organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o938-o939

2-[(E)-2-(4-Eth­oxy­phen­yl)ethen­yl]-1-methyl­quinolinium iodide dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 12 March 2010; accepted 21 March 2010; online 27 March 2010)

In the title compound, C20H20NO+·I·2H2O, the cation is almost planar (r.m.s. deviation = 0.038 Å) and exists in an E configuration. The dihedral angle between the quinolinium ring system and the benzene ring is 0.7 (4)°. In the crystal structure, the cations are stacked in an anti-parallel manner along [100] with ππ inter­actions between the pyridinium and ethoxy­benzene rings [centroid–centroid distance = 3.678 (5) Å]. The cations, iodide anions and water mol­ecules are linked together through O—H⋯O, O—H⋯I and C—H⋯I hydrogen bonds into a two-dimensional network parallel to (001).

Related literature

For background to non-linear optical materials research, see: Kagawa et al. (1994[Kagawa, K., Sagawa, M., Kakuta, A., Saji, M., Nakayama, H. & Ishii, K. (1994). J. Cryst. Growth, 139, 309-318.]); Williams (1984[Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.]). For the anti­bacterial activity of quinoline derivatives, see: Hopkins et al. (2005[Hopkins, K. L., Davies, R. H. & Threfall, E. J. (2005). Int. J. Antimicrob. Agents, 25, 358-373.]); Kaminsky & Meltzer (1968[Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160-163.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); O'Donnell et al. (2010[O'Donnell, F., Smyth, T. J. P., Ramachandran, V. N. & Smyth, W. F. (2010). Int. J. Antimicrob. Agents, 35, 30-38.]). For a related structure, see: Laksana et al. (2008[Laksana, C., Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o145-o146.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20NO+·I·2H2O

  • Mr = 453.30

  • Triclinic, [P \overline 1]

  • a = 8.2450 (9) Å

  • b = 10.6676 (12) Å

  • c = 12.2492 (14) Å

  • α = 85.789 (2)°

  • β = 70.516 (2)°

  • γ = 71.272 (2)°

  • V = 961.21 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 100 K

  • 0.49 × 0.08 × 0.05 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.493, Tmax = 0.927

  • 11172 measured reflections

  • 3910 independent reflections

  • 3551 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.211

  • S = 1.15

  • 3910 reflections

  • 220 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 2.43 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H1W2⋯O1W 0.83 1.99 2.711 (11) 143
O1W—H2W1⋯I1i 0.84 2.77 3.588 (7) 163
O2W—H2W2⋯I1ii 0.84 2.87 3.579 (7) 144
C2—H2A⋯I1iii 0.93 3.02 3.814 (10) 145
C7—H7A⋯I1i 0.93 2.89 3.708 (10) 148
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic crystals are highly recognized as materials of the future because their molecular nature combined with versatility of synthetic chemistry can be used to alter their structures in order to maximize the nonlinear optical (NLO) properties (Kagawa et al., 1994). The title quinolinium salt, (I), was synthesized in order to study its NLO properties. In addition, quinolinium derivatives were found to exhibit interesting bioactivities and pharmacological activities (Hopkins et al., 2005; Kaminsky & Meltzer, 1968; Musiol et al., 2006; O'Donnell et al., 2010). Due to the well-known bioactivities of quinoline core, the antibacterial activities of (I) were also evaluated. Our results show that (I) is very active against the Methicillin-Resistant Staphylococcus aureus with a very low MIC value of 2.34 µg/ml, whereas it is inactive against the Gram-negative bacteria i.e. Pseudomonas aeruginosa, Salmonella typhi and Shigella sonnei. Nevertheless (I) did not possess NLO properties since it crystallized in the centrosymmetric triclinic P-1 space group (Williams, 1984).

In the title compound (Fig. 1), the cation exists in an E configuration with respect to the ethenyl bond [torsion angle C9—C10—C11—C12 = -178.2 (8)°]. The cation is almost planar with a dihedral angle between the N1/C1–C9 quinolinium and C12–C17 benzene rings of 0.7 (4)°. The ethoxy unit is coplanar with the attached benzene ring with a C15—O1—C18—C19 torsion angle of 179.9 (6)°. Bond distances in the cation have normal values (Allen et al., 1987) and are comparable to those observed in a related structure (Laksana et al., 2008).

In the crystal, the cations are arranged into layers parallel to the (100) and stacked in anti-parallel manner along the a axis with ππ interactions involving the quinolinium ring system and benzene ring [Cg1···Cg2ii = 3.678 (5) Å; symmetry code as in Table 1; Cg1 and Cg2 are centroids of the N1/C1/C6–C9 and C12–C17 rings, respectively]. The I- ions and water molecules are located in the interstitial sites of the cations. The cations, I- anions and water molecules are linked together through O—H···O, O—H···I and C—H···I hydrogen bonds (Table 1) into a two-dimensional network parallel to the (001) (Fig. 2).

Related literature top

For background to non-linear optical materials research, see: Kagawa et al. (1994); Williams (1984). For the antibacterial activity of quinoline derivatives, see: Hopkins et al. (2005); Kaminsky & Meltzer (1968); Musiol et al. (2006); O'Donnell et al. (2010). For a related structure, see: Laksana et al. (2008). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared by mixing a solution (1:1:1 mole ratio) of 1,2-dimethylquinolinium iodide (2.00 g, 7.0 mmol), 4-ethoxybenzaldehyde (4.32 ml, 7.0 mmol) and piperidine (0.69 ml, 7.0 mmol) in hot methanol (50 ml). The resulting solution was refluxed for 6 h under nitrogen atmosphere. The resultant orange-brown solid was filtered, washed with diethyl ether, dried in vacuo and purified by recrystallization. Brown needle-shaped single crystals of the title compound suitable for X-ray structure determination were obtained from methanol solution by slow evaporation at room temperature after several days (m.p. 492-494 K).

Refinement top

The water H atoms were initially located in a difference map and were refined with O–H and H···H distance restraints of 0.84 (1) and 1.37 (2) Å, respectively. During the final stages of the refinement they were allowed to ride on their parent O atoms with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93 Å (aromatic) and 0.96 Å (CH3). The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. The Uij components of atoms C1, C6 and C9 were restrained to approximate isotropic behaviour. A rigid bond restraint with an s.u. of 0.01 was applied to the atomic displacement parameters of atoms C2 and C3 (also C12 and C17), because the components of the displacement parameters in the direction of the bond between these atoms were slightly inconsistent. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.17 Å from I1 and the deepest hole is located at 1.46 Å from C11.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. H atom not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium iodide dihydrate top
Crystal data top
C20H20NO+·I·2H2OZ = 2
Mr = 453.30F(000) = 456
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Melting point = 492–494 K
a = 8.2450 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6676 (12) ÅCell parameters from 3910 reflections
c = 12.2492 (14) Åθ = 1.8–26.5°
α = 85.789 (2)°µ = 1.68 mm1
β = 70.516 (2)°T = 100 K
γ = 71.272 (2)°Needle, brown
V = 961.21 (19) Å30.49 × 0.08 × 0.05 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3910 independent reflections
Radiation source: sealed tube3551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.493, Tmax = 0.927k = 1312
11172 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.1163P)2 + 8.5465P]
where P = (Fo2 + 2Fc2)/3
3910 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 2.43 e Å3
20 restraintsΔρmin = 0.85 e Å3
Crystal data top
C20H20NO+·I·2H2Oγ = 71.272 (2)°
Mr = 453.30V = 961.21 (19) Å3
Triclinic, P1Z = 2
a = 8.2450 (9) ÅMo Kα radiation
b = 10.6676 (12) ŵ = 1.68 mm1
c = 12.2492 (14) ÅT = 100 K
α = 85.789 (2)°0.49 × 0.08 × 0.05 mm
β = 70.516 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3910 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3551 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 0.927Rint = 0.033
11172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07420 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.15Δρmax = 2.43 e Å3
3910 reflectionsΔρmin = 0.85 e Å3
220 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.20275 (7)0.86454 (5)0.22772 (4)0.0286 (2)
O11.0063 (6)0.2957 (5)0.0164 (4)0.0164 (10)
N10.0190 (9)0.6541 (6)0.6219 (5)0.0208 (13)
C10.1326 (9)0.6672 (8)0.7248 (6)0.0217 (11)
C20.2476 (13)0.7907 (9)0.7709 (8)0.0326 (19)
H2A0.23030.86750.73510.039*
C30.3924 (12)0.7963 (10)0.8742 (9)0.040 (2)
H3A0.47310.87830.90640.048*
C40.4171 (11)0.6817 (11)0.9290 (7)0.034 (2)
H4A0.51060.68690.99850.041*
C50.3070 (14)0.5671 (11)0.8815 (8)0.040 (2)
H5A0.32590.49040.91670.048*
C60.1606 (11)0.5559 (9)0.7787 (8)0.0286 (18)
C70.0408 (12)0.4278 (9)0.7286 (8)0.0314 (18)
H7A0.06040.35170.76460.038*
C80.0966 (11)0.4172 (8)0.6319 (8)0.0317 (19)
H8A0.17380.33420.60020.038*
C90.1275 (9)0.5398 (8)0.5737 (6)0.0217 (11)
C100.2787 (10)0.5185 (8)0.4684 (6)0.0237 (15)
H10A0.29170.59390.42800.028*
C110.4004 (11)0.4063 (9)0.4220 (7)0.0298 (17)
H11A0.38340.33160.46220.036*
C120.5632 (11)0.3792 (10)0.3141 (7)0.0322 (19)
C130.6568 (11)0.2555 (10)0.2820 (7)0.0325 (19)
H13A0.62250.18870.32760.039*
C140.8067 (11)0.2211 (9)0.1813 (7)0.0267 (16)
H14A0.87030.13270.15900.032*
C150.8592 (9)0.3215 (7)0.1150 (6)0.0155 (13)
C160.7674 (10)0.4541 (8)0.1450 (6)0.0225 (15)
H16A0.80500.52030.10030.027*
C170.6132 (11)0.4851 (9)0.2471 (7)0.0308 (18)
H17A0.54570.57280.27020.037*
C181.0977 (11)0.1578 (8)0.0216 (7)0.0251 (16)
H18A1.01500.11950.03690.030*
H18B1.14230.10760.03750.030*
C191.2542 (11)0.1552 (10)0.1316 (7)0.037 (2)
H19A1.30640.06760.16680.055*
H19B1.34450.17970.11300.055*
H19C1.21060.21660.18450.055*
C200.0510 (12)0.7731 (9)0.5679 (8)0.0340 (19)
H20A0.17580.75290.52030.051*
H20B0.02350.83850.62670.051*
H20C0.02520.80670.52090.051*
O1W0.2568 (8)0.0771 (7)0.5862 (6)0.0385 (15)
H1W10.30300.00030.60460.058*
H2W10.14370.09660.61620.058*
O2W0.5594 (9)0.1337 (7)0.5759 (5)0.0335 (14)
H1W20.45150.13620.60670.050*
H2W20.61810.09590.61960.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0254 (3)0.0302 (3)0.0278 (3)0.0099 (2)0.0040 (2)0.0019 (2)
O10.014 (2)0.013 (2)0.014 (2)0.0002 (18)0.0023 (18)0.0053 (18)
N10.025 (3)0.021 (3)0.018 (3)0.006 (2)0.011 (2)0.001 (2)
C10.015 (2)0.042 (3)0.011 (2)0.010 (2)0.0062 (18)0.005 (2)
C20.042 (5)0.033 (5)0.041 (5)0.021 (4)0.029 (4)0.016 (4)
C30.029 (4)0.039 (5)0.052 (5)0.009 (4)0.026 (4)0.027 (4)
C40.021 (4)0.071 (7)0.014 (4)0.022 (4)0.001 (3)0.004 (4)
C50.055 (6)0.054 (6)0.035 (5)0.035 (5)0.032 (5)0.020 (5)
C60.023 (3)0.035 (4)0.036 (4)0.003 (3)0.023 (3)0.010 (3)
C70.035 (4)0.034 (5)0.033 (5)0.017 (4)0.016 (4)0.011 (4)
C80.025 (4)0.019 (4)0.048 (5)0.001 (3)0.012 (4)0.012 (4)
C90.015 (2)0.042 (3)0.011 (2)0.010 (2)0.0062 (18)0.005 (2)
C100.018 (3)0.032 (4)0.018 (3)0.004 (3)0.003 (3)0.007 (3)
C110.028 (4)0.033 (5)0.024 (4)0.008 (3)0.004 (3)0.000 (3)
C120.026 (4)0.058 (6)0.013 (3)0.013 (4)0.008 (3)0.004 (3)
C130.024 (4)0.049 (6)0.019 (4)0.014 (4)0.001 (3)0.005 (4)
C140.022 (4)0.038 (5)0.019 (4)0.010 (3)0.006 (3)0.007 (3)
C150.010 (3)0.023 (4)0.014 (3)0.006 (3)0.004 (2)0.002 (3)
C160.018 (3)0.025 (4)0.019 (4)0.005 (3)0.009 (3)0.007 (3)
C170.027 (4)0.035 (5)0.026 (4)0.006 (3)0.014 (3)0.016 (3)
C180.027 (4)0.017 (4)0.024 (4)0.006 (3)0.010 (3)0.009 (3)
C190.025 (4)0.047 (6)0.024 (4)0.008 (4)0.006 (3)0.017 (4)
C200.031 (4)0.034 (5)0.026 (4)0.005 (3)0.003 (3)0.007 (4)
O1W0.016 (3)0.057 (4)0.034 (3)0.007 (3)0.000 (2)0.007 (3)
O2W0.043 (3)0.047 (4)0.023 (3)0.026 (3)0.015 (3)0.001 (3)
Geometric parameters (Å, º) top
O1—C151.365 (8)C11—H11A0.93
O1—C181.450 (9)C12—C131.308 (14)
N1—C91.300 (10)C12—C171.435 (14)
N1—C11.426 (9)C13—C141.393 (11)
N1—C201.447 (11)C13—H13A0.93
C1—C61.364 (13)C14—C151.389 (11)
C1—C21.380 (13)C14—H14A0.93
C2—C31.410 (14)C15—C161.383 (11)
C2—H2A0.93C16—C171.421 (11)
C3—C41.391 (15)C16—H16A0.93
C3—H3A0.93C17—H17A0.93
C4—C51.303 (15)C18—C191.517 (12)
C4—H4A0.93C18—H18A0.97
C5—C61.404 (14)C18—H18B0.97
C5—H5A0.93C19—H19A0.96
C6—C71.440 (13)C19—H19B0.96
C7—C81.319 (13)C19—H19C0.96
C7—H7A0.93C20—H20A0.96
C8—C91.496 (12)C20—H20B0.96
C8—H8A0.93C20—H20C0.96
C9—C101.435 (10)O1W—H1W10.84
C10—C111.307 (12)O1W—H2W10.84
C10—H10A0.93O2W—H1W20.84
C11—C121.502 (11)O2W—H2W20.84
C15—O1—C18116.7 (6)C13—C12—C11117.9 (8)
C9—N1—C1122.7 (7)C17—C12—C11121.3 (8)
C9—N1—C20118.8 (7)C12—C13—C14121.8 (9)
C1—N1—C20118.6 (7)C12—C13—H13A119.1
C6—C1—C2120.2 (7)C14—C13—H13A119.1
C6—C1—N1119.1 (7)C15—C14—C13118.7 (8)
C2—C1—N1120.7 (8)C15—C14—H14A120.6
C1—C2—C3117.6 (8)C13—C14—H14A120.6
C1—C2—H2A121.2O1—C15—C16115.6 (6)
C3—C2—H2A121.2O1—C15—C14122.1 (7)
C4—C3—C2121.4 (8)C16—C15—C14122.3 (7)
C4—C3—H3A119.3C15—C16—C17117.2 (8)
C2—C3—H3A119.3C15—C16—H16A121.4
C5—C4—C3119.0 (8)C17—C16—H16A121.4
C5—C4—H4A120.5C16—C17—C12119.1 (8)
C3—C4—H4A120.5C16—C17—H17A120.5
C4—C5—C6122.0 (9)C12—C17—H17A120.5
C4—C5—H5A119.0O1—C18—C19106.7 (7)
C6—C5—H5A119.0O1—C18—H18A110.4
C1—C6—C5119.9 (8)C19—C18—H18A110.4
C1—C6—C7119.4 (8)O1—C18—H18B110.4
C5—C6—C7120.7 (9)C19—C18—H18B110.4
C8—C7—C6120.7 (8)H18A—C18—H18B108.6
C8—C7—H7A119.7C18—C19—H19A109.5
C6—C7—H7A119.7C18—C19—H19B109.5
C7—C8—C9119.6 (8)H19A—C19—H19B109.5
C7—C8—H8A120.2C18—C19—H19C109.5
C9—C8—H8A120.2H19A—C19—H19C109.5
N1—C9—C10126.0 (8)H19B—C19—H19C109.5
N1—C9—C8118.4 (7)N1—C20—H20A109.5
C10—C9—C8115.6 (7)N1—C20—H20B109.5
C11—C10—C9128.1 (8)H20A—C20—H20B109.5
C11—C10—H10A115.9N1—C20—H20C109.5
C9—C10—H10A115.9H20A—C20—H20C109.5
C10—C11—C12130.2 (9)H20B—C20—H20C109.5
C10—C11—H11A114.9H1W1—O1W—H2W1107.7
C12—C11—H11A114.9H1W2—O2W—H2W2109.1
C13—C12—C17120.9 (8)
C9—N1—C1—C63.5 (10)C20—N1—C9—C8178.3 (7)
C20—N1—C1—C6177.8 (7)C7—C8—C9—N11.4 (11)
C9—N1—C1—C2177.9 (7)C7—C8—C9—C10179.2 (7)
C20—N1—C1—C20.8 (10)N1—C9—C10—C11173.5 (8)
C6—C1—C2—C30.0 (11)C8—C9—C10—C115.8 (12)
N1—C1—C2—C3178.6 (6)C9—C10—C11—C12178.2 (8)
C1—C2—C3—C41.1 (11)C10—C11—C12—C13175.1 (9)
C2—C3—C4—C52.2 (12)C10—C11—C12—C173.9 (14)
C3—C4—C5—C62.2 (12)C17—C12—C13—C140.9 (13)
C2—C1—C6—C50.0 (10)C11—C12—C13—C14178.1 (8)
N1—C1—C6—C5178.6 (6)C12—C13—C14—C151.3 (12)
C2—C1—C6—C7179.1 (7)C18—O1—C15—C16175.9 (6)
N1—C1—C6—C72.3 (10)C18—O1—C15—C144.8 (9)
C4—C5—C6—C11.2 (12)C13—C14—C15—O1178.9 (7)
C4—C5—C6—C7179.7 (8)C13—C14—C15—C160.4 (11)
C1—C6—C7—C80.8 (11)O1—C15—C16—C17179.9 (6)
C5—C6—C7—C8179.9 (8)C14—C15—C16—C170.8 (10)
C6—C7—C8—C90.3 (12)C15—C16—C17—C121.1 (10)
C1—N1—C9—C10177.7 (6)C13—C12—C17—C160.3 (12)
C20—N1—C9—C101.1 (11)C11—C12—C17—C16179.3 (7)
C1—N1—C9—C83.0 (10)C15—O1—C18—C19179.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H1W2···O1W0.831.992.711 (11)143
O1W—H2W1···I1i0.842.773.588 (7)163
O2W—H2W2···I1ii0.842.873.579 (7)144
C2—H2A···I1iii0.933.023.814 (10)145
C7—H7A···I1i0.932.893.708 (10)148
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H20NO+·I·2H2O
Mr453.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.2450 (9), 10.6676 (12), 12.2492 (14)
α, β, γ (°)85.789 (2), 70.516 (2), 71.272 (2)
V3)961.21 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.49 × 0.08 × 0.05
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.493, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
11172, 3910, 3551
Rint0.033
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.211, 1.15
No. of reflections3910
No. of parameters220
No. of restraints20
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.43, 0.85

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H1W2···O1W0.831.992.711 (11)143
O1W—H2W1···I1i0.842.773.588 (7)163
O2W—H2W2···I1ii0.842.873.579 (7)144
C2—H2A···I1iii0.933.023.814 (10)145
C7—H7A···I1i0.932.893.708 (10)148
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University for the research grant. They also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. KC thanks the Development and Promotion of Science and Technology Talents Project for a fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHopkins, K. L., Davies, R. H. & Threfall, E. J. (2005). Int. J. Antimicrob. Agents, 25, 358–373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKagawa, K., Sagawa, M., Kakuta, A., Saji, M., Nakayama, H. & Ishii, K. (1994). J. Cryst. Growth, 139, 309–318.  CrossRef CAS Web of Science Google Scholar
First citationKaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLaksana, C., Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o145–o146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationO'Donnell, F., Smyth, T. J. P., Ramachandran, V. N. & Smyth, W. F. (2010). Int. J. Antimicrob. Agents, 35, 30–38.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690–703.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o938-o939
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds