organic compounds
Bis(ethylenediammonium) tetradecaborate
aDepartment of Chemistry, Teachers College of Qingdao University, Qingdao, Shandong 266071, People's Republic of China
*Correspondence e-mail: gmwang_pub@163.com
The title compound, 2C2H10N22+·B14O20(OH)64−, consists of a centrosymmetric tetradecaborate anion and two ethylenediammonium cations. The anions are interconnected through strong O—H⋯O hydrogen bonds into a three-dimensional supramolecular network with channels along [100], [010], [001] and [111]. The diprotonated cations reside in the channels and interact with the inorganic framework by extensive N—H⋯O hydrogen bonds.
Related literature
For general background to the structures and applications of inorganic borates, see: Burns et al. (1995); Chen et al. (1995); Grice et al. (1999); Touboul et al. (2003); Wang et al. (2007). For some typical examples of organically templated non-metal borates, see: Li et al. (2008); Liu et al. (2006); Pan et al. (2007); Wang et al. (2004). For two typical examples of crystalline aluminoborates, see: Wang et al. (2008a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810008494/hy2288sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008494/hy2288Isup2.hkl
A mixture of H3BO3 (0.217 g), Al2O3 (0.104 g), ethylenediamine (0.42 ml), pyridine (5.0 ml) and H2O (0.90 ml) was sealed in a Teflon-lined steel autoclave, heated at 443 K for 10 d, and then cooled to room temperature. The colorless prism-shaped crystals were separated from the solution by filtration, washed with distilled water and dried in air.
All H atoms were positioned geometrically and treated as riding atoms, with O—H = 0.82, N—H = 0.89 and C—H = 0.97 Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).
Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y, 2-z.] | |
Fig. 2. Different views (a) along [100] and (b) along [111] of the three-dimensional framework constructed from [B14O20(OH)6]4- anions, with [C2H10N2]2+ cations occupying channels. Hydrogen bonds are shown as dashed lines. |
2C2H10N22+·B14H6O264− | Z = 1 |
Mr = 697.63 | F(000) = 356 |
Triclinic, P1 | Dx = 1.760 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4849 (3) Å | Cell parameters from 5101 reflections |
b = 8.8387 (3) Å | θ = 2.1–26.0° |
c = 10.0406 (2) Å | µ = 0.16 mm−1 |
α = 95.085 (2)° | T = 293 K |
β = 96.942 (3)° | Prism, colorless |
γ = 116.856 (4)° | 0.28 × 0.13 × 0.04 mm |
V = 658.08 (3) Å3 |
Bruker SMART APEX CCD diffractometer | 2541 independent reflections |
Radiation source: fine-focus sealed tube | 2033 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.956, Tmax = 0.994 | k = −10→10 |
5101 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0518P)2 + 0.1264P] where P = (Fo2 + 2Fc2)/3 |
2541 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
2C2H10N22+·B14H6O264− | γ = 116.856 (4)° |
Mr = 697.63 | V = 658.08 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.4849 (3) Å | Mo Kα radiation |
b = 8.8387 (3) Å | µ = 0.16 mm−1 |
c = 10.0406 (2) Å | T = 293 K |
α = 95.085 (2)° | 0.28 × 0.13 × 0.04 mm |
β = 96.942 (3)° |
Bruker SMART APEX CCD diffractometer | 2541 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2033 reflections with I > 2σ(I) |
Tmin = 0.956, Tmax = 0.994 | Rint = 0.028 |
5101 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.24 e Å−3 |
2541 reflections | Δρmin = −0.27 e Å−3 |
217 parameters |
x | y | z | Uiso*/Ueq | ||
B1 | −0.5849 (3) | −0.5170 (3) | 0.8129 (2) | 0.0190 (5) | |
B2 | −0.4605 (3) | −0.2456 (3) | 0.9547 (2) | 0.0180 (5) | |
B3 | −0.2914 (3) | −0.2948 (3) | 0.7854 (2) | 0.0166 (5) | |
B4 | −0.2007 (3) | −0.1473 (3) | 0.5881 (2) | 0.0166 (5) | |
B5 | 0.0303 (3) | −0.1771 (3) | 0.7443 (2) | 0.0175 (5) | |
B6 | 0.3485 (3) | 0.0104 (3) | 0.8520 (2) | 0.0174 (5) | |
B7 | 0.2775 (3) | −0.2278 (3) | 0.6835 (2) | 0.0189 (5) | |
O1 | −0.73216 (19) | −0.67207 (18) | 0.76829 (15) | 0.0286 (4) | |
H1F | −0.7172 | −0.7203 | 0.7011 | 0.043* | |
O2 | −0.42739 (18) | −0.47558 (17) | 0.77218 (13) | 0.0203 (3) | |
O3 | −0.60553 (17) | −0.40525 (18) | 0.90605 (14) | 0.0232 (3) | |
O4 | −0.48111 (18) | −0.15100 (18) | 1.06075 (14) | 0.0211 (3) | |
O5 | −0.31106 (17) | −0.18999 (17) | 0.90041 (13) | 0.0188 (3) | |
O6 | −0.11436 (17) | −0.27927 (17) | 0.80925 (13) | 0.0175 (3) | |
O7 | −0.32891 (17) | −0.23425 (18) | 0.65880 (13) | 0.0218 (3) | |
O8 | −0.25158 (18) | −0.10364 (18) | 0.46895 (14) | 0.0245 (4) | |
H8A | −0.1620 | −0.0404 | 0.4401 | 0.037* | |
O9 | −0.02594 (18) | −0.10073 (19) | 0.63517 (14) | 0.0246 (4) | |
O10 | 0.10144 (17) | −0.28587 (18) | 0.68168 (14) | 0.0230 (3) | |
O11 | 0.17413 (17) | −0.03462 (17) | 0.84417 (13) | 0.0196 (3) | |
O12 | 0.40563 (17) | −0.08058 (18) | 0.76988 (14) | 0.0221 (3) | |
O13 | 0.33259 (18) | −0.31501 (19) | 0.59850 (14) | 0.0248 (4) | |
H13A | 0.4399 | −0.2832 | 0.6234 | 0.037* | |
C1 | 0.8308 (3) | 0.2448 (3) | 0.7230 (2) | 0.0251 (5) | |
H1A | 0.9116 | 0.2282 | 0.6699 | 0.030* | |
H1B | 0.7200 | 0.1376 | 0.7087 | 0.030* | |
C2 | 0.9149 (3) | 0.2927 (3) | 0.8712 (2) | 0.0248 (5) | |
H2A | 1.0184 | 0.4058 | 0.8868 | 0.030* | |
H2B | 0.8291 | 0.2977 | 0.9248 | 0.030* | |
N1 | 0.7928 (3) | 0.3808 (2) | 0.67745 (18) | 0.0284 (4) | |
H1C | 0.7433 | 0.3510 | 0.5897 | 0.043* | |
H1D | 0.8947 | 0.4789 | 0.6897 | 0.043* | |
H1E | 0.7173 | 0.3948 | 0.7254 | 0.043* | |
N2 | 0.9717 (2) | 0.1666 (2) | 0.91544 (17) | 0.0236 (4) | |
H2C | 1.0208 | 0.1977 | 1.0033 | 0.035* | |
H2D | 1.0518 | 0.1633 | 0.8673 | 0.035* | |
H2E | 0.8765 | 0.0631 | 0.9024 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0211 (12) | 0.0190 (12) | 0.0172 (12) | 0.0090 (10) | 0.0043 (10) | 0.0053 (10) |
B2 | 0.0159 (11) | 0.0207 (12) | 0.0179 (11) | 0.0094 (9) | 0.0017 (9) | 0.0020 (9) |
B3 | 0.0139 (11) | 0.0185 (11) | 0.0171 (11) | 0.0069 (9) | 0.0044 (9) | 0.0032 (9) |
B4 | 0.0171 (11) | 0.0167 (11) | 0.0167 (11) | 0.0083 (9) | 0.0042 (9) | 0.0019 (9) |
B5 | 0.0131 (11) | 0.0209 (12) | 0.0183 (12) | 0.0076 (9) | 0.0030 (9) | 0.0035 (9) |
B6 | 0.0175 (11) | 0.0228 (12) | 0.0138 (11) | 0.0103 (10) | 0.0045 (9) | 0.0054 (9) |
B7 | 0.0158 (11) | 0.0266 (12) | 0.0158 (11) | 0.0112 (10) | 0.0024 (9) | 0.0036 (10) |
O1 | 0.0228 (8) | 0.0213 (8) | 0.0322 (9) | 0.0024 (6) | 0.0106 (7) | −0.0046 (7) |
O2 | 0.0184 (7) | 0.0178 (7) | 0.0222 (8) | 0.0061 (6) | 0.0065 (6) | 0.0002 (6) |
O3 | 0.0155 (7) | 0.0220 (8) | 0.0262 (8) | 0.0042 (6) | 0.0069 (6) | −0.0024 (6) |
O4 | 0.0150 (7) | 0.0232 (8) | 0.0213 (8) | 0.0072 (6) | 0.0033 (6) | −0.0041 (6) |
O5 | 0.0158 (7) | 0.0186 (7) | 0.0197 (7) | 0.0063 (6) | 0.0051 (6) | −0.0010 (6) |
O6 | 0.0141 (7) | 0.0220 (7) | 0.0173 (7) | 0.0085 (6) | 0.0040 (6) | 0.0051 (6) |
O7 | 0.0133 (7) | 0.0334 (8) | 0.0201 (7) | 0.0107 (6) | 0.0048 (6) | 0.0096 (6) |
O8 | 0.0175 (7) | 0.0308 (8) | 0.0231 (8) | 0.0081 (6) | 0.0045 (6) | 0.0115 (6) |
O9 | 0.0146 (7) | 0.0334 (8) | 0.0254 (8) | 0.0085 (6) | 0.0063 (6) | 0.0147 (7) |
O10 | 0.0150 (7) | 0.0255 (8) | 0.0251 (8) | 0.0086 (6) | 0.0020 (6) | −0.0056 (6) |
O11 | 0.0141 (7) | 0.0216 (7) | 0.0221 (8) | 0.0085 (6) | 0.0036 (6) | −0.0025 (6) |
O12 | 0.0140 (7) | 0.0267 (8) | 0.0233 (8) | 0.0091 (6) | 0.0027 (6) | −0.0045 (6) |
O13 | 0.0149 (7) | 0.0349 (9) | 0.0233 (8) | 0.0133 (7) | −0.0001 (6) | −0.0064 (7) |
C1 | 0.0281 (12) | 0.0204 (11) | 0.0263 (12) | 0.0123 (9) | 0.0008 (9) | 0.0005 (9) |
C2 | 0.0277 (12) | 0.0251 (12) | 0.0238 (12) | 0.0141 (10) | 0.0047 (9) | 0.0039 (9) |
N1 | 0.0355 (11) | 0.0266 (10) | 0.0234 (10) | 0.0175 (9) | −0.0022 (8) | −0.0021 (8) |
N2 | 0.0239 (10) | 0.0296 (10) | 0.0188 (9) | 0.0133 (8) | 0.0046 (7) | 0.0054 (8) |
B1—O2 | 1.343 (3) | B7—O10 | 1.340 (3) |
B1—O1 | 1.360 (3) | B7—O13 | 1.359 (3) |
B1—O3 | 1.383 (3) | B7—O12 | 1.386 (3) |
B2—O5 | 1.341 (3) | O1—H1F | 0.8200 |
B2—O4 | 1.372 (3) | O4—B6i | 1.372 (3) |
B2—O3 | 1.381 (3) | O8—H8A | 0.8200 |
B3—O6 | 1.433 (3) | O13—H13A | 0.8200 |
B3—O2 | 1.471 (3) | C1—N1 | 1.474 (3) |
B3—O7 | 1.476 (3) | C1—C2 | 1.503 (3) |
B3—O5 | 1.489 (3) | C1—H1A | 0.9700 |
B4—O7 | 1.344 (3) | C1—H1B | 0.9700 |
B4—O9 | 1.355 (3) | C2—N2 | 1.481 (3) |
B4—O8 | 1.369 (3) | C2—H2A | 0.9700 |
B5—O6 | 1.430 (3) | C2—H2B | 0.9700 |
B5—O11 | 1.474 (3) | N1—H1C | 0.8900 |
B5—O9 | 1.477 (3) | N1—H1D | 0.8900 |
B5—O10 | 1.480 (3) | N1—H1E | 0.8900 |
B6—O11 | 1.337 (3) | N2—H2C | 0.8900 |
B6—O4i | 1.372 (3) | N2—H2D | 0.8900 |
B6—O12 | 1.376 (3) | N2—H2E | 0.8900 |
O2—B1—O1 | 122.44 (19) | B5—O6—B3 | 125.67 (16) |
O2—B1—O3 | 121.71 (19) | B4—O7—B3 | 122.80 (16) |
O1—B1—O3 | 115.84 (18) | B4—O8—H8A | 109.5 |
O5—B2—O4 | 123.39 (19) | B4—O9—B5 | 122.54 (16) |
O5—B2—O3 | 121.17 (18) | B7—O10—B5 | 121.89 (17) |
O4—B2—O3 | 115.44 (18) | B6—O11—B5 | 123.54 (16) |
O6—B3—O2 | 110.41 (17) | B6—O12—B7 | 118.51 (17) |
O6—B3—O7 | 112.48 (16) | B7—O13—H13A | 109.5 |
O2—B3—O7 | 106.77 (16) | N1—C1—C2 | 110.38 (17) |
O6—B3—O5 | 109.26 (16) | N1—C1—H1A | 109.6 |
O2—B3—O5 | 109.91 (16) | C2—C1—H1A | 109.6 |
O7—B3—O5 | 107.96 (16) | N1—C1—H1B | 109.6 |
O7—B4—O9 | 120.90 (18) | C2—C1—H1B | 109.6 |
O7—B4—O8 | 117.95 (18) | H1A—C1—H1B | 108.1 |
O9—B4—O8 | 121.13 (18) | N2—C2—C1 | 111.20 (17) |
O6—B5—O11 | 110.14 (16) | N2—C2—H2A | 109.4 |
O6—B5—O9 | 112.55 (16) | C1—C2—H2A | 109.4 |
O11—B5—O9 | 107.35 (16) | N2—C2—H2B | 109.4 |
O6—B5—O10 | 109.49 (17) | C1—C2—H2B | 109.4 |
O11—B5—O10 | 109.92 (16) | H2A—C2—H2B | 108.0 |
O9—B5—O10 | 107.33 (16) | C1—N1—H1C | 109.5 |
O11—B6—O4i | 122.59 (19) | C1—N1—H1D | 109.5 |
O11—B6—O12 | 121.46 (19) | H1C—N1—H1D | 109.5 |
O4i—B6—O12 | 115.93 (18) | C1—N1—H1E | 109.5 |
O10—B7—O13 | 119.34 (19) | H1C—N1—H1E | 109.5 |
O10—B7—O12 | 121.74 (19) | H1D—N1—H1E | 109.5 |
O13—B7—O12 | 118.91 (18) | C2—N2—H2C | 109.5 |
B1—O1—H1F | 109.5 | C2—N2—H2D | 109.5 |
B1—O2—B3 | 120.65 (17) | H2C—N2—H2D | 109.5 |
B2—O3—B1 | 118.42 (16) | C2—N2—H2E | 109.5 |
B2—O4—B6i | 127.25 (17) | H2C—N2—H2E | 109.5 |
B2—O5—B3 | 122.53 (16) | H2D—N2—H2E | 109.5 |
Symmetry code: (i) −x, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1F···O8ii | 0.82 | 2.11 | 2.909 (2) | 165 |
O8—H8A···O9iii | 0.82 | 1.83 | 2.6433 (19) | 176 |
O13—H13A···O7iv | 0.82 | 1.79 | 2.6030 (18) | 172 |
N1—H1C···O13v | 0.89 | 1.87 | 2.755 (2) | 172 |
N1—H1D···O10vi | 0.89 | 2.04 | 2.919 (2) | 168 |
N1—H1E···O2vi | 0.89 | 2.09 | 2.892 (2) | 150 |
N2—H2C···O6vii | 0.89 | 1.89 | 2.777 (2) | 174 |
N2—H2D···O1viii | 0.89 | 2.18 | 2.926 (2) | 141 |
N2—H2E···O5iv | 0.89 | 2.08 | 2.951 (2) | 168 |
Symmetry codes: (ii) −x−1, −y−1, −z+1; (iii) −x, −y, −z+1; (iv) x+1, y, z; (v) −x+1, −y, −z+1; (vi) x+1, y+1, z; (vii) −x+1, −y, −z+2; (viii) x+2, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | 2C2H10N22+·B14H6O264− |
Mr | 697.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.4849 (3), 8.8387 (3), 10.0406 (2) |
α, β, γ (°) | 95.085 (2), 96.942 (3), 116.856 (4) |
V (Å3) | 658.08 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.16 |
Crystal size (mm) | 0.28 × 0.13 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.956, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5101, 2541, 2033 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.107, 1.03 |
No. of reflections | 2541 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.27 |
Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1F···O8i | 0.82 | 2.11 | 2.909 (2) | 165 |
O8—H8A···O9ii | 0.82 | 1.83 | 2.6433 (19) | 176 |
O13—H13A···O7iii | 0.82 | 1.79 | 2.6030 (18) | 172 |
N1—H1C···O13iv | 0.89 | 1.87 | 2.755 (2) | 172 |
N1—H1D···O10v | 0.89 | 2.04 | 2.919 (2) | 168 |
N1—H1E···O2v | 0.89 | 2.09 | 2.892 (2) | 150 |
N2—H2C···O6vi | 0.89 | 1.89 | 2.777 (2) | 174 |
N2—H2D···O1vii | 0.89 | 2.18 | 2.926 (2) | 141 |
N2—H2E···O5iii | 0.89 | 2.08 | 2.951 (2) | 168 |
Symmetry codes: (i) −x−1, −y−1, −z+1; (ii) −x, −y, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (v) x+1, y+1, z; (vi) −x+1, −y, −z+2; (vii) x+2, y+1, z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063-06300522).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131–1151. CAS Google Scholar
Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322–324. CrossRef CAS Web of Science Google Scholar
Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–761. CAS Google Scholar
Li, H., Wang, G.-M., Xue, S.-Y. & Liang, Q. (2008). Acta Cryst. E64, m1269–m1270. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Z.-H., Li, L.-Q. & Zhang, W.-J. (2006). Inorg. Chem. 45, 1430–1432. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pan, C.-Y., Wang, G.-M., Zheng, S.-T. & Yang, G.-Y. (2007). Z. Anorg. Allg. Chem. 633, 336–340. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342. Web of Science CrossRef CAS Google Scholar
Wang, M.-S., Guo, G.-C., Chen, W.-T., Xu, G., Zhou, W.-W., Wu, K.-J. & Huang, J.-S. (2007). Angew. Chem. Int. Ed. 46, 3909–3911. Web of Science CSD CrossRef CAS Google Scholar
Wang, G.-M., Li, J.-H., Huang, H.-L., Li, H. & Zhang, J. (2008a). Inorg. Chem. 47, 5039–5041. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, G.-M., Li, J.-H., Li, Z.-X., Huang, H.-L., Xue, S.-Y. & Liu, H.-L. (2008b). Inorg. Chem. 47, 1270–1272. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). J. Solid State Chem. 177, 4648–4654. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Borate materials have attracted considerable attention in the past decades owing to their fascinating structural diversities and promising applications in mineralogy, luminescence and nonlinear optical properties (Burns et al., 1995; Chen et al., 1995; Grice et al., 1999; Touboul et al., 2003; Wang et al., 2007). From a structural chemistry point of view, the ability of boron to adopt both BO4 and BO3 coordination modes, coupled with the tendency of such units to polymerize into a large range of polyanions, has made inorganic borates into a rapidly growing family. To date, borate materials with various alkali metal, alkaline earth metal, rare earth and transition metal, traditionally prepared under high temperature/pressure solid-state conditions, have been extensively studied. In contrast, the template synthesis of nonmetal borates is still a relatively undeveloped area. Recently, solvothermal method has been proved to be very effective in isolating such borates by employing various organic molecules as templates or structure-directing agents (Li et al., 2008; Liu et al., 2006; Pan et al., 2007; Wang et al., 2004). Our interest is to explore the introduction of aluminium into borate system, constructing novel microporous aluminoborate materials templated by organic agents with different shape and size (Wang et al., 2008a, b). Interestingly, the title compound was obtained, which is a new organically templated nonmetal tetradecaborate.
As shown in Fig. 1, the asymmetric unit of the title compound consists of one [B7O10(OH)3]2- anionic unit and one [C2H10N2]2+ cation. The anionic unit is composed of two BO4 tetrahedra [B3 and B5], two BO3 [B2 and B6] and three BO2(OH) [B1, B4 and B7] trigonal units, which forms three classic B3O3 cycles linked by two common BO4 tetrahedra. Two such [B7O10(OH)3]2- units are further jointed together through the exocyclic O atoms [O4 and O4i, symmetry code: (i) -x, -y, 2-z], generating the FBBs (Fundamental Building Blocks), a large isolated [B14O20(OH)6]4- polyanion. Thus, the borate FBBs, featuring one cyclic 8-membered ring (MR) and six 3-MRs, is made up of four BO4 and ten BO3 and BO2(OH) units. The B—O bond distances lie in the range 1.337 (3)–1.386 (3) Å for the BO3 triangles (av. 1.361 Å) and 1.430 (3)–1.489 (3) Å for the BO4 tetrahedra (av. 1.466 Å), in good agreement with those reported previously for other borate materials. The O—B—O bond angles of the BO4 tetrahedra lie in the range of 106.7 (2)–112.6 (2)° and those of the BO3 triangles span from 115.4 (2) to 123.4 (2)°; the averages for the corresponding angles are very close to 109.5 and 120°, respectively.
The FBBs, [B14O20(OH)6]4-, are connected with each other through strong intermolecular O—H···O hydrogen bonds (Table 1), forming a three-dimensional framework with channels along [100], [010], [001] and [111] directions. The diprotonated [C2H10N2]2+ cations reside in the channels, interacting with the framework through N—H···O hydrogen bonds (Fig. 2).