ii0.962.913.7605 (19)148
C18—H18C···O1iii0.962.493.281 (2)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC19H15NO5
Mr337.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.6877 (6), 28.870 (2), 6.4635 (5)
β (°) 90.839 (5)
V3)1621.0 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.60 × 0.60 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.632, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
29623, 2954, 2713
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.05
No. of reflections2954
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the naphthalene ring system C1–C10.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.813.5789 (15)141
C19—H19B···Cg1ii0.962.913.7605 (19)148
C18—H18C···O1iii0.962.493.281 (2)140
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x, y, z1.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Iketani Science and Technology Foundation, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds