metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­methyl­phenyl­ammonium) hexa­[bromido/chlorido(0.792/0.208)]stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 February 2010; accepted 22 February 2010; online 3 March 2010)

In the title mol­ecular salt, [C6H5(CH3)3N]2[SnBr4.75Cl1.25], the SnIV atom (site symmetry [\overline{1}]) adopts an octa­hedral coordination geometry. The Br and Cl atoms are disordered over three sites in 0.7415 (13):0.2585 (14), 0.8514 (14):0.1486 (14) and 0.7821 (14):0.2179 (14) ratios.

Related literature

For the crystal structures of other ammonium hexa­bromidostannates(IV): see: Al-Far & Ali (2007[Al-Far, R. & Ali, B. F. (2007). Acta Cryst. C63, m137-m139.]); Al-Far et al. (2009[Al-Far, R. H., Haddad, S. F. & Ali, B. F. (2009). Acta Cryst. E65, m583-m584.]); Ali et al. (2007[Ali, B. F., Al-Far, R. & Ng, S. W. (2007). Acta Cryst. E63, m2102-m2103.]); Howie et al. (2009[Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, m1562.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H14N)2[SnBr4.75Cl1.25]

  • Mr = 815.00

  • Monoclinic, P 21 /c

  • a = 8.8003 (1) Å

  • b = 10.6362 (2) Å

  • c = 14.2869 (2) Å

  • β = 104.433 (1)°

  • V = 1295.07 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.45 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.186, Tmax = 0.283

  • 12094 measured reflections

  • 2974 independent reflections

  • 2507 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.052

  • S = 1.01

  • 2974 reflections

  • 133 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—Br1 2.5630 (3)
Sn1—Br2 2.5886 (3)
Sn1—Br3 2.5874 (3)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structures of other ammonium hexabromidostannates(IV): see: Al-Far & Ali (2007); Al-Far, Haddad & Ali (2009); Ali et al. (2007); Howie et al. (2009).

Experimental top

Tribenzyltin chloride (0.34 g, 1 mmol) and trimethylphenylammonium tribromide (0.38 g, 1 mmol) were heated in ethanol (50 ml) for 1 hour. After filtering of the reaction mixture, yellow blocks of (I) were obtained upon slow evaporation of the filtrate. The crystal structure indicated that all the organic groups bonded to tin in the reactant were cleaved by the tribromide anion.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.93–0.96 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C). The initial refinement that assumed the halogens were only bromine atoms led to a difference Fourier with a large peak near Sn1 and a deep hole near Br1. The R-index was 0.0367.

The three halogen atoms were then refined as a mixture of chlorine and bromine. For each site, the displacement factor of the bromine and chlorine occupants were restrained to be identical. The refinement gave nearly 2.375 bromine and 0.625 chlorine atoms, and the difference Fourier was diffuse.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The bromine atoms are disordered with respect to the chlorine atoms.
Bis(trimethylphenylammonium) hexa[bromido/chlorido(0.792/0.208)]stannate(IV) top
Crystal data top
(C9H14N)2[SnBr4.75Cl1.25]F(000) = 775
Mr = 815.00Dx = 2.090 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4823 reflections
a = 8.8003 (1) Åθ = 2.4–28.2°
b = 10.6362 (2) ŵ = 8.45 mm1
c = 14.2869 (2) ÅT = 293 K
β = 104.433 (1)°Block, yellow
V = 1295.07 (3) Å30.30 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2974 independent reflections
Radiation source: fine-focus sealed tube2507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.186, Tmax = 0.283k = 1313
12094 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0273P)2 + 0.3311P]
where P = (Fo2 + 2Fc2)/3
2974 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.38 e Å3
5 restraintsΔρmin = 0.58 e Å3
Crystal data top
(C9H14N)2[SnBr4.75Cl1.25]V = 1295.07 (3) Å3
Mr = 815.00Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8003 (1) ŵ = 8.45 mm1
b = 10.6362 (2) ÅT = 293 K
c = 14.2869 (2) Å0.30 × 0.30 × 0.20 mm
β = 104.433 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2974 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2507 reflections with I > 2σ(I)
Tmin = 0.186, Tmax = 0.283Rint = 0.023
12094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0215 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
2974 reflectionsΔρmin = 0.58 e Å3
133 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.02940 (7)
Br10.79909 (3)0.50477 (3)0.52754 (2)0.04523 (11)0.7415 (13)
Br20.50568 (4)0.71415 (3)0.58689 (2)0.04665 (11)0.8514 (14)
Br30.53087 (4)0.38474 (3)0.66315 (2)0.04326 (11)0.7821 (14)
Cl10.79909 (3)0.50477 (3)0.52754 (2)0.04523 (11)0.2585 (14)
Cl20.50568 (4)0.71415 (3)0.58689 (2)0.04665 (11)0.1486 (14)
Cl30.53087 (4)0.38474 (3)0.66315 (2)0.04326 (11)0.2179 (14)
N10.8193 (2)0.0359 (2)0.70182 (15)0.0404 (5)
C10.9413 (3)0.0799 (2)0.65257 (17)0.0354 (5)
C20.8999 (3)0.1456 (3)0.5678 (2)0.0586 (8)
H20.79490.16100.53820.070*
C31.0162 (4)0.1887 (3)0.5271 (3)0.0689 (10)
H30.98790.23300.46920.083*
C41.1700 (4)0.1687 (3)0.5682 (2)0.0564 (8)
H41.24660.19780.53900.068*
C51.2101 (4)0.1053 (3)0.6533 (2)0.0636 (9)
H51.31550.09190.68310.076*
C61.0965 (3)0.0603 (3)0.6963 (2)0.0566 (8)
H61.12530.01700.75460.068*
C70.8529 (4)0.0962 (3)0.7393 (3)0.0619 (9)
H7A0.85270.15180.68640.093*
H7B0.77350.12210.77080.093*
H7C0.95370.09880.78470.093*
C80.8202 (4)0.1222 (3)0.7851 (2)0.0636 (9)
H8A0.92030.11760.83100.095*
H8B0.73930.09730.81560.095*
H8C0.80150.20690.76180.095*
C90.6576 (3)0.0366 (3)0.6359 (2)0.0567 (8)
H9A0.62720.12150.61750.085*
H9B0.58520.00080.66890.085*
H9C0.65690.01220.57930.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02718 (11)0.02958 (12)0.03066 (12)0.00216 (9)0.00577 (8)0.00056 (9)
Br10.02788 (16)0.0596 (2)0.04703 (19)0.00311 (13)0.00721 (13)0.00024 (14)
Br20.05446 (19)0.03536 (16)0.04899 (19)0.00321 (13)0.01072 (14)0.00974 (12)
Br30.04800 (18)0.04521 (18)0.03699 (17)0.00217 (13)0.01141 (13)0.00745 (13)
Cl10.02788 (16)0.0596 (2)0.04703 (19)0.00311 (13)0.00721 (13)0.00024 (14)
Cl20.05446 (19)0.03536 (16)0.04899 (19)0.00321 (13)0.01072 (14)0.00974 (12)
Cl30.04800 (18)0.04521 (18)0.03699 (17)0.00217 (13)0.01141 (13)0.00745 (13)
N10.0381 (11)0.0413 (12)0.0425 (12)0.0010 (9)0.0116 (9)0.0063 (10)
C10.0365 (13)0.0337 (12)0.0367 (13)0.0019 (10)0.0107 (10)0.0008 (10)
C20.0461 (16)0.064 (2)0.0621 (19)0.0077 (15)0.0071 (14)0.0280 (16)
C30.075 (2)0.071 (2)0.064 (2)0.0009 (18)0.0238 (18)0.0325 (18)
C40.0603 (19)0.0526 (18)0.064 (2)0.0082 (15)0.0306 (16)0.0018 (15)
C50.0394 (15)0.086 (2)0.068 (2)0.0031 (16)0.0184 (15)0.0090 (18)
C60.0422 (15)0.081 (2)0.0456 (16)0.0065 (15)0.0101 (13)0.0173 (16)
C70.0571 (18)0.0496 (18)0.082 (2)0.0043 (14)0.0235 (17)0.0281 (16)
C80.069 (2)0.077 (2)0.0519 (18)0.0022 (17)0.0294 (16)0.0079 (16)
C90.0356 (14)0.0623 (19)0.068 (2)0.0023 (13)0.0049 (14)0.0087 (16)
Geometric parameters (Å, º) top
Sn1—Cl1i2.5630 (3)C3—C41.352 (4)
Sn1—Br1i2.5630 (3)C3—H30.9300
Sn1—Br12.5630 (3)C4—C51.357 (5)
Sn1—Cl3i2.5874 (3)C4—H40.9300
Sn1—Br3i2.5874 (3)C5—C61.383 (4)
Sn1—Br22.5886 (3)C5—H50.9300
Sn1—Br32.5874 (3)C6—H60.9300
Sn1—Br2i2.5886 (3)C7—H7A0.9600
Sn1—Cl2i2.5886 (3)C7—H7B0.9600
N1—C81.501 (4)C7—H7C0.9600
N1—C11.498 (3)C8—H8A0.9600
N1—C91.498 (3)C8—H8B0.9600
N1—C71.506 (4)C8—H8C0.9600
C1—C61.368 (4)C9—H9A0.9600
C1—C21.367 (4)C9—H9B0.9600
C2—C31.375 (4)C9—H9C0.9600
C2—H20.9300
Cl1i—Sn1—Br1i0.00 (2)C8—N1—C7109.1 (2)
Cl1i—Sn1—Br1180.000 (15)C1—N1—C7111.0 (2)
Br1i—Sn1—Br1180.000 (15)C9—N1—C7107.4 (2)
Cl1i—Sn1—Cl3i89.879 (10)C6—C1—C2119.8 (2)
Br1i—Sn1—Cl3i89.879 (10)C6—C1—N1119.2 (2)
Br1—Sn1—Cl3i90.121 (10)C2—C1—N1120.8 (2)
Cl1i—Sn1—Br3i89.879 (10)C1—C2—C3118.9 (3)
Br1i—Sn1—Br3i89.879 (10)C1—C2—H2120.6
Br1—Sn1—Br3i90.121 (10)C3—C2—H2120.6
Cl3i—Sn1—Br3i0.000 (6)C4—C3—C2122.3 (3)
Cl1i—Sn1—Br390.121 (10)C4—C3—H3118.9
Br1i—Sn1—Br390.121 (10)C2—C3—H3118.9
Br1—Sn1—Br389.879 (10)C3—C4—C5118.4 (3)
Cl3i—Sn1—Br3180.0C3—C4—H4120.8
Br3i—Sn1—Br3180.0C5—C4—H4120.8
Cl1i—Sn1—Br289.277 (10)C4—C5—C6121.0 (3)
Br1i—Sn1—Br289.277 (10)C4—C5—H5119.5
Br1—Sn1—Br290.723 (10)C6—C5—H5119.5
Cl3i—Sn1—Br290.014 (10)C1—C6—C5119.6 (3)
Br3i—Sn1—Br290.014 (10)C1—C6—H6120.2
Br3—Sn1—Br289.986 (10)C5—C6—H6120.2
Cl1i—Sn1—Br2i90.723 (10)N1—C7—H7A109.5
Br1i—Sn1—Br2i90.723 (10)N1—C7—H7B109.5
Br1—Sn1—Br2i89.277 (10)H7A—C7—H7B109.5
Cl3i—Sn1—Br2i89.986 (10)N1—C7—H7C109.5
Br3i—Sn1—Br2i89.986 (10)H7A—C7—H7C109.5
Br3—Sn1—Br2i90.014 (10)H7B—C7—H7C109.5
Br2—Sn1—Br2i180.0N1—C8—H8A109.5
Cl1i—Sn1—Cl2i90.723 (10)N1—C8—H8B109.5
Br1i—Sn1—Cl2i90.723 (10)H8A—C8—H8B109.5
Br1—Sn1—Cl2i89.277 (10)N1—C8—H8C109.5
Cl3i—Sn1—Cl2i89.986 (10)H8A—C8—H8C109.5
Br3i—Sn1—Cl2i89.986 (10)H8B—C8—H8C109.5
Br3—Sn1—Cl2i90.014 (10)N1—C9—H9A109.5
Br2—Sn1—Cl2i180.0N1—C9—H9B109.5
Br2i—Sn1—Cl2i0.000 (6)H9A—C9—H9B109.5
C8—N1—C1108.6 (2)N1—C9—H9C109.5
C8—N1—C9108.1 (2)H9A—C9—H9C109.5
C1—N1—C9112.5 (2)H9B—C9—H9C109.5
C8—N1—C1—C673.7 (3)N1—C1—C2—C3177.3 (3)
C9—N1—C1—C6166.6 (3)C1—C2—C3—C40.3 (6)
C7—N1—C1—C646.2 (4)C2—C3—C4—C50.8 (6)
C8—N1—C1—C2102.3 (3)C3—C4—C5—C61.0 (5)
C9—N1—C1—C217.4 (4)C2—C1—C6—C51.2 (5)
C7—N1—C1—C2137.8 (3)N1—C1—C6—C5177.3 (3)
C6—C1—C2—C31.4 (5)C4—C5—C6—C10.0 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C9H14N)2[SnBr4.75Cl1.25]
Mr815.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8003 (1), 10.6362 (2), 14.2869 (2)
β (°) 104.433 (1)
V3)1295.07 (3)
Z2
Radiation typeMo Kα
µ (mm1)8.45
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.186, 0.283
No. of measured, independent and
observed [I > 2σ(I)] reflections
12094, 2974, 2507
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.01
No. of reflections2974
No. of parameters133
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—Br12.5630 (3)Sn1—Br32.5874 (3)
Sn1—Br22.5886 (3)
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationAl-Far, R. & Ali, B. F. (2007). Acta Cryst. C63, m137–m139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Far, R. H., Haddad, S. F. & Ali, B. F. (2009). Acta Cryst. E65, m583–m584.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAli, B. F., Al-Far, R. & Ng, S. W. (2007). Acta Cryst. E63, m2102–m2103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHowie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, m1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds