organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o1004-o1005

Benzyl N-((S)-2-hydr­­oxy-1-{N′-[(E)-2-meth­oxy­benzyl­­idene]hydrazinecarbon­yl}eth­yl)carbamate from synchrotron data

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 March 2010; accepted 25 March 2010; online 31 March 2010)

A U-shaped conformation is found in the title compound, C19H21N3O5, with the benzene rings lying to the same side of the mol­ecule; the dihedral angle between them is 10.83 (16)°. The dihedral angle formed between the hydrazinecarbonyl and carbamate residues is 68.42 (13)°. The carbonyl groups lie approximately at right angles to each other [O—C⋯C—O pseudo torsion angle of 107.7 (3)°], and the conformation about the C12=N3 bond [1.279 (4) Å] is E. An intra­molecular Ncb—H⋯Ohy (cb = carbmate and hy = hydr­oxy) hydrogen bond occurs, generating an S(6) loop. In the crystal, inter­molecular Oh—H⋯Oca (ca = carbon­yl) and Nhz—H⋯Oca (hz = hydrazine) hydrogen bonds lead to the formation of a supra­molecular chain, two mol­ecules thick, which propagates along the a axis; these are connected by C—H⋯Oca contacts.

Related literature

For background to tuberculosis, see: Cole & Alzari (2007[Cole, S. T. & Alzari, P. M. (2007). Biochem. Soc. Trans. 35, 1321-1324.]); Portero & Rubio (2007[Portero, J. L. & Rubio, M. (2007). Exp. Opinion Ther. Pat. 17, 617-637.]). For information on the development of anti-tuberculosis agents, see: Lourenço et al. (2007a[Lourenço, M. C., de Souza, M. V. N., Pinheiro, A. C., Ferreira, M. L., Gonçalves, R. S. B., Nogueira, T. C. M. & Peralta, M. A. (2007a). ARKIVOC, pp. 181-191.],b[Lourenço, M. C. S., Vicente, F. R., Henriques, M. G. M. O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. L. & De Souza, M. V. N. (2007b). Bioorg. Med. Chem. Lett. 17, 6895-6898.]); Lourenço et al. (2008[Lourenço, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]); Ferreira et al. (2008[Ferreira, M. L., Cardoso, L. N. F., Gonçalves, R. S. B., Da Silva, E. T., Lourenço, M. C. S., Vicente, F. R. & de Souza, M. V. N. (2008). Lett. Drug Des. Discov. 5, 137-140.]); Costa et al. (2006[Costa, M. S., Boechat, N., Rangel, E. A., da Silva, F. C., de Souza, A. M. T., Rodrigues, C. R., Castro, H. C., Neves, I. Jr, Lourenço, M. C. S., Wardell, S. M. S. V. & Ferreira, V. F. (2006). Bioorg. Med. Chem. 14, 8644-8653.]); de Souza et al. (2006a[Souza, M. V. N. de, Junior, I. N., Miranda, G. B. P., Lourenço, M. C. S., Vasconcelos, T. A., Pais, K. C., Wardell, J. L., Wardell, S. M. S. V. & Junior, J. P. A. (2006a). Lett. Drug Des. Discov. 3, 424-428.],b[Souza, M. V. N. de, Wardell, S. M. S. V., Ferreira, M. L., Wardell, J. L., Vasconcelos, T. A., Mascarenhas, Y. P., Ellena, J. & Silva, F. P. (2006b). J. Mol. Struct. 788, 63-71.]); Pinheiro et al. (2007[Pinheiro, A. C., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, S. M. V. & Wardell, J. L. (2007). J. Chem. Res. pp. 180-184.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O5

  • Mr = 371.39

  • Orthorhombic, P 21 21 21

  • a = 6.002 (6) Å

  • b = 14.053 (14) Å

  • c = 21.09 (2) Å

  • V = 1779 (3) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.6889 Å

  • μ = 0.06 mm−1

  • T = 120 K

  • 0.30 × 0.04 × 0.02 mm

Data collection
  • Rigaku Saturn 724+ detector on Crystal Logics CCD diffractometer

  • 13639 measured reflections

  • 1827 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.124

  • S = 1.29

  • 1827 reflections

  • 257 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O3 0.89 (3) 2.44 (3) 2.788 (5) 104 (2)
O3—H3o⋯O4i 0.85 (2) 2.04 (2) 2.789 (4) 147 (4)
N2—H2n⋯O2ii 0.88 (3) 2.10 (3) 2.974 (5) 177 (3)
C10—H10b⋯O2i 0.99 2.45 3.439 (5) 175
C16—H16⋯O4iii 0.95 2.55 3.284 (5) 134
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: APEX2 (Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Tuberculosis (TB) is once again a major public health problem. The need for better drugs is clear (Cole & Alzari, 2007; Portero & Rubio, 2007). Continuing our studies on potential anti-tuberculosis agents (Lourenço et al., 2007a, 2007b, 2008; Ferreira et al., 2008; Costa et al., 2006; de Souza et al., 2006a, 2006b), including serinyl derivatives (Pinheiro et al., 2007), we have investigated a series of serinyl derivatives, N-(2-hydroxy-1-{N'-[(1E)-(2- methoxyphenyl)methylidene]hydrazinecarbonyl}ethyl)carbamic acid esters and now report the structure of one of these, benzyl N-(2-hydroxy-1-{N'-[(1E)-(2- methoxyphenyl)methylidene] hydrazinecarbonyl}ethyl)carbamate, (I).

Overall, the molecule of (I), Fig. 1, has a U-shaped conformation with the benzene rings lying to the same side of the molecule; the dihedral angle between their least-squares planes is 10.83 (16) °. The dihedral angle formed between the least-squares planes through the hydrazinecarbonyl (r.m.s. deviation of the O4,N2,N3,C11 atoms = 0.0198 Å) and carbamate (r.m.s. deviation of the O1,O2,N1,C8 atoms = 0.0044 Å) is 68.42 (13) °. The carbonyl groups are approximately at right-angles to each other as seen in the pseudo O2–C8···C11–O4 torsion angle of 107.7 (3) °. Each of the N–H groups is anti to the adjacent carbonyl so that the N–H groups also lie to opposite sides of the molecule. The conformation about the C12N3 bond [1.279 (4) Å] is E. Although the absolute structure could not be determined experimentally, the assignment of the S-configuration at the C2 atom is based on a starting reagent.

There are three acidic H atoms in the molecule of (I) and each of these forms a significant hydrogen bond, Table 1. Whereas the carbamate-N1–H atom forms an intramolecular N–H···O hydrogen bond to the hydroxyl-O3 atom, the hydroxyl-O3–H atom forms an intermolecular O–H···O interaction with the carbonyl-O4 atom, and the hydrazine-N2–H atom likewise forms an N–H···O hydrogen bond with the carbonyl-O2 atom. The intermolecular hydrogen bonds lead to the formation of a supramolecular double-chain along the a direction, Fig. 2, with additional stability to the chain afforded by C–H···O interactions involving the carbonyl-O2 atom, Table 1. The primary interactions between chains are of the type C–H···O and involve the carbonyl-O4 atom, Table 1 and Fig. 3.

Related literature top

For background to tuberculosis, see: Cole & Alzari (2007); Portero & Rubio (2007). For information on the development of anti-tuberculosis agents, see: Lourenço et al. (2007a,b); Lourenço et al. (2008); Ferreira et al. (2008); Costa et al. (2006); de Souza et al. (2006a,b); Pinheiro et al. (2007).

Experimental top

The compound, phenyl (1S)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate, was obtained from L-serine methyl ester hydrochloride on successive reactions with (a) PhCH2Cl and Et3N, and (b) N2H4.H2O. To a stirred ethanol solution (10 ml) of phenyl (1S)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate (1.0 mmol), at room temperature was added 2-methoxybenzaldehyde (1.05 mmol). The reaction mixture was stirred for 4 hours at 353 K and concentrated under reduced pressure. The residue was purified by washing with cold ethanol (3 × 10 ml), affording the title compound; yield 80%. Solution NMR spectra revealed the presence of (E)- and (Z)-isomers, however, the colourless needles of (I) obtained from MeOH solution were solely the (E)-isomer, m.pt. 453–454 K.

1H NMR (400 MHz, DMSO-d6) δ (ppm): 11.48 and 11.36 (1H, s, NHN, E- and Z- isomers), 8.59 and 8.33 (1H, s, N=CH, E- and Z- isomers), 7.83 (d, J = 7.1) and 7.79 (d, J = 7.8), (1H, H5, E- and Z- isomers), 7.45-7.25 (6H, m, Ph and H3), 7.45-7.25 (m) and 7.19 (d, J = 8.4), (1H, NHCH, E and Z- isomers), 7.10 and 7.08 (1H, s, H2, E- and Z- isomers), 7.00 (1H, m, H4), 5.05 and 5.04 (2H, s, CH2Ph, E- and Z- isomers), 5.01 and 4.11 (1H, m, CH, E- and Z- isomers), 4.97 (t, J = 5.8) and 4.85 (t, J = 5.6), (1H, OH, E- and Z- isomers 3.86 and 3.84 (3H, s, CH3, E- and Z- isomers), 3.80-3.55 (2H, m, CH2OH). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 171.2 and 166.7 (COCH, E- and Z- isomers), 157.7 and 157.6 (C1, E- and Z- isomers), 155.9 and 155.8 (COO, E- and Z- isomers), 142.5 and 139.0 (N=CH, E- and Z- isomers), 137.0 and 136.9 (C6', E- and Z- isomers), 131.5, 131.3, 128.3, 127.7, 127.6 and 125.4 (C3, C5, C1', C2', C3', C4' and C5'), 122.2, 122.1 and 120.7 (C4 and C6), 111.8 (C2), 65.5 and 65.3 (CH2Ph, E- and Z- isomers), 61.5 and 61.1 (CH2OH, E- and Z- isomers), 56.4 and 54.6 (CH, E- and Z- isomers), 55.7 (CH3). IR (cm-1; KBr): 3262 (O—H); 1692 (COCH and COO). EM/ESI: [M+Na]: 370.2.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(parent atom). The O- and N-bound H atoms were refined with the distance restraints 0.84±0.01 and 0.88±0.01 Å, respectively. In the absence of significant anomalous scattering effects, 1278 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: APEX2 (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The supramolecular double-chain aligned along the a axis in the crystal structure of (I) formed through the agency of intermolecular O–H···O and N–H···O hydrogen bonding interactions shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view of the unit cell contents in (I) shown in projection down the a axis [the direction of the supramolecular chains illustrated in Fig. 2] and highlighting the C–H···O interactions (green dashed lines) formed between the double-chains; N–H···O interactions are shown as blue dashed lines.
Benzyl N-((S)-2-hydroxy-1-{N'-[(E)- 2-methoxybenzylidene]hydrazinecarbonyl}ethyl)carbamate top
Crystal data top
C19H21N3O5F(000) = 784
Mr = 371.39Dx = 1.387 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.6889 Å
Hall symbol: P 2ac 2abCell parameters from 915 reflections
a = 6.002 (6) Åθ = 3.1–23.8°
b = 14.053 (14) ŵ = 0.06 mm1
c = 21.09 (2) ÅT = 120 K
V = 1779 (3) Å3Needle, colourless
Z = 40.30 × 0.04 × 0.02 mm
Data collection top
Rigaku Saturn 724+ detector on Crystal Logics CCD
diffractometer
1627 reflections with I > 2σ(I)
Radiation source: Diamond beamline I19Rint = 0.047
Silicon double crystal monochromatorθmax = 24.3°, θmin = 1.7°
ω scansh = 57
13639 measured reflectionsk = 1616
1827 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0788P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
1827 reflectionsΔρmax = 0.22 e Å3
257 parametersΔρmin = 0.31 e Å3
3 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H21N3O5V = 1779 (3) Å3
Mr = 371.39Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.6889 Å
a = 6.002 (6) ŵ = 0.06 mm1
b = 14.053 (14) ÅT = 120 K
c = 21.09 (2) Å0.30 × 0.04 × 0.02 mm
Data collection top
Rigaku Saturn 724+ detector on Crystal Logics CCD
diffractometer
1627 reflections with I > 2σ(I)
13639 measured reflectionsRint = 0.047
1827 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.29Δρmax = 0.22 e Å3
1827 reflectionsΔρmin = 0.31 e Å3
257 parametersAbsolute structure: nd
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8873 (4)0.04357 (14)0.54989 (10)0.0315 (5)
O20.8048 (4)0.11402 (14)0.55153 (10)0.0300 (5)
O31.4014 (4)0.06852 (18)0.39880 (12)0.0386 (6)
H3O1.531 (3)0.068 (3)0.3838 (18)0.039 (11)*
O40.8614 (4)0.09631 (14)0.39964 (10)0.0281 (5)
O50.8039 (4)0.54912 (16)0.29894 (11)0.0360 (6)
N11.1190 (5)0.05803 (18)0.50353 (12)0.0275 (6)
H1N1.161 (6)0.0066 (16)0.4822 (15)0.043 (11)*
N20.9615 (5)0.25280 (17)0.39885 (12)0.0279 (6)
H2N1.059 (5)0.294 (2)0.4132 (18)0.054 (12)*
N30.7903 (5)0.27845 (18)0.35818 (12)0.0278 (6)
C10.6559 (6)0.1678 (2)0.59051 (15)0.0314 (8)
C20.8207 (7)0.2227 (2)0.61849 (16)0.0369 (8)
H20.95500.19350.63220.044*
C30.7916 (7)0.3195 (2)0.62669 (17)0.0404 (9)
H30.90570.35680.64560.048*
C40.5939 (7)0.3618 (2)0.60700 (16)0.0415 (9)
H40.57180.42810.61320.050*
C50.4302 (8)0.3084 (3)0.57863 (18)0.0443 (9)
H50.29610.33780.56490.053*
C60.4612 (7)0.2106 (2)0.57000 (17)0.0384 (9)
H60.34870.17350.55010.046*
C70.6851 (6)0.0622 (2)0.58501 (16)0.0333 (8)
H7A0.55580.03400.56270.040*
H7B0.69490.03330.62770.040*
C80.9259 (6)0.0482 (2)0.53586 (14)0.0271 (7)
C91.1576 (5)0.1469 (2)0.46987 (14)0.0256 (7)
H91.14810.20040.50100.031*
C101.3898 (6)0.1464 (2)0.44118 (14)0.0282 (7)
H10A1.41750.20670.41820.034*
H10B1.50340.13970.47490.034*
C110.9775 (5)0.1615 (2)0.41900 (14)0.0247 (7)
C120.7823 (6)0.3673 (2)0.34522 (14)0.0281 (7)
H120.89370.40880.36140.034*
C130.6034 (6)0.4056 (2)0.30579 (14)0.0290 (7)
C140.6157 (6)0.4991 (2)0.28244 (14)0.0296 (8)
C150.4450 (6)0.5358 (2)0.24549 (15)0.0323 (8)
H150.45310.59950.23040.039*
C160.2632 (7)0.4798 (2)0.23060 (15)0.0339 (8)
H160.14770.50460.20460.041*
C170.2486 (6)0.3872 (2)0.25348 (15)0.0318 (8)
H170.12300.34900.24340.038*
C180.4166 (6)0.3511 (2)0.29081 (15)0.0312 (7)
H180.40500.28800.30660.037*
C190.8395 (7)0.6391 (2)0.26835 (16)0.0374 (9)
H19A0.72330.68390.28150.056*
H19B0.83370.63060.22230.056*
H19C0.98580.66410.28040.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0299 (14)0.0250 (10)0.0396 (12)0.0018 (10)0.0069 (11)0.0038 (9)
O20.0292 (14)0.0283 (11)0.0326 (11)0.0038 (10)0.0030 (10)0.0003 (9)
O30.0262 (14)0.0436 (13)0.0461 (14)0.0025 (12)0.0049 (13)0.0140 (11)
O40.0239 (14)0.0278 (11)0.0327 (11)0.0005 (10)0.0004 (10)0.0024 (9)
O50.0347 (14)0.0299 (11)0.0434 (13)0.0050 (11)0.0073 (12)0.0092 (10)
N10.0284 (16)0.0246 (12)0.0295 (13)0.0034 (12)0.0014 (12)0.0013 (10)
N20.0260 (17)0.0252 (12)0.0327 (13)0.0009 (12)0.0040 (12)0.0012 (11)
N30.0242 (16)0.0296 (13)0.0295 (13)0.0002 (12)0.0019 (12)0.0016 (10)
C10.031 (2)0.0318 (16)0.0311 (16)0.0001 (15)0.0046 (15)0.0005 (13)
C20.034 (2)0.0339 (17)0.0430 (19)0.0008 (16)0.0002 (17)0.0041 (14)
C30.047 (2)0.0321 (17)0.0424 (19)0.0056 (18)0.0049 (18)0.0059 (14)
C40.055 (3)0.0294 (15)0.0401 (18)0.0052 (18)0.015 (2)0.0022 (13)
C50.044 (3)0.0455 (19)0.0435 (19)0.0143 (19)0.0070 (19)0.0070 (15)
C60.037 (2)0.0412 (18)0.0372 (17)0.0010 (17)0.0012 (16)0.0022 (15)
C70.029 (2)0.0308 (16)0.0404 (17)0.0017 (15)0.0068 (15)0.0038 (13)
C80.0267 (19)0.0278 (14)0.0267 (15)0.0000 (14)0.0030 (14)0.0017 (12)
C90.0244 (18)0.0243 (14)0.0280 (15)0.0013 (13)0.0010 (14)0.0007 (11)
C100.0267 (19)0.0255 (14)0.0324 (16)0.0028 (14)0.0011 (15)0.0005 (12)
C110.0203 (18)0.0259 (14)0.0279 (15)0.0001 (13)0.0049 (13)0.0016 (12)
C120.0253 (19)0.0296 (15)0.0293 (15)0.0038 (14)0.0002 (14)0.0004 (13)
C130.031 (2)0.0296 (15)0.0265 (15)0.0030 (15)0.0002 (14)0.0006 (12)
C140.029 (2)0.0302 (16)0.0292 (15)0.0012 (15)0.0005 (15)0.0000 (12)
C150.037 (2)0.0302 (16)0.0294 (16)0.0028 (16)0.0015 (16)0.0041 (12)
C160.034 (2)0.0364 (18)0.0309 (17)0.0069 (16)0.0039 (16)0.0018 (13)
C170.028 (2)0.0342 (17)0.0328 (17)0.0017 (14)0.0030 (15)0.0018 (13)
C180.033 (2)0.0296 (15)0.0308 (15)0.0004 (16)0.0001 (15)0.0013 (12)
C190.044 (2)0.0275 (16)0.0410 (18)0.0027 (16)0.0028 (17)0.0091 (13)
Geometric parameters (Å, º) top
O1—C81.343 (4)C5—H50.9500
O1—C71.446 (4)C6—H60.9500
O2—C81.222 (4)C7—H7A0.9900
O3—C101.415 (4)C7—H7B0.9900
O3—H3O0.843 (11)C9—C101.519 (5)
O4—C111.221 (4)C9—C111.537 (4)
O5—C141.375 (4)C9—H91.0000
O5—C191.435 (4)C10—H10A0.9900
N1—C81.352 (5)C10—H10B0.9900
N1—C91.455 (4)C12—C131.461 (5)
N1—H1N0.89 (3)C12—H120.9500
N2—C111.355 (4)C13—C181.394 (5)
N2—N31.386 (4)C13—C141.405 (4)
N2—H2N0.88 (3)C14—C151.386 (5)
N3—C121.279 (4)C15—C161.382 (5)
C1—C61.383 (5)C15—H150.9500
C1—C21.386 (5)C16—C171.390 (5)
C1—C71.499 (5)C16—H160.9500
C2—C31.383 (5)C17—C181.376 (5)
C2—H20.9500C17—H170.9500
C3—C41.391 (6)C18—H180.9500
C3—H30.9500C19—H19A0.9800
C4—C51.374 (6)C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C5—C61.399 (5)
C8—O1—C7115.6 (2)N1—C9—H9108.5
C10—O3—H3O107 (3)C10—C9—H9108.5
C14—O5—C19117.3 (3)C11—C9—H9108.5
C8—N1—C9118.1 (3)O3—C10—C9107.5 (3)
C8—N1—H1N115 (3)O3—C10—H10A110.2
C9—N1—H1N114 (2)C9—C10—H10A110.2
C11—N2—N3119.5 (3)O3—C10—H10B110.2
C11—N2—H2N118 (3)C9—C10—H10B110.2
N3—N2—H2N122 (3)H10A—C10—H10B108.5
C12—N3—N2114.4 (3)O4—C11—N2124.4 (3)
C6—C1—C2119.6 (3)O4—C11—C9122.3 (3)
C6—C1—C7120.3 (3)N2—C11—C9113.3 (3)
C2—C1—C7120.1 (3)N3—C12—C13120.6 (3)
C3—C2—C1120.7 (4)N3—C12—H12119.7
C3—C2—H2119.6C13—C12—H12119.7
C1—C2—H2119.6C18—C13—C14118.5 (3)
C2—C3—C4119.4 (4)C18—C13—C12121.2 (3)
C2—C3—H3120.3C14—C13—C12120.3 (3)
C4—C3—H3120.3O5—C14—C15124.0 (3)
C5—C4—C3120.4 (3)O5—C14—C13115.6 (3)
C5—C4—H4119.8C15—C14—C13120.4 (3)
C3—C4—H4119.8C16—C15—C14119.9 (3)
C4—C5—C6119.9 (4)C16—C15—H15120.0
C4—C5—H5120.0C14—C15—H15120.0
C6—C5—H5120.0C15—C16—C17120.3 (3)
C1—C6—C5119.9 (4)C15—C16—H16119.9
C1—C6—H6120.1C17—C16—H16119.9
C5—C6—H6120.1C18—C17—C16119.8 (3)
O1—C7—C1108.5 (3)C18—C17—H17120.1
O1—C7—H7A110.0C16—C17—H17120.1
C1—C7—H7A110.0C17—C18—C13121.1 (3)
O1—C7—H7B110.0C17—C18—H18119.5
C1—C7—H7B110.0C13—C18—H18119.5
H7A—C7—H7B108.4O5—C19—H19A109.5
O2—C8—O1124.4 (3)O5—C19—H19B109.5
O2—C8—N1124.7 (3)H19A—C19—H19B109.5
O1—C8—N1110.9 (3)O5—C19—H19C109.5
N1—C9—C10109.7 (3)H19A—C19—H19C109.5
N1—C9—C11110.1 (3)H19B—C19—H19C109.5
C10—C9—C11111.6 (2)
C11—N2—N3—C12175.9 (3)N3—N2—C11—C9173.0 (2)
C6—C1—C2—C30.6 (5)N1—C9—C11—O418.0 (4)
C7—C1—C2—C3176.8 (3)C10—C9—C11—O4104.0 (3)
C1—C2—C3—C40.5 (5)N1—C9—C11—N2161.6 (3)
C2—C3—C4—C51.2 (5)C10—C9—C11—N276.3 (3)
C3—C4—C5—C60.7 (5)N2—N3—C12—C13176.6 (3)
C2—C1—C6—C51.1 (5)N3—C12—C13—C1811.7 (5)
C7—C1—C6—C5176.3 (3)N3—C12—C13—C14168.8 (3)
C4—C5—C6—C10.5 (5)C19—O5—C14—C159.5 (5)
C8—O1—C7—C1174.1 (3)C19—O5—C14—C13170.7 (3)
C6—C1—C7—O1124.9 (3)C18—C13—C14—O5180.0 (3)
C2—C1—C7—O157.7 (4)C12—C13—C14—O50.4 (4)
C7—O1—C8—O21.1 (4)C18—C13—C14—C150.1 (5)
C7—O1—C8—N1179.6 (3)C12—C13—C14—C15179.4 (3)
C9—N1—C8—O217.9 (4)O5—C14—C15—C16179.1 (3)
C9—N1—C8—O1163.6 (3)C13—C14—C15—C161.1 (5)
C8—N1—C9—C10175.6 (3)C14—C15—C16—C171.2 (5)
C8—N1—C9—C1161.2 (3)C15—C16—C17—C180.4 (5)
N1—C9—C10—O360.0 (3)C16—C17—C18—C130.6 (5)
C11—C9—C10—O362.3 (3)C14—C13—C18—C170.7 (5)
N3—N2—C11—O46.6 (5)C12—C13—C18—C17179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O30.89 (3)2.44 (3)2.788 (5)104 (2)
O3—H3o···O4i0.85 (2)2.04 (2)2.789 (4)147 (4)
N2—H2n···O2ii0.88 (3)2.10 (3)2.974 (5)177 (3)
C10—H10b···O2i0.992.453.439 (5)175
C16—H16···O4iii0.952.553.284 (5)134
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H21N3O5
Mr371.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)6.002 (6), 14.053 (14), 21.09 (2)
V3)1779 (3)
Z4
Radiation typeSynchrotron, λ = 0.6889 Å
µ (mm1)0.06
Crystal size (mm)0.30 × 0.04 × 0.02
Data collection
DiffractometerRigaku Saturn 724+ detector on Crystal Logics CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13639, 1827, 1627
Rint0.047
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.124, 1.29
No. of reflections1827
No. of parameters257
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.31
Absolute structureNd

Computer programs: CrystalClear (Rigaku/MSC, 2008), APEX2 (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O30.89 (3)2.44 (3)2.788 (5)104 (2)
O3—H3o···O4i0.85 (2)2.04 (2)2.789 (4)147 (4)
N2—H2n···O2ii0.88 (3)2.10 (3)2.974 (5)177 (3)
C10—H10b···O2i0.992.453.439 (5)175
C16—H16···O4iii0.952.553.284 (5)134
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

We thank Prof. W. Clegg and the synchrotron component, based at Daresbury, of the EPSRC National Crystallographic Service, University of Southampton, for the data collection. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCole, S. T. & Alzari, P. M. (2007). Biochem. Soc. Trans. 35, 1321–1324.  Web of Science PubMed CAS Google Scholar
First citationCosta, M. S., Boechat, N., Rangel, E. A., da Silva, F. C., de Souza, A. M. T., Rodrigues, C. R., Castro, H. C., Neves, I. Jr, Lourenço, M. C. S., Wardell, S. M. S. V. & Ferreira, V. F. (2006). Bioorg. Med. Chem. 14, 8644–8653.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, M. L., Cardoso, L. N. F., Gonçalves, R. S. B., Da Silva, E. T., Lourenço, M. C. S., Vicente, F. R. & de Souza, M. V. N. (2008). Lett. Drug Des. Discov. 5, 137–140.  Web of Science CrossRef CAS Google Scholar
First citationLourenço, M. C., de Souza, M. V. N., Pinheiro, A. C., Ferreira, M. L., Gonçalves, R. S. B., Nogueira, T. C. M. & Peralta, M. A. (2007a). ARKIVOC, pp. 181–191.  Google Scholar
First citationLourenço, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science PubMed Google Scholar
First citationLourenço, M. C. S., Vicente, F. R., Henriques, M. G. M. O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. L. & De Souza, M. V. N. (2007b). Bioorg. Med. Chem. Lett. 17, 6895–6898.  PubMed Google Scholar
First citationPinheiro, A. C., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, S. M. V. & Wardell, J. L. (2007). J. Chem. Res. pp. 180–184.  CrossRef Google Scholar
First citationPortero, J. L. & Rubio, M. (2007). Exp. Opinion Ther. Pat. 17, 617–637.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Junior, I. N., Miranda, G. B. P., Lourenço, M. C. S., Vasconcelos, T. A., Pais, K. C., Wardell, J. L., Wardell, S. M. S. V. & Junior, J. P. A. (2006a). Lett. Drug Des. Discov. 3, 424–428.  Google Scholar
First citationSouza, M. V. N. de, Wardell, S. M. S. V., Ferreira, M. L., Wardell, J. L., Vasconcelos, T. A., Mascarenhas, Y. P., Ellena, J. & Silva, F. P. (2006b). J. Mol. Struct. 788, 63–71.  Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o1004-o1005
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds