organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,2-Bis(1-propyl-5,6-di­methyl-1H-benzimidazol-2-yl)ethene

aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
*Correspondence e-mail: DZSquared@aol.com

(Received 24 January 2010; accepted 27 January 2010; online 10 February 2010)

In the title compound, C26H32N4, the essentially planar (r.m.s. deviations of 0.0053 and 0.0242 Å) benzimidazole fragments are trans with respect to a central ethene fragment, and are canted in opposite directions by 2.78 (6) and 5.87 (6)° with respect to the ethene plane, giving the mol­ecule a propeller conformation. The terminal ethyl fragments of the pendant n-propyl groups protrude to either side of the benzimidazole planes. Overall, the mol­ecule exhibits a pseudo-center of symmetry at the mid-point of the ethene fragment. Both ππ stacking and typical C—H⋯π inter­actions are notably absent, as are inter­molecular hydrogen bonds. When viewed along the a axis, the structure appears as criss-crossed layers of mol­ecules with the planar fragments separated along the c-cell direction by the protruding ethyl groups.

Related literature

For applications of bis­(imidazoles), bis­(benzimidazoles) and their complexes with metal ions, see: Knapp et al. (1990[Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Amer. Chem. Soc. 112, 3452-3464]); Stibrany et al. (2002[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142-o1144.], 2003[Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584-8586.], 2004[Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472-1480.]); Stibrany & Potenza (2008[Stibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213-m216.]). The title compound was prepared from rac-1,2-bis­(1H-5,6-dimethyl­benzimidazol-2-yl)-1-hydroxy­ethane (Taffs et al., 1961[Taffs, K. H., Prosser, L. V., Wigton, F. B. & Joullie, M. M. (1961). J. Org. Chem. 26, 462-467.]). Alkyl­ation was effected according to a reported method (Stibrany et al., 2004[Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472-1480.]). For related structures see: Stibrany et al. (2005[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. C61, o354-o357.]); Stibrany & Potenza (2006a[Stibrany, R. T. & Potenza, J. A. (2006a). Acta Cryst. E62, o828-o830.],b[Stibrany, R. T. & Potenza, J. A. (2006b). Private communication (reference number CCDC 619256) to the Cambridge Structural Database. CCDC, Union Road, Cambridge, England.], 2009[Stibrany, R. T. & Potenza, J. A. (2009). Private communication (reference number CCDC 717040) to the Cambridge Structural Database. CCDC, Union Road, Cambridge, England.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C26H32N4

  • Mr = 400.56

  • Monoclinic, P 21 /n

  • a = 12.7822 (15) Å

  • b = 10.4802 (12) Å

  • c = 16.5944 (19) Å

  • β = 100.284 (2)°

  • V = 2187.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.32 × 0.28 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.795, Tmax = 1.00

  • 20415 measured reflections

  • 4324 independent reflections

  • 3596 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.00

  • 4324 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) was prepared as part of our long-term interest in the chemistry of bis(imidazoles), bis(benzimidazoles), and their complexes with metal ions. These species have demonstrated their usefulness as proton sponges (Stibrany et al., 2002), geometrically constraining ligands (Stibrany et al., 2004), agents to study electron transfer (Knapp et al., 1990), polymerization catalysts (Stibrany et al., 2003), and in the formation of metal-organic copolymers (Stibrany & Potenza, 2008), The present structure (Fig. 1) contains a central, planar trans 1,2-disubstituted ethene fragment linked at the 2 positions (C12 and C22) to 1-propyl, 5,6-dimethylbenzimidazole fragments. Excluding alkyl substituents, the structure can be viewed as three essentially planar fragments connected by two hinges, the C1—C12 and C2—C22 bonds. The benzimidazole fragments are canted in opposite directions by 2.78 (6)° (bzim 1) and 5.87 (6)°(bzim2) to give the molecule a slight propeller-like shape, while the ethyl fragments of the pendant n-propyl groups, which protrude above and below the planes of the benzimidazole fragments, help to ensure that the molecule has an approximate center of symmetry at the midpoint of the C1—C2 bond.

When viewed approximately along the a cell direction (Fig.2), the structure appears as layers of criss-crossed molecules with the planar fragments separated along the c cell direction by the protruding ethyl groups. A comparative view along the b cell direction (Fig. 3) shows the protruding ethyl groups in a different orientation and indicates clearly the lack of coplanarity of the benzimidazole fragments. These figures are consistent with the absence of ππ stacking and typical C—H···π interactions found by Platon (Spek, 2009). The absences noted above are consistent with the ethyl group conformations, which appear to prevent effective overlap of the π systems. The lack of intermolecular hydrogen bonds is also attributed to the n-propyl substituents, which prevent the formation of intermolecular N(imine)··· HN(amine) hydrogen bonds.

Related literature top

For applications of bis(imidazoles), bis(benzimidazoles) and their complexes with metal ions, see: Knapp et al. (1990); Stibrany et al. (2002, 2003, 2004); Stibrany & Potenza (2008). The title compound was prepared from rac-1,2-bis(1H-5,6-dimethylbenzimidazol-2-yl)-1-hydroxyethane (Taffs et al., 1961). Alkylation was effected according to a reported method (Stibrany et al., 2004). For related structures see: Stibrany et al. (2005); Stibrany & Potenza (2006a,b, 2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Compound (I) was prepared from rac-1,2-bis(1H-5,6-dimethylbenzimidazol-2-yl)-1-hydroxyethane (Taffs et al., 1961). Alkylation was effected according to a reported method (Stibrany et al., 2004). Under Ar, NaH (6 molar equivalents) was added to amixture of rac-1,2-bis(1H-5,6-dimethylbenzimidazol-2-yl)-1-hydroxyethane in dry dimethyl sulfoxide (DMSO). After a reaction time of 10 minutes, n-propyl iodide (2 molar equivalents) was added dropwise. After an additional hour, the product was precipitated with water, collected by filtration, and dried in air. Crystals of (I) (m.p. 523 (soften) 538-539 K(melt)) were obtained by slow cooling of a hot DMSO solution of (I). Rf = 0.64 (ethyl acetate/silica). IR (KBr pellet, cm-1): 2967 (w), 2785 (w), 2700(w), 1582 (s), 1431 (m), 1367 (m), 1326 (w), 1004 (w), 768 (w), 669 (w), 649(w). Compound (I) is remarkably less soluble in a variety of solvents than analogous bis(benzimidazole)ethene compounds previously reported (Stibrany et al., 2005; Stibrany & Potenza, 2006a,b; Stibrany & Potenza, 2009) which, in contrast to (I), were not substituted at the 5 and 6 positions.

Refinement top

Hydrogen atoms were positioned geometrically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are shown as spheres of arbitrary radius
[Figure 2] Fig. 2. The structure viewed approximately along the a cell direction. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The structure viewed approximately along the b cell direction. H atoms have been omitted for clarity.
(E)-1,2-Bis(1-propyl-5,6-dimethyl-1H-benzimidazol-2-yl)ethene top
Crystal data top
C26H32N4F(000) = 864
Mr = 400.56Dx = 1.216 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 953 reflections
a = 12.7822 (15) Åθ = 2.3–25.6°
b = 10.4802 (12) ŵ = 0.07 mm1
c = 16.5944 (19) ÅT = 100 K
β = 100.284 (2)°Plate, yellow
V = 2187.3 (4) Å30.32 × 0.28 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4324 independent reflections
Radiation source: fine-focus sealed tube3596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1515
Tmin = 0.795, Tmax = 1.00k = 1212
20415 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.090P)2 + 1.071P]
where P = (Fo2 + 2Fc2)/3
4324 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C26H32N4V = 2187.3 (4) Å3
Mr = 400.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7822 (15) ŵ = 0.07 mm1
b = 10.4802 (12) ÅT = 100 K
c = 16.5944 (19) Å0.32 × 0.28 × 0.11 mm
β = 100.284 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4324 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
3596 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 1.00Rint = 0.041
20415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
4324 reflectionsΔρmin = 0.18 e Å3
277 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N230.03575 (12)0.86314 (15)0.21188 (9)0.0185 (4)
N130.04680 (12)0.38211 (15)0.29290 (9)0.0184 (4)
C130.12082 (14)0.28848 (18)0.32073 (10)0.0162 (4)
N110.20831 (12)0.47168 (14)0.32962 (9)0.0164 (3)
N210.19800 (12)0.77194 (14)0.18947 (9)0.0164 (3)
C160.29931 (14)0.13963 (18)0.38184 (11)0.0179 (4)
C240.10049 (14)1.08026 (18)0.15724 (11)0.0188 (4)
H240.03271.12020.16770.023*
C110.22163 (14)0.34258 (17)0.34411 (10)0.0154 (4)
C210.21246 (14)0.89625 (18)0.16303 (10)0.0168 (4)
C260.29142 (15)1.08870 (18)0.10388 (11)0.0187 (4)
C170.31163 (14)0.27017 (18)0.37496 (11)0.0182 (4)
H170.37920.30930.39070.022*
C230.11131 (14)0.95179 (18)0.17796 (10)0.0170 (4)
C150.19728 (14)0.08225 (18)0.35742 (10)0.0175 (4)
C140.10936 (14)0.15596 (18)0.32759 (11)0.0179 (4)
H140.04160.11720.31180.021*
C250.18941 (15)1.14824 (18)0.12140 (11)0.0191 (4)
C120.10150 (14)0.49004 (17)0.29953 (11)0.0164 (4)
C220.09024 (14)0.75650 (18)0.21683 (11)0.0167 (4)
C270.30311 (14)0.96279 (18)0.12593 (11)0.0180 (4)
H270.37090.92270.11610.022*
C20.04547 (15)0.63331 (18)0.24519 (11)0.0186 (4)
H20.09180.56190.24180.022*
C10.05794 (14)0.61551 (18)0.27588 (11)0.0178 (4)
H10.10420.68720.28240.021*
C190.39431 (15)0.05820 (19)0.41661 (12)0.0221 (4)
H19A0.45800.11190.42840.033*
H19B0.40450.00750.37670.033*
H19C0.38210.01740.46730.033*
C180.18662 (16)0.06113 (18)0.36216 (12)0.0228 (4)
H18A0.11180.08520.34570.034*
H18B0.21250.08950.41850.034*
H18C0.22880.10160.32540.034*
C280.17841 (16)1.28882 (19)0.10451 (13)0.0251 (5)
H28A0.10301.31230.11500.038*
H28B0.21611.33850.14040.038*
H28C0.20901.30680.04720.038*
C290.38687 (16)1.1613 (2)0.06029 (12)0.0250 (5)
H29A0.44961.10600.05330.037*
H29B0.37411.18880.00650.037*
H29C0.39891.23620.09280.037*
C60.28135 (14)0.67505 (18)0.17675 (11)0.0175 (4)
H6A0.34990.71440.18290.021*
H6B0.26450.60780.21900.021*
C30.29247 (14)0.56624 (17)0.35368 (11)0.0167 (4)
H3A0.27680.64330.31920.020*
H3B0.36110.53080.34430.020*
C40.30192 (15)0.60307 (19)0.44332 (11)0.0210 (4)
H4A0.23700.64970.45090.025*
H4B0.30670.52460.47700.025*
C50.39858 (16)0.6861 (2)0.47298 (12)0.0248 (4)
H5A0.46340.63750.47030.037*
H5B0.39860.71240.52970.037*
H5C0.39610.76180.43810.037*
C70.29199 (15)0.61516 (19)0.09218 (12)0.0222 (4)
H7A0.30020.68330.05020.027*
H7B0.22650.56690.08840.027*
C80.38697 (17)0.5262 (2)0.07528 (14)0.0312 (5)
H8A0.38380.46570.12070.047*
H8B0.38580.47930.02440.047*
H8C0.45270.57610.06990.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N230.0164 (8)0.0184 (8)0.0205 (8)0.0018 (6)0.0026 (6)0.0001 (6)
N130.0171 (8)0.0177 (8)0.0194 (8)0.0012 (6)0.0008 (6)0.0012 (6)
C130.0158 (9)0.0196 (10)0.0134 (8)0.0000 (7)0.0030 (7)0.0004 (7)
N110.0164 (8)0.0155 (8)0.0169 (7)0.0006 (6)0.0017 (6)0.0001 (6)
N210.0160 (8)0.0153 (8)0.0179 (7)0.0006 (6)0.0028 (6)0.0006 (6)
C160.0191 (9)0.0193 (10)0.0150 (8)0.0041 (7)0.0023 (7)0.0000 (7)
C240.0178 (9)0.0186 (10)0.0207 (9)0.0016 (7)0.0053 (7)0.0018 (7)
C110.0188 (9)0.0137 (9)0.0138 (8)0.0003 (7)0.0035 (7)0.0004 (7)
C210.0200 (9)0.0172 (9)0.0131 (8)0.0006 (7)0.0027 (7)0.0020 (7)
C260.0204 (10)0.0193 (10)0.0163 (9)0.0032 (8)0.0032 (7)0.0013 (7)
C170.0153 (9)0.0203 (10)0.0184 (9)0.0006 (7)0.0012 (7)0.0006 (7)
C230.0175 (9)0.0195 (10)0.0144 (8)0.0020 (7)0.0038 (7)0.0012 (7)
C150.0226 (10)0.0161 (9)0.0137 (8)0.0021 (7)0.0028 (7)0.0005 (7)
C140.0171 (9)0.0190 (10)0.0173 (9)0.0043 (7)0.0025 (7)0.0022 (7)
C250.0247 (10)0.0178 (10)0.0160 (9)0.0014 (8)0.0070 (7)0.0002 (7)
C120.0160 (9)0.0184 (9)0.0144 (8)0.0002 (7)0.0015 (7)0.0003 (7)
C220.0169 (9)0.0181 (9)0.0149 (8)0.0013 (7)0.0025 (7)0.0014 (7)
C270.0173 (9)0.0203 (10)0.0160 (9)0.0011 (7)0.0016 (7)0.0022 (7)
C20.0196 (10)0.0186 (10)0.0183 (9)0.0011 (7)0.0056 (7)0.0003 (7)
C10.0200 (10)0.0158 (9)0.0179 (9)0.0002 (7)0.0041 (7)0.0003 (7)
C190.0214 (10)0.0190 (10)0.0244 (10)0.0032 (8)0.0004 (8)0.0024 (8)
C180.0263 (10)0.0168 (10)0.0242 (10)0.0014 (8)0.0014 (8)0.0001 (8)
C280.0267 (11)0.0204 (11)0.0284 (10)0.0008 (8)0.0056 (8)0.0039 (8)
C290.0247 (11)0.0237 (11)0.0252 (10)0.0037 (8)0.0010 (8)0.0033 (8)
C60.0154 (9)0.0172 (9)0.0198 (9)0.0013 (7)0.0029 (7)0.0016 (7)
C30.0144 (9)0.0140 (9)0.0216 (9)0.0023 (7)0.0030 (7)0.0014 (7)
C40.0226 (10)0.0190 (10)0.0221 (10)0.0033 (8)0.0056 (8)0.0007 (8)
C50.0255 (10)0.0245 (11)0.0236 (10)0.0039 (9)0.0022 (8)0.0044 (8)
C70.0245 (10)0.0189 (10)0.0226 (10)0.0014 (8)0.0028 (8)0.0011 (8)
C80.0253 (11)0.0297 (12)0.0370 (12)0.0001 (9)0.0013 (9)0.0121 (10)
Geometric parameters (Å, º) top
N23—C221.327 (2)C2—H20.9500
N23—C231.385 (2)C1—H10.9500
N13—C121.324 (2)C19—H19A0.9800
N13—C131.384 (2)C19—H19B0.9800
C13—C111.398 (2)C19—H19C0.9800
C13—C141.403 (3)C18—H18A0.9800
N11—C111.379 (2)C18—H18B0.9800
N11—C121.381 (2)C18—H18C0.9800
N11—C31.465 (2)C28—H28A0.9800
N21—C211.377 (2)C28—H28B0.9800
N21—C221.381 (2)C28—H28C0.9800
N21—C61.460 (2)C29—H29A0.9800
C16—C171.384 (3)C29—H29B0.9800
C16—C151.428 (3)C29—H29C0.9800
C16—C191.512 (3)C6—C71.521 (3)
C24—C251.383 (3)C6—H6A0.9900
C24—C231.403 (3)C6—H6B0.9900
C24—H240.9500C3—C41.521 (3)
C11—C171.397 (3)C3—H3A0.9900
C21—C271.397 (3)C3—H3B0.9900
C21—C231.399 (3)C4—C51.519 (3)
C26—C271.385 (3)C4—H4A0.9900
C26—C251.428 (3)C4—H4B0.9900
C26—C291.508 (3)C5—H5A0.9800
C17—H170.9500C5—H5B0.9800
C15—C141.381 (3)C5—H5C0.9800
C15—C181.512 (3)C7—C81.517 (3)
C14—H140.9500C7—H7A0.9900
C25—C281.511 (3)C7—H7B0.9900
C12—C11.454 (3)C8—H8A0.9800
C22—C21.456 (3)C8—H8B0.9800
C27—H270.9500C8—H8C0.9800
C2—C11.342 (3)
C22—N23—C23104.73 (15)H19A—C19—H19B109.5
C12—N13—C13104.98 (15)C16—C19—H19C109.5
N13—C13—C11110.28 (16)H19A—C19—H19C109.5
N13—C13—C14130.83 (17)H19B—C19—H19C109.5
C11—C13—C14118.90 (17)C15—C18—H18A109.5
C11—N11—C12106.44 (15)C15—C18—H18B109.5
C11—N11—C3123.67 (15)H18A—C18—H18B109.5
C12—N11—C3129.41 (15)C15—C18—H18C109.5
C21—N21—C22106.56 (15)H18A—C18—H18C109.5
C21—N21—C6124.01 (15)H18B—C18—H18C109.5
C22—N21—C6128.73 (15)C25—C28—H28A109.5
C17—C16—C15120.30 (17)C25—C28—H28B109.5
C17—C16—C19119.60 (17)H28A—C28—H28B109.5
C15—C16—C19120.09 (17)C25—C28—H28C109.5
C25—C24—C23119.38 (17)H28A—C28—H28C109.5
C25—C24—H24120.3H28B—C28—H28C109.5
C23—C24—H24120.3C26—C29—H29A109.5
N11—C11—C17131.66 (17)C26—C29—H29B109.5
N11—C11—C13105.69 (16)H29A—C29—H29B109.5
C17—C11—C13122.65 (17)C26—C29—H29C109.5
N21—C21—C27131.78 (17)H29A—C29—H29C109.5
N21—C21—C23105.66 (15)H29B—C29—H29C109.5
C27—C21—C23122.53 (17)N21—C6—C7111.30 (15)
C27—C26—C25120.02 (17)N21—C6—H6A109.4
C27—C26—C29119.42 (17)C7—C6—H6A109.4
C25—C26—C29120.55 (17)N21—C6—H6B109.4
C16—C17—C11117.96 (17)C7—C6—H6B109.4
C16—C17—H17121.0H6A—C6—H6B108.0
C11—C17—H17121.0N11—C3—C4111.38 (14)
N23—C23—C21110.38 (16)N11—C3—H3A109.4
N23—C23—C24130.64 (17)C4—C3—H3A109.4
C21—C23—C24118.97 (17)N11—C3—H3B109.4
C14—C15—C16120.66 (17)C4—C3—H3B109.4
C14—C15—C18119.97 (17)H3A—C3—H3B108.0
C16—C15—C18119.34 (17)C5—C4—C3112.34 (16)
C15—C14—C13119.53 (17)C5—C4—H4A109.1
C15—C14—H14120.2C3—C4—H4A109.1
C13—C14—H14120.2C5—C4—H4B109.1
C24—C25—C26120.87 (17)C3—C4—H4B109.1
C24—C25—C28119.06 (17)H4A—C4—H4B107.9
C26—C25—C28120.01 (17)C4—C5—H5A109.5
N13—C12—N11112.60 (16)C4—C5—H5B109.5
N13—C12—C1125.38 (16)H5A—C5—H5B109.5
N11—C12—C1121.99 (16)C4—C5—H5C109.5
N23—C22—N21112.63 (16)H5A—C5—H5C109.5
N23—C22—C2125.90 (16)H5B—C5—H5C109.5
N21—C22—C2121.45 (16)C8—C7—C6111.16 (16)
C26—C27—C21118.16 (17)C8—C7—H7A109.4
C26—C27—H27120.9C6—C7—H7A109.4
C21—C27—H27120.9C8—C7—H7B109.4
C1—C2—C22123.34 (18)C6—C7—H7B109.4
C1—C2—H2118.3H7A—C7—H7B108.0
C22—C2—H2118.3C7—C8—H8A109.5
C2—C1—C12122.13 (18)C7—C8—H8B109.5
C2—C1—H1118.9H8A—C8—H8B109.5
C12—C1—H1118.9C7—C8—H8C109.5
C16—C19—H19A109.5H8A—C8—H8C109.5
C16—C19—H19B109.5H8B—C8—H8C109.5
C12—N13—C13—C110.16 (19)C23—C24—C25—C261.2 (3)
C12—N13—C13—C14179.65 (18)C23—C24—C25—C28175.89 (17)
C12—N11—C11—C17179.41 (18)C27—C26—C25—C242.7 (3)
C3—N11—C11—C176.7 (3)C29—C26—C25—C24176.39 (17)
C12—N11—C11—C130.71 (18)C27—C26—C25—C28174.33 (17)
C3—N11—C11—C13173.39 (15)C29—C26—C25—C286.6 (3)
N13—C13—C11—N110.36 (19)C13—N13—C12—N110.6 (2)
C14—C13—C11—N11179.20 (15)C13—N13—C12—C1178.64 (17)
N13—C13—C11—C17179.75 (16)C11—N11—C12—N130.9 (2)
C14—C13—C11—C170.7 (3)C3—N11—C12—N13172.99 (16)
C22—N21—C21—C27176.43 (18)C11—N11—C12—C1178.96 (16)
C6—N21—C21—C275.3 (3)C3—N11—C12—C18.9 (3)
C22—N21—C21—C231.54 (18)C23—N23—C22—N211.3 (2)
C6—N21—C21—C23172.65 (15)C23—N23—C22—C2176.97 (16)
C15—C16—C17—C110.4 (3)C21—N21—C22—N231.9 (2)
C19—C16—C17—C11178.72 (16)C6—N21—C22—N23172.42 (16)
N11—C11—C17—C16179.49 (18)C21—N21—C22—C2176.52 (16)
C13—C11—C17—C160.4 (3)C6—N21—C22—C26.0 (3)
C22—N23—C23—C210.30 (19)C25—C26—C27—C211.9 (3)
C22—N23—C23—C24178.94 (18)C29—C26—C27—C21177.25 (16)
N21—C21—C23—N230.80 (19)N21—C21—C27—C26178.11 (18)
C27—C21—C23—N23177.40 (15)C23—C21—C27—C260.4 (3)
N21—C21—C23—C24179.86 (15)N23—C22—C2—C15.1 (3)
C27—C21—C23—C241.9 (3)N21—C22—C2—C1176.72 (17)
C25—C24—C23—N23178.11 (17)C22—C2—C1—C12176.52 (16)
C25—C24—C23—C211.1 (3)N13—C12—C1—C20.9 (3)
C17—C16—C15—C140.8 (3)N11—C12—C1—C2178.73 (16)
C19—C16—C15—C14178.29 (16)C21—N21—C6—C783.2 (2)
C17—C16—C15—C18177.44 (17)C22—N21—C6—C785.9 (2)
C19—C16—C15—C183.5 (2)C11—N11—C3—C481.9 (2)
C16—C15—C14—C130.5 (3)C12—N11—C3—C489.0 (2)
C18—C15—C14—C13177.76 (16)N11—C3—C4—C5171.72 (15)
N13—C13—C14—C15179.71 (17)N21—C6—C7—C8173.22 (16)
C11—C13—C14—C150.3 (2)

Experimental details

Crystal data
Chemical formulaC26H32N4
Mr400.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.7822 (15), 10.4802 (12), 16.5944 (19)
β (°) 100.284 (2)
V3)2187.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.28 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.795, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
20415, 4324, 3596
Rint0.041
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.151, 1.00
No. of reflections4324
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.18

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKnapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Amer. Chem. Soc. 112, 3452–3464  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472–1480.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2006a). Acta Cryst. E62, o828–o830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2006b). Private communication (reference number CCDC 619256) to the Cambridge Structural Database. CCDC, Union Road, Cambridge, England.  Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213–m216.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T. & Potenza, J. A. (2009). Private communication (reference number CCDC 717040) to the Cambridge Structural Database. CCDC, Union Road, Cambridge, England.  Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. C61, o354–o357.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584–8586.  Web of Science CSD CrossRef CAS Google Scholar
First citationTaffs, K. H., Prosser, L. V., Wigton, F. B. & Joullie, M. M. (1961). J. Org. Chem. 26, 462-467.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds