organic compounds
(E)-1,2-Bis(1-propyl-5,6-dimethyl-1H-benzimidazol-2-yl)ethene
aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
*Correspondence e-mail: DZSquared@aol.com
In the title compound, C26H32N4, the essentially planar (r.m.s. deviations of 0.0053 and 0.0242 Å) benzimidazole fragments are trans with respect to a central ethene fragment, and are canted in opposite directions by 2.78 (6) and 5.87 (6)° with respect to the ethene plane, giving the molecule a propeller conformation. The terminal ethyl fragments of the pendant n-propyl groups protrude to either side of the benzimidazole planes. Overall, the molecule exhibits a pseudo-center of symmetry at the mid-point of the ethene fragment. Both π–π stacking and typical C—H⋯π interactions are notably absent, as are intermolecular hydrogen bonds. When viewed along the a axis, the structure appears as criss-crossed layers of molecules with the planar fragments separated along the c-cell direction by the protruding ethyl groups.
Related literature
For applications of bis(imidazoles), bis(benzimidazoles) and their complexes with metal ions, see: Knapp et al. (1990); Stibrany et al. (2002, 2003, 2004); Stibrany & Potenza (2008). The title compound was prepared from rac-1,2-bis(1H-5,6-dimethylbenzimidazol-2-yl)-1-hydroxyethane (Taffs et al., 1961). Alkylation was effected according to a reported method (Stibrany et al., 2004). For related structures see: Stibrany et al. (2005); Stibrany & Potenza (2006a,b, 2009). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810003405/jh2128sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810003405/jh2128Isup2.hkl
Compound (I) was prepared from rac-1,2-bis(1H-5,6-dimethylbenzimidazol-2-yl)-1-hydroxyethane (Taffs et al., 1961). Alkylation was effected according to a reported method (Stibrany et al., 2004). Under Ar, NaH (6 molar equivalents) was added to amixture of rac-1,2-bis(1H-5,6-dimethylbenzimidazol-2-yl)-1-hydroxyethane in dry dimethyl sulfoxide (DMSO). After a reaction time of 10 minutes, n-propyl iodide (2 molar equivalents) was added dropwise. After an additional hour, the product was precipitated with water, collected by filtration, and dried in air. Crystals of (I) (m.p. 523 (soften) 538-539 K(melt)) were obtained by slow cooling of a hot DMSO solution of (I). Rf = 0.64 (ethyl acetate/silica). IR (KBr pellet, cm-1): 2967 (w), 2785 (w), 2700(w), 1582 (s), 1431 (m), 1367 (m), 1326 (w), 1004 (w), 768 (w), 669 (w), 649(w). Compound (I) is remarkably less soluble in a variety of solvents than analogous bis(benzimidazole)ethene compounds previously reported (Stibrany et al., 2005; Stibrany & Potenza, 2006a,b; Stibrany & Potenza, 2009) which, in contrast to (I), were not substituted at the 5 and 6 positions.
Hydrogen atoms were positioned geometrically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq (C).
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C26H32N4 | F(000) = 864 |
Mr = 400.56 | Dx = 1.216 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 953 reflections |
a = 12.7822 (15) Å | θ = 2.3–25.6° |
b = 10.4802 (12) Å | µ = 0.07 mm−1 |
c = 16.5944 (19) Å | T = 100 K |
β = 100.284 (2)° | Plate, yellow |
V = 2187.3 (4) Å3 | 0.32 × 0.28 × 0.11 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 4324 independent reflections |
Radiation source: fine-focus sealed tube | 3596 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ϕ and ω scans | θmax = 26.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Blessing, 1995) | h = −15→15 |
Tmin = 0.795, Tmax = 1.00 | k = −12→12 |
20415 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.090P)2 + 1.071P] where P = (Fo2 + 2Fc2)/3 |
4324 reflections | (Δ/σ)max < 0.001 |
277 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C26H32N4 | V = 2187.3 (4) Å3 |
Mr = 400.56 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.7822 (15) Å | µ = 0.07 mm−1 |
b = 10.4802 (12) Å | T = 100 K |
c = 16.5944 (19) Å | 0.32 × 0.28 × 0.11 mm |
β = 100.284 (2)° |
Bruker SMART CCD area-detector diffractometer | 4324 independent reflections |
Absorption correction: multi-scan (SADABS; Blessing, 1995) | 3596 reflections with I > 2σ(I) |
Tmin = 0.795, Tmax = 1.00 | Rint = 0.041 |
20415 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.34 e Å−3 |
4324 reflections | Δρmin = −0.18 e Å−3 |
277 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N23 | −0.03575 (12) | 0.86314 (15) | 0.21188 (9) | 0.0185 (4) | |
N13 | 0.04680 (12) | 0.38211 (15) | 0.29290 (9) | 0.0184 (4) | |
C13 | 0.12082 (14) | 0.28848 (18) | 0.32073 (10) | 0.0162 (4) | |
N11 | 0.20831 (12) | 0.47168 (14) | 0.32962 (9) | 0.0164 (3) | |
N21 | −0.19800 (12) | 0.77194 (14) | 0.18947 (9) | 0.0164 (3) | |
C16 | 0.29931 (14) | 0.13963 (18) | 0.38184 (11) | 0.0179 (4) | |
C24 | −0.10049 (14) | 1.08026 (18) | 0.15724 (11) | 0.0188 (4) | |
H24 | −0.0327 | 1.1202 | 0.1677 | 0.023* | |
C11 | 0.22163 (14) | 0.34258 (17) | 0.34411 (10) | 0.0154 (4) | |
C21 | −0.21246 (14) | 0.89625 (18) | 0.16303 (10) | 0.0168 (4) | |
C26 | −0.29142 (15) | 1.08870 (18) | 0.10388 (11) | 0.0187 (4) | |
C17 | 0.31163 (14) | 0.27017 (18) | 0.37496 (11) | 0.0182 (4) | |
H17 | 0.3792 | 0.3093 | 0.3907 | 0.022* | |
C23 | −0.11131 (14) | 0.95179 (18) | 0.17796 (10) | 0.0170 (4) | |
C15 | 0.19728 (14) | 0.08225 (18) | 0.35742 (10) | 0.0175 (4) | |
C14 | 0.10936 (14) | 0.15596 (18) | 0.32759 (11) | 0.0179 (4) | |
H14 | 0.0416 | 0.1172 | 0.3118 | 0.021* | |
C25 | −0.18941 (15) | 1.14824 (18) | 0.12140 (11) | 0.0191 (4) | |
C12 | 0.10150 (14) | 0.49004 (17) | 0.29953 (11) | 0.0164 (4) | |
C22 | −0.09024 (14) | 0.75650 (18) | 0.21683 (11) | 0.0167 (4) | |
C27 | −0.30311 (14) | 0.96279 (18) | 0.12593 (11) | 0.0180 (4) | |
H27 | −0.3709 | 0.9227 | 0.1161 | 0.022* | |
C2 | −0.04547 (15) | 0.63331 (18) | 0.24519 (11) | 0.0186 (4) | |
H2 | −0.0918 | 0.5619 | 0.2418 | 0.022* | |
C1 | 0.05794 (14) | 0.61551 (18) | 0.27588 (11) | 0.0178 (4) | |
H1 | 0.1042 | 0.6872 | 0.2824 | 0.021* | |
C19 | 0.39431 (15) | 0.05820 (19) | 0.41661 (12) | 0.0221 (4) | |
H19A | 0.4580 | 0.1119 | 0.4284 | 0.033* | |
H19B | 0.4045 | −0.0075 | 0.3767 | 0.033* | |
H19C | 0.3821 | 0.0174 | 0.4673 | 0.033* | |
C18 | 0.18662 (16) | −0.06113 (18) | 0.36216 (12) | 0.0228 (4) | |
H18A | 0.1118 | −0.0852 | 0.3457 | 0.034* | |
H18B | 0.2125 | −0.0895 | 0.4185 | 0.034* | |
H18C | 0.2288 | −0.1016 | 0.3254 | 0.034* | |
C28 | −0.17841 (16) | 1.28882 (19) | 0.10451 (13) | 0.0251 (5) | |
H28A | −0.1030 | 1.3123 | 0.1150 | 0.038* | |
H28B | −0.2161 | 1.3385 | 0.1404 | 0.038* | |
H28C | −0.2090 | 1.3068 | 0.0472 | 0.038* | |
C29 | −0.38687 (16) | 1.1613 (2) | 0.06029 (12) | 0.0250 (5) | |
H29A | −0.4496 | 1.1060 | 0.0533 | 0.037* | |
H29B | −0.3741 | 1.1888 | 0.0065 | 0.037* | |
H29C | −0.3989 | 1.2362 | 0.0928 | 0.037* | |
C6 | −0.28135 (14) | 0.67505 (18) | 0.17675 (11) | 0.0175 (4) | |
H6A | −0.3499 | 0.7144 | 0.1829 | 0.021* | |
H6B | −0.2645 | 0.6078 | 0.2190 | 0.021* | |
C3 | 0.29247 (14) | 0.56624 (17) | 0.35368 (11) | 0.0167 (4) | |
H3A | 0.2768 | 0.6433 | 0.3192 | 0.020* | |
H3B | 0.3611 | 0.5308 | 0.3443 | 0.020* | |
C4 | 0.30192 (15) | 0.60307 (19) | 0.44332 (11) | 0.0210 (4) | |
H4A | 0.2370 | 0.6497 | 0.4509 | 0.025* | |
H4B | 0.3067 | 0.5246 | 0.4770 | 0.025* | |
C5 | 0.39858 (16) | 0.6861 (2) | 0.47298 (12) | 0.0248 (4) | |
H5A | 0.4634 | 0.6375 | 0.4703 | 0.037* | |
H5B | 0.3986 | 0.7124 | 0.5297 | 0.037* | |
H5C | 0.3961 | 0.7618 | 0.4381 | 0.037* | |
C7 | −0.29199 (15) | 0.61516 (19) | 0.09218 (12) | 0.0222 (4) | |
H7A | −0.3002 | 0.6833 | 0.0502 | 0.027* | |
H7B | −0.2265 | 0.5669 | 0.0884 | 0.027* | |
C8 | −0.38697 (17) | 0.5262 (2) | 0.07528 (14) | 0.0312 (5) | |
H8A | −0.3838 | 0.4657 | 0.1207 | 0.047* | |
H8B | −0.3858 | 0.4793 | 0.0244 | 0.047* | |
H8C | −0.4527 | 0.5761 | 0.0699 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N23 | 0.0164 (8) | 0.0184 (8) | 0.0205 (8) | 0.0018 (6) | 0.0026 (6) | 0.0001 (6) |
N13 | 0.0171 (8) | 0.0177 (8) | 0.0194 (8) | 0.0012 (6) | 0.0008 (6) | 0.0012 (6) |
C13 | 0.0158 (9) | 0.0196 (10) | 0.0134 (8) | 0.0000 (7) | 0.0030 (7) | −0.0004 (7) |
N11 | 0.0164 (8) | 0.0155 (8) | 0.0169 (7) | −0.0006 (6) | 0.0017 (6) | −0.0001 (6) |
N21 | 0.0160 (8) | 0.0153 (8) | 0.0179 (7) | 0.0006 (6) | 0.0028 (6) | 0.0006 (6) |
C16 | 0.0191 (9) | 0.0193 (10) | 0.0150 (8) | 0.0041 (7) | 0.0023 (7) | 0.0000 (7) |
C24 | 0.0178 (9) | 0.0186 (10) | 0.0207 (9) | −0.0016 (7) | 0.0053 (7) | −0.0018 (7) |
C11 | 0.0188 (9) | 0.0137 (9) | 0.0138 (8) | −0.0003 (7) | 0.0035 (7) | −0.0004 (7) |
C21 | 0.0200 (9) | 0.0172 (9) | 0.0131 (8) | 0.0006 (7) | 0.0027 (7) | −0.0020 (7) |
C26 | 0.0204 (10) | 0.0193 (10) | 0.0163 (9) | 0.0032 (8) | 0.0032 (7) | −0.0013 (7) |
C17 | 0.0153 (9) | 0.0203 (10) | 0.0184 (9) | −0.0006 (7) | 0.0012 (7) | −0.0006 (7) |
C23 | 0.0175 (9) | 0.0195 (10) | 0.0144 (8) | 0.0020 (7) | 0.0038 (7) | −0.0012 (7) |
C15 | 0.0226 (10) | 0.0161 (9) | 0.0137 (8) | −0.0021 (7) | 0.0028 (7) | 0.0005 (7) |
C14 | 0.0171 (9) | 0.0190 (10) | 0.0173 (9) | −0.0043 (7) | 0.0025 (7) | −0.0022 (7) |
C25 | 0.0247 (10) | 0.0178 (10) | 0.0160 (9) | 0.0014 (8) | 0.0070 (7) | 0.0002 (7) |
C12 | 0.0160 (9) | 0.0184 (9) | 0.0144 (8) | −0.0002 (7) | 0.0015 (7) | −0.0003 (7) |
C22 | 0.0169 (9) | 0.0181 (9) | 0.0149 (8) | 0.0013 (7) | 0.0025 (7) | −0.0014 (7) |
C27 | 0.0173 (9) | 0.0203 (10) | 0.0160 (9) | −0.0011 (7) | 0.0016 (7) | −0.0022 (7) |
C2 | 0.0196 (10) | 0.0186 (10) | 0.0183 (9) | −0.0011 (7) | 0.0056 (7) | −0.0003 (7) |
C1 | 0.0200 (10) | 0.0158 (9) | 0.0179 (9) | 0.0002 (7) | 0.0041 (7) | −0.0003 (7) |
C19 | 0.0214 (10) | 0.0190 (10) | 0.0244 (10) | 0.0032 (8) | 0.0004 (8) | 0.0024 (8) |
C18 | 0.0263 (10) | 0.0168 (10) | 0.0242 (10) | −0.0014 (8) | 0.0014 (8) | 0.0001 (8) |
C28 | 0.0267 (11) | 0.0204 (11) | 0.0284 (10) | 0.0008 (8) | 0.0056 (8) | 0.0039 (8) |
C29 | 0.0247 (11) | 0.0237 (11) | 0.0252 (10) | 0.0037 (8) | 0.0010 (8) | 0.0033 (8) |
C6 | 0.0154 (9) | 0.0172 (9) | 0.0198 (9) | −0.0013 (7) | 0.0029 (7) | 0.0016 (7) |
C3 | 0.0144 (9) | 0.0140 (9) | 0.0216 (9) | −0.0023 (7) | 0.0030 (7) | 0.0014 (7) |
C4 | 0.0226 (10) | 0.0190 (10) | 0.0221 (10) | −0.0033 (8) | 0.0056 (8) | −0.0007 (8) |
C5 | 0.0255 (10) | 0.0245 (11) | 0.0236 (10) | −0.0039 (9) | 0.0022 (8) | −0.0044 (8) |
C7 | 0.0245 (10) | 0.0189 (10) | 0.0226 (10) | 0.0014 (8) | 0.0028 (8) | −0.0011 (8) |
C8 | 0.0253 (11) | 0.0297 (12) | 0.0370 (12) | 0.0001 (9) | 0.0013 (9) | −0.0121 (10) |
N23—C22 | 1.327 (2) | C2—H2 | 0.9500 |
N23—C23 | 1.385 (2) | C1—H1 | 0.9500 |
N13—C12 | 1.324 (2) | C19—H19A | 0.9800 |
N13—C13 | 1.384 (2) | C19—H19B | 0.9800 |
C13—C11 | 1.398 (2) | C19—H19C | 0.9800 |
C13—C14 | 1.403 (3) | C18—H18A | 0.9800 |
N11—C11 | 1.379 (2) | C18—H18B | 0.9800 |
N11—C12 | 1.381 (2) | C18—H18C | 0.9800 |
N11—C3 | 1.465 (2) | C28—H28A | 0.9800 |
N21—C21 | 1.377 (2) | C28—H28B | 0.9800 |
N21—C22 | 1.381 (2) | C28—H28C | 0.9800 |
N21—C6 | 1.460 (2) | C29—H29A | 0.9800 |
C16—C17 | 1.384 (3) | C29—H29B | 0.9800 |
C16—C15 | 1.428 (3) | C29—H29C | 0.9800 |
C16—C19 | 1.512 (3) | C6—C7 | 1.521 (3) |
C24—C25 | 1.383 (3) | C6—H6A | 0.9900 |
C24—C23 | 1.403 (3) | C6—H6B | 0.9900 |
C24—H24 | 0.9500 | C3—C4 | 1.521 (3) |
C11—C17 | 1.397 (3) | C3—H3A | 0.9900 |
C21—C27 | 1.397 (3) | C3—H3B | 0.9900 |
C21—C23 | 1.399 (3) | C4—C5 | 1.519 (3) |
C26—C27 | 1.385 (3) | C4—H4A | 0.9900 |
C26—C25 | 1.428 (3) | C4—H4B | 0.9900 |
C26—C29 | 1.508 (3) | C5—H5A | 0.9800 |
C17—H17 | 0.9500 | C5—H5B | 0.9800 |
C15—C14 | 1.381 (3) | C5—H5C | 0.9800 |
C15—C18 | 1.512 (3) | C7—C8 | 1.517 (3) |
C14—H14 | 0.9500 | C7—H7A | 0.9900 |
C25—C28 | 1.511 (3) | C7—H7B | 0.9900 |
C12—C1 | 1.454 (3) | C8—H8A | 0.9800 |
C22—C2 | 1.456 (3) | C8—H8B | 0.9800 |
C27—H27 | 0.9500 | C8—H8C | 0.9800 |
C2—C1 | 1.342 (3) | ||
C22—N23—C23 | 104.73 (15) | H19A—C19—H19B | 109.5 |
C12—N13—C13 | 104.98 (15) | C16—C19—H19C | 109.5 |
N13—C13—C11 | 110.28 (16) | H19A—C19—H19C | 109.5 |
N13—C13—C14 | 130.83 (17) | H19B—C19—H19C | 109.5 |
C11—C13—C14 | 118.90 (17) | C15—C18—H18A | 109.5 |
C11—N11—C12 | 106.44 (15) | C15—C18—H18B | 109.5 |
C11—N11—C3 | 123.67 (15) | H18A—C18—H18B | 109.5 |
C12—N11—C3 | 129.41 (15) | C15—C18—H18C | 109.5 |
C21—N21—C22 | 106.56 (15) | H18A—C18—H18C | 109.5 |
C21—N21—C6 | 124.01 (15) | H18B—C18—H18C | 109.5 |
C22—N21—C6 | 128.73 (15) | C25—C28—H28A | 109.5 |
C17—C16—C15 | 120.30 (17) | C25—C28—H28B | 109.5 |
C17—C16—C19 | 119.60 (17) | H28A—C28—H28B | 109.5 |
C15—C16—C19 | 120.09 (17) | C25—C28—H28C | 109.5 |
C25—C24—C23 | 119.38 (17) | H28A—C28—H28C | 109.5 |
C25—C24—H24 | 120.3 | H28B—C28—H28C | 109.5 |
C23—C24—H24 | 120.3 | C26—C29—H29A | 109.5 |
N11—C11—C17 | 131.66 (17) | C26—C29—H29B | 109.5 |
N11—C11—C13 | 105.69 (16) | H29A—C29—H29B | 109.5 |
C17—C11—C13 | 122.65 (17) | C26—C29—H29C | 109.5 |
N21—C21—C27 | 131.78 (17) | H29A—C29—H29C | 109.5 |
N21—C21—C23 | 105.66 (15) | H29B—C29—H29C | 109.5 |
C27—C21—C23 | 122.53 (17) | N21—C6—C7 | 111.30 (15) |
C27—C26—C25 | 120.02 (17) | N21—C6—H6A | 109.4 |
C27—C26—C29 | 119.42 (17) | C7—C6—H6A | 109.4 |
C25—C26—C29 | 120.55 (17) | N21—C6—H6B | 109.4 |
C16—C17—C11 | 117.96 (17) | C7—C6—H6B | 109.4 |
C16—C17—H17 | 121.0 | H6A—C6—H6B | 108.0 |
C11—C17—H17 | 121.0 | N11—C3—C4 | 111.38 (14) |
N23—C23—C21 | 110.38 (16) | N11—C3—H3A | 109.4 |
N23—C23—C24 | 130.64 (17) | C4—C3—H3A | 109.4 |
C21—C23—C24 | 118.97 (17) | N11—C3—H3B | 109.4 |
C14—C15—C16 | 120.66 (17) | C4—C3—H3B | 109.4 |
C14—C15—C18 | 119.97 (17) | H3A—C3—H3B | 108.0 |
C16—C15—C18 | 119.34 (17) | C5—C4—C3 | 112.34 (16) |
C15—C14—C13 | 119.53 (17) | C5—C4—H4A | 109.1 |
C15—C14—H14 | 120.2 | C3—C4—H4A | 109.1 |
C13—C14—H14 | 120.2 | C5—C4—H4B | 109.1 |
C24—C25—C26 | 120.87 (17) | C3—C4—H4B | 109.1 |
C24—C25—C28 | 119.06 (17) | H4A—C4—H4B | 107.9 |
C26—C25—C28 | 120.01 (17) | C4—C5—H5A | 109.5 |
N13—C12—N11 | 112.60 (16) | C4—C5—H5B | 109.5 |
N13—C12—C1 | 125.38 (16) | H5A—C5—H5B | 109.5 |
N11—C12—C1 | 121.99 (16) | C4—C5—H5C | 109.5 |
N23—C22—N21 | 112.63 (16) | H5A—C5—H5C | 109.5 |
N23—C22—C2 | 125.90 (16) | H5B—C5—H5C | 109.5 |
N21—C22—C2 | 121.45 (16) | C8—C7—C6 | 111.16 (16) |
C26—C27—C21 | 118.16 (17) | C8—C7—H7A | 109.4 |
C26—C27—H27 | 120.9 | C6—C7—H7A | 109.4 |
C21—C27—H27 | 120.9 | C8—C7—H7B | 109.4 |
C1—C2—C22 | 123.34 (18) | C6—C7—H7B | 109.4 |
C1—C2—H2 | 118.3 | H7A—C7—H7B | 108.0 |
C22—C2—H2 | 118.3 | C7—C8—H8A | 109.5 |
C2—C1—C12 | 122.13 (18) | C7—C8—H8B | 109.5 |
C2—C1—H1 | 118.9 | H8A—C8—H8B | 109.5 |
C12—C1—H1 | 118.9 | C7—C8—H8C | 109.5 |
C16—C19—H19A | 109.5 | H8A—C8—H8C | 109.5 |
C16—C19—H19B | 109.5 | H8B—C8—H8C | 109.5 |
C12—N13—C13—C11 | −0.16 (19) | C23—C24—C25—C26 | −1.2 (3) |
C12—N13—C13—C14 | −179.65 (18) | C23—C24—C25—C28 | 175.89 (17) |
C12—N11—C11—C17 | −179.41 (18) | C27—C26—C25—C24 | 2.7 (3) |
C3—N11—C11—C17 | −6.7 (3) | C29—C26—C25—C24 | −176.39 (17) |
C12—N11—C11—C13 | 0.71 (18) | C27—C26—C25—C28 | −174.33 (17) |
C3—N11—C11—C13 | 173.39 (15) | C29—C26—C25—C28 | 6.6 (3) |
N13—C13—C11—N11 | −0.36 (19) | C13—N13—C12—N11 | 0.6 (2) |
C14—C13—C11—N11 | 179.20 (15) | C13—N13—C12—C1 | 178.64 (17) |
N13—C13—C11—C17 | 179.75 (16) | C11—N11—C12—N13 | −0.9 (2) |
C14—C13—C11—C17 | −0.7 (3) | C3—N11—C12—N13 | −172.99 (16) |
C22—N21—C21—C27 | 176.43 (18) | C11—N11—C12—C1 | −178.96 (16) |
C6—N21—C21—C27 | 5.3 (3) | C3—N11—C12—C1 | 8.9 (3) |
C22—N21—C21—C23 | −1.54 (18) | C23—N23—C22—N21 | −1.3 (2) |
C6—N21—C21—C23 | −172.65 (15) | C23—N23—C22—C2 | 176.97 (16) |
C15—C16—C17—C11 | 0.4 (3) | C21—N21—C22—N23 | 1.9 (2) |
C19—C16—C17—C11 | −178.72 (16) | C6—N21—C22—N23 | 172.42 (16) |
N11—C11—C17—C16 | −179.49 (18) | C21—N21—C22—C2 | −176.52 (16) |
C13—C11—C17—C16 | 0.4 (3) | C6—N21—C22—C2 | −6.0 (3) |
C22—N23—C23—C21 | 0.30 (19) | C25—C26—C27—C21 | −1.9 (3) |
C22—N23—C23—C24 | −178.94 (18) | C29—C26—C27—C21 | 177.25 (16) |
N21—C21—C23—N23 | 0.80 (19) | N21—C21—C27—C26 | −178.11 (18) |
C27—C21—C23—N23 | −177.40 (15) | C23—C21—C27—C26 | −0.4 (3) |
N21—C21—C23—C24 | −179.86 (15) | N23—C22—C2—C1 | 5.1 (3) |
C27—C21—C23—C24 | 1.9 (3) | N21—C22—C2—C1 | −176.72 (17) |
C25—C24—C23—N23 | 178.11 (17) | C22—C2—C1—C12 | −176.52 (16) |
C25—C24—C23—C21 | −1.1 (3) | N13—C12—C1—C2 | 0.9 (3) |
C17—C16—C15—C14 | −0.8 (3) | N11—C12—C1—C2 | 178.73 (16) |
C19—C16—C15—C14 | 178.29 (16) | C21—N21—C6—C7 | 83.2 (2) |
C17—C16—C15—C18 | 177.44 (17) | C22—N21—C6—C7 | −85.9 (2) |
C19—C16—C15—C18 | −3.5 (2) | C11—N11—C3—C4 | −81.9 (2) |
C16—C15—C14—C13 | 0.5 (3) | C12—N11—C3—C4 | 89.0 (2) |
C18—C15—C14—C13 | −177.76 (16) | N11—C3—C4—C5 | 171.72 (15) |
N13—C13—C14—C15 | 179.71 (17) | N21—C6—C7—C8 | −173.22 (16) |
C11—C13—C14—C15 | 0.3 (2) |
Experimental details
Crystal data | |
Chemical formula | C26H32N4 |
Mr | 400.56 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 12.7822 (15), 10.4802 (12), 16.5944 (19) |
β (°) | 100.284 (2) |
V (Å3) | 2187.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.32 × 0.28 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Blessing, 1995) |
Tmin, Tmax | 0.795, 1.00 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20415, 4324, 3596 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.619 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.151, 1.00 |
No. of reflections | 4324 |
No. of parameters | 277 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.18 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2000). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Amer. Chem. Soc. 112, 3452–3464 CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stibrany, R. T., Lobanov, M. V., Schugar, H. J. & Potenza, J. A. (2004). Inorg. Chem. 43, 1472–1480. Web of Science CSD CrossRef PubMed CAS Google Scholar
Stibrany, R. T. & Potenza, J. A. (2006a). Acta Cryst. E62, o828–o830. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stibrany, R. T. & Potenza, J. A. (2006b). Private communication (reference number CCDC 619256) to the Cambridge Structural Database. CCDC, Union Road, Cambridge, England. Google Scholar
Stibrany, R. T. & Potenza, J. A. (2008). Acta Cryst. C64, m213–m216. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Stibrany, R. T. & Potenza, J. A. (2009). Private communication (reference number CCDC 717040) to the Cambridge Structural Database. CCDC, Union Road, Cambridge, England. Google Scholar
Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2005). Acta Cryst. C61, o354–o357. CSD CrossRef CAS IUCr Journals Google Scholar
Stibrany, R. T., Schulz, D. N., Kacker, S., Patil, A. O., Baugh, L. S., Rucker, S. P., Zushma, S., Berluche, E. & Sissano, J. A. (2003). Macromolecules, 36, 8584–8586. Web of Science CSD CrossRef CAS Google Scholar
Taffs, K. H., Prosser, L. V., Wigton, F. B. & Joullie, M. M. (1961). J. Org. Chem. 26, 462-467. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I) was prepared as part of our long-term interest in the chemistry of bis(imidazoles), bis(benzimidazoles), and their complexes with metal ions. These species have demonstrated their usefulness as proton sponges (Stibrany et al., 2002), geometrically constraining ligands (Stibrany et al., 2004), agents to study electron transfer (Knapp et al., 1990), polymerization catalysts (Stibrany et al., 2003), and in the formation of metal-organic copolymers (Stibrany & Potenza, 2008), The present structure (Fig. 1) contains a central, planar trans 1,2-disubstituted ethene fragment linked at the 2 positions (C12 and C22) to 1-propyl, 5,6-dimethylbenzimidazole fragments. Excluding alkyl substituents, the structure can be viewed as three essentially planar fragments connected by two hinges, the C1—C12 and C2—C22 bonds. The benzimidazole fragments are canted in opposite directions by 2.78 (6)° (bzim 1) and 5.87 (6)°(bzim2) to give the molecule a slight propeller-like shape, while the ethyl fragments of the pendant n-propyl groups, which protrude above and below the planes of the benzimidazole fragments, help to ensure that the molecule has an approximate center of symmetry at the midpoint of the C1—C2 bond.
When viewed approximately along the a cell direction (Fig.2), the structure appears as layers of criss-crossed molecules with the planar fragments separated along the c cell direction by the protruding ethyl groups. A comparative view along the b cell direction (Fig. 3) shows the protruding ethyl groups in a different orientation and indicates clearly the lack of coplanarity of the benzimidazole fragments. These figures are consistent with the absence of π–π stacking and typical C—H···π interactions found by Platon (Spek, 2009). The absences noted above are consistent with the ethyl group conformations, which appear to prevent effective overlap of the π systems. The lack of intermolecular hydrogen bonds is also attributed to the n-propyl substituents, which prevent the formation of intermolecular N(imine)··· H–N(amine) hydrogen bonds.