organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o798-o799

Bis(ethyl­enedi­ammonium) tetra­deca­borate

aDepartment of Chemistry, Teachers College of Qingdao University, Qingdao, Shandong 266071, People's Republic of China
*Correspondence e-mail: gmwang_pub@163.com

(Received 25 February 2010; accepted 5 March 2010; online 13 March 2010)

The title compound, 2C2H10N22+·B14O20(OH)64−, consists of a centrosymmetric tetra­deca­borate anion and two ethyl­enediammonium cations. The anions are inter­connected through strong O—H⋯O hydrogen bonds into a three-dimensional supra­molecular network with channels along [100], [010], [001] and [111]. The diprotonated cations reside in the channels and inter­act with the inorganic framework by extensive N—H⋯O hydrogen bonds.

Related literature

For general background to the structures and applications of inorganic borates, see: Burns et al. (1995[Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131-1151.]); Chen et al. (1995[Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322-324.]); Grice et al. (1999[Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731-761.]); Touboul et al. (2003[Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327-1342.]); Wang et al. (2007[Wang, M.-S., Guo, G.-C., Chen, W.-T., Xu, G., Zhou, W.-W., Wu, K.-J. & Huang, J.-S. (2007). Angew. Chem. Int. Ed. 46, 3909-3911.]). For some typical examples of organically templated non-metal borates, see: Li et al. (2008[Li, H., Wang, G.-M., Xue, S.-Y. & Liang, Q. (2008). Acta Cryst. E64, m1269-m1270.]); Liu et al. (2006[Liu, Z.-H., Li, L.-Q. & Zhang, W.-J. (2006). Inorg. Chem. 45, 1430-1432.]); Pan et al. (2007[Pan, C.-Y., Wang, G.-M., Zheng, S.-T. & Yang, G.-Y. (2007). Z. Anorg. Allg. Chem. 633, 336-340.]); Wang et al. (2004[Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). J. Solid State Chem. 177, 4648-4654.]). For two typical examples of crystalline aluminoborates, see: Wang et al. (2008a[Wang, G.-M., Li, J.-H., Huang, H.-L., Li, H. & Zhang, J. (2008a). Inorg. Chem. 47, 5039-5041.],b[Wang, G.-M., Li, J.-H., Li, Z.-X., Huang, H.-L., Xue, S.-Y. & Liu, H.-L. (2008b). Inorg. Chem. 47, 1270-1272.]).

[Scheme 1]

Experimental

Crystal data
  • 2C2H10N22+·B14H6O264−

  • Mr = 697.63

  • Triclinic, [P \overline 1]

  • a = 8.4849 (3) Å

  • b = 8.8387 (3) Å

  • c = 10.0406 (2) Å

  • α = 95.085 (2)°

  • β = 96.942 (3)°

  • γ = 116.856 (4)°

  • V = 658.08 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.28 × 0.13 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.994

  • 5101 measured reflections

  • 2541 independent reflections

  • 2033 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.107

  • S = 1.03

  • 2541 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1F⋯O8i 0.82 2.11 2.909 (2) 165
O8—H8A⋯O9ii 0.82 1.83 2.6433 (19) 176
O13—H13A⋯O7iii 0.82 1.79 2.6030 (18) 172
N1—H1C⋯O13iv 0.89 1.87 2.755 (2) 172
N1—H1D⋯O10v 0.89 2.04 2.919 (2) 168
N1—H1E⋯O2v 0.89 2.09 2.892 (2) 150
N2—H2C⋯O6vi 0.89 1.89 2.777 (2) 174
N2—H2D⋯O1vii 0.89 2.18 2.926 (2) 141
N2—H2E⋯O5iii 0.89 2.08 2.951 (2) 168
Symmetry codes: (i) -x-1, -y-1, -z+1; (ii) -x, -y, -z+1; (iii) x+1, y, z; (iv) -x+1, -y, -z+1; (v) x+1, y+1, z; (vi) -x+1, -y, -z+2; (vii) x+2, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Borate materials have attracted considerable attention in the past decades owing to their fascinating structural diversities and promising applications in mineralogy, luminescence and nonlinear optical properties (Burns et al., 1995; Chen et al., 1995; Grice et al., 1999; Touboul et al., 2003; Wang et al., 2007). From a structural chemistry point of view, the ability of boron to adopt both BO4 and BO3 coordination modes, coupled with the tendency of such units to polymerize into a large range of polyanions, has made inorganic borates into a rapidly growing family. To date, borate materials with various alkali metal, alkaline earth metal, rare earth and transition metal, traditionally prepared under high temperature/pressure solid-state conditions, have been extensively studied. In contrast, the template synthesis of nonmetal borates is still a relatively undeveloped area. Recently, solvothermal method has been proved to be very effective in isolating such borates by employing various organic molecules as templates or structure-directing agents (Li et al., 2008; Liu et al., 2006; Pan et al., 2007; Wang et al., 2004). Our interest is to explore the introduction of aluminium into borate system, constructing novel microporous aluminoborate materials templated by organic agents with different shape and size (Wang et al., 2008a, b). Interestingly, the title compound was obtained, which is a new organically templated nonmetal tetradecaborate.

As shown in Fig. 1, the asymmetric unit of the title compound consists of one [B7O10(OH)3]2- anionic unit and one [C2H10N2]2+ cation. The anionic unit is composed of two BO4 tetrahedra [B3 and B5], two BO3 [B2 and B6] and three BO2(OH) [B1, B4 and B7] trigonal units, which forms three classic B3O3 cycles linked by two common BO4 tetrahedra. Two such [B7O10(OH)3]2- units are further jointed together through the exocyclic O atoms [O4 and O4i, symmetry code: (i) -x, -y, 2-z], generating the FBBs (Fundamental Building Blocks), a large isolated [B14O20(OH)6]4- polyanion. Thus, the borate FBBs, featuring one cyclic 8-membered ring (MR) and six 3-MRs, is made up of four BO4 and ten BO3 and BO2(OH) units. The B—O bond distances lie in the range 1.337 (3)–1.386 (3) Å for the BO3 triangles (av. 1.361 Å) and 1.430 (3)–1.489 (3) Å for the BO4 tetrahedra (av. 1.466 Å), in good agreement with those reported previously for other borate materials. The O—B—O bond angles of the BO4 tetrahedra lie in the range of 106.7 (2)–112.6 (2)° and those of the BO3 triangles span from 115.4 (2) to 123.4 (2)°; the averages for the corresponding angles are very close to 109.5 and 120°, respectively.

The FBBs, [B14O20(OH)6]4-, are connected with each other through strong intermolecular O—H···O hydrogen bonds (Table 1), forming a three-dimensional framework with channels along [100], [010], [001] and [111] directions. The diprotonated [C2H10N2]2+ cations reside in the channels, interacting with the framework through N—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background to the structures and applications of inorganic borates, see: Burns et al. (1995); Chen et al. (1995); Grice et al. (1999); Touboul et al. (2003); Wang et al. (2007). For some typical examples of organically templated non-metal borates, see: Li et al. (2008); Liu et al. (2006); Pan et al. (2007); Wang et al. (2004). For two typical examples of crystalline aluminoborates, see: Wang et al. (2008a,b).

Experimental top

A mixture of H3BO3 (0.217 g), Al2O3 (0.104 g), ethylenediamine (0.42 ml), pyridine (5.0 ml) and H2O (0.90 ml) was sealed in a Teflon-lined steel autoclave, heated at 443 K for 10 d, and then cooled to room temperature. The colorless prism-shaped crystals were separated from the solution by filtration, washed with distilled water and dried in air.

Refinement top

All H atoms were positioned geometrically and treated as riding atoms, with O—H = 0.82, N—H = 0.89 and C—H = 0.97 Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, -y, 2-z.]
[Figure 2] Fig. 2. Different views (a) along [100] and (b) along [111] of the three-dimensional framework constructed from [B14O20(OH)6]4- anions, with [C2H10N2]2+ cations occupying channels. Hydrogen bonds are shown as dashed lines.
Bis(ethylenediammonium) tetradecaborate top
Crystal data top
2C2H10N22+·B14H6O264Z = 1
Mr = 697.63F(000) = 356
Triclinic, P1Dx = 1.760 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4849 (3) ÅCell parameters from 5101 reflections
b = 8.8387 (3) Åθ = 2.1–26.0°
c = 10.0406 (2) ŵ = 0.16 mm1
α = 95.085 (2)°T = 293 K
β = 96.942 (3)°Prism, colorless
γ = 116.856 (4)°0.28 × 0.13 × 0.04 mm
V = 658.08 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2541 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.956, Tmax = 0.994k = 1010
5101 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.1264P]
where P = (Fo2 + 2Fc2)/3
2541 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
2C2H10N22+·B14H6O264γ = 116.856 (4)°
Mr = 697.63V = 658.08 (3) Å3
Triclinic, P1Z = 1
a = 8.4849 (3) ÅMo Kα radiation
b = 8.8387 (3) ŵ = 0.16 mm1
c = 10.0406 (2) ÅT = 293 K
α = 95.085 (2)°0.28 × 0.13 × 0.04 mm
β = 96.942 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2541 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2033 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.994Rint = 0.028
5101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2541 reflectionsΔρmin = 0.27 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.5849 (3)0.5170 (3)0.8129 (2)0.0190 (5)
B20.4605 (3)0.2456 (3)0.9547 (2)0.0180 (5)
B30.2914 (3)0.2948 (3)0.7854 (2)0.0166 (5)
B40.2007 (3)0.1473 (3)0.5881 (2)0.0166 (5)
B50.0303 (3)0.1771 (3)0.7443 (2)0.0175 (5)
B60.3485 (3)0.0104 (3)0.8520 (2)0.0174 (5)
B70.2775 (3)0.2278 (3)0.6835 (2)0.0189 (5)
O10.73216 (19)0.67207 (18)0.76829 (15)0.0286 (4)
H1F0.71720.72030.70110.043*
O20.42739 (18)0.47558 (17)0.77218 (13)0.0203 (3)
O30.60553 (17)0.40525 (18)0.90605 (14)0.0232 (3)
O40.48111 (18)0.15100 (18)1.06075 (14)0.0211 (3)
O50.31106 (17)0.18999 (17)0.90041 (13)0.0188 (3)
O60.11436 (17)0.27927 (17)0.80925 (13)0.0175 (3)
O70.32891 (17)0.23425 (18)0.65880 (13)0.0218 (3)
O80.25158 (18)0.10364 (18)0.46895 (14)0.0245 (4)
H8A0.16200.04040.44010.037*
O90.02594 (18)0.10073 (19)0.63517 (14)0.0246 (4)
O100.10144 (17)0.28587 (18)0.68168 (14)0.0230 (3)
O110.17413 (17)0.03462 (17)0.84417 (13)0.0196 (3)
O120.40563 (17)0.08058 (18)0.76988 (14)0.0221 (3)
O130.33259 (18)0.31501 (19)0.59850 (14)0.0248 (4)
H13A0.43990.28320.62340.037*
C10.8308 (3)0.2448 (3)0.7230 (2)0.0251 (5)
H1A0.91160.22820.66990.030*
H1B0.72000.13760.70870.030*
C20.9149 (3)0.2927 (3)0.8712 (2)0.0248 (5)
H2A1.01840.40580.88680.030*
H2B0.82910.29770.92480.030*
N10.7928 (3)0.3808 (2)0.67745 (18)0.0284 (4)
H1C0.74330.35100.58970.043*
H1D0.89470.47890.68970.043*
H1E0.71730.39480.72540.043*
N20.9717 (2)0.1666 (2)0.91544 (17)0.0236 (4)
H2C1.02080.19771.00330.035*
H2D1.05180.16330.86730.035*
H2E0.87650.06310.90240.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0211 (12)0.0190 (12)0.0172 (12)0.0090 (10)0.0043 (10)0.0053 (10)
B20.0159 (11)0.0207 (12)0.0179 (11)0.0094 (9)0.0017 (9)0.0020 (9)
B30.0139 (11)0.0185 (11)0.0171 (11)0.0069 (9)0.0044 (9)0.0032 (9)
B40.0171 (11)0.0167 (11)0.0167 (11)0.0083 (9)0.0042 (9)0.0019 (9)
B50.0131 (11)0.0209 (12)0.0183 (12)0.0076 (9)0.0030 (9)0.0035 (9)
B60.0175 (11)0.0228 (12)0.0138 (11)0.0103 (10)0.0045 (9)0.0054 (9)
B70.0158 (11)0.0266 (12)0.0158 (11)0.0112 (10)0.0024 (9)0.0036 (10)
O10.0228 (8)0.0213 (8)0.0322 (9)0.0024 (6)0.0106 (7)0.0046 (7)
O20.0184 (7)0.0178 (7)0.0222 (8)0.0061 (6)0.0065 (6)0.0002 (6)
O30.0155 (7)0.0220 (8)0.0262 (8)0.0042 (6)0.0069 (6)0.0024 (6)
O40.0150 (7)0.0232 (8)0.0213 (8)0.0072 (6)0.0033 (6)0.0041 (6)
O50.0158 (7)0.0186 (7)0.0197 (7)0.0063 (6)0.0051 (6)0.0010 (6)
O60.0141 (7)0.0220 (7)0.0173 (7)0.0085 (6)0.0040 (6)0.0051 (6)
O70.0133 (7)0.0334 (8)0.0201 (7)0.0107 (6)0.0048 (6)0.0096 (6)
O80.0175 (7)0.0308 (8)0.0231 (8)0.0081 (6)0.0045 (6)0.0115 (6)
O90.0146 (7)0.0334 (8)0.0254 (8)0.0085 (6)0.0063 (6)0.0147 (7)
O100.0150 (7)0.0255 (8)0.0251 (8)0.0086 (6)0.0020 (6)0.0056 (6)
O110.0141 (7)0.0216 (7)0.0221 (8)0.0085 (6)0.0036 (6)0.0025 (6)
O120.0140 (7)0.0267 (8)0.0233 (8)0.0091 (6)0.0027 (6)0.0045 (6)
O130.0149 (7)0.0349 (9)0.0233 (8)0.0133 (7)0.0001 (6)0.0064 (7)
C10.0281 (12)0.0204 (11)0.0263 (12)0.0123 (9)0.0008 (9)0.0005 (9)
C20.0277 (12)0.0251 (12)0.0238 (12)0.0141 (10)0.0047 (9)0.0039 (9)
N10.0355 (11)0.0266 (10)0.0234 (10)0.0175 (9)0.0022 (8)0.0021 (8)
N20.0239 (10)0.0296 (10)0.0188 (9)0.0133 (8)0.0046 (7)0.0054 (8)
Geometric parameters (Å, º) top
B1—O21.343 (3)B7—O101.340 (3)
B1—O11.360 (3)B7—O131.359 (3)
B1—O31.383 (3)B7—O121.386 (3)
B2—O51.341 (3)O1—H1F0.8200
B2—O41.372 (3)O4—B6i1.372 (3)
B2—O31.381 (3)O8—H8A0.8200
B3—O61.433 (3)O13—H13A0.8200
B3—O21.471 (3)C1—N11.474 (3)
B3—O71.476 (3)C1—C21.503 (3)
B3—O51.489 (3)C1—H1A0.9700
B4—O71.344 (3)C1—H1B0.9700
B4—O91.355 (3)C2—N21.481 (3)
B4—O81.369 (3)C2—H2A0.9700
B5—O61.430 (3)C2—H2B0.9700
B5—O111.474 (3)N1—H1C0.8900
B5—O91.477 (3)N1—H1D0.8900
B5—O101.480 (3)N1—H1E0.8900
B6—O111.337 (3)N2—H2C0.8900
B6—O4i1.372 (3)N2—H2D0.8900
B6—O121.376 (3)N2—H2E0.8900
O2—B1—O1122.44 (19)B5—O6—B3125.67 (16)
O2—B1—O3121.71 (19)B4—O7—B3122.80 (16)
O1—B1—O3115.84 (18)B4—O8—H8A109.5
O5—B2—O4123.39 (19)B4—O9—B5122.54 (16)
O5—B2—O3121.17 (18)B7—O10—B5121.89 (17)
O4—B2—O3115.44 (18)B6—O11—B5123.54 (16)
O6—B3—O2110.41 (17)B6—O12—B7118.51 (17)
O6—B3—O7112.48 (16)B7—O13—H13A109.5
O2—B3—O7106.77 (16)N1—C1—C2110.38 (17)
O6—B3—O5109.26 (16)N1—C1—H1A109.6
O2—B3—O5109.91 (16)C2—C1—H1A109.6
O7—B3—O5107.96 (16)N1—C1—H1B109.6
O7—B4—O9120.90 (18)C2—C1—H1B109.6
O7—B4—O8117.95 (18)H1A—C1—H1B108.1
O9—B4—O8121.13 (18)N2—C2—C1111.20 (17)
O6—B5—O11110.14 (16)N2—C2—H2A109.4
O6—B5—O9112.55 (16)C1—C2—H2A109.4
O11—B5—O9107.35 (16)N2—C2—H2B109.4
O6—B5—O10109.49 (17)C1—C2—H2B109.4
O11—B5—O10109.92 (16)H2A—C2—H2B108.0
O9—B5—O10107.33 (16)C1—N1—H1C109.5
O11—B6—O4i122.59 (19)C1—N1—H1D109.5
O11—B6—O12121.46 (19)H1C—N1—H1D109.5
O4i—B6—O12115.93 (18)C1—N1—H1E109.5
O10—B7—O13119.34 (19)H1C—N1—H1E109.5
O10—B7—O12121.74 (19)H1D—N1—H1E109.5
O13—B7—O12118.91 (18)C2—N2—H2C109.5
B1—O1—H1F109.5C2—N2—H2D109.5
B1—O2—B3120.65 (17)H2C—N2—H2D109.5
B2—O3—B1118.42 (16)C2—N2—H2E109.5
B2—O4—B6i127.25 (17)H2C—N2—H2E109.5
B2—O5—B3122.53 (16)H2D—N2—H2E109.5
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1F···O8ii0.822.112.909 (2)165
O8—H8A···O9iii0.821.832.6433 (19)176
O13—H13A···O7iv0.821.792.6030 (18)172
N1—H1C···O13v0.891.872.755 (2)172
N1—H1D···O10vi0.892.042.919 (2)168
N1—H1E···O2vi0.892.092.892 (2)150
N2—H2C···O6vii0.891.892.777 (2)174
N2—H2D···O1viii0.892.182.926 (2)141
N2—H2E···O5iv0.892.082.951 (2)168
Symmetry codes: (ii) x1, y1, z+1; (iii) x, y, z+1; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x+1, y+1, z; (vii) x+1, y, z+2; (viii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula2C2H10N22+·B14H6O264
Mr697.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4849 (3), 8.8387 (3), 10.0406 (2)
α, β, γ (°)95.085 (2), 96.942 (3), 116.856 (4)
V3)658.08 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.28 × 0.13 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
5101, 2541, 2033
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.03
No. of reflections2541
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1F···O8i0.822.112.909 (2)165
O8—H8A···O9ii0.821.832.6433 (19)176
O13—H13A···O7iii0.821.792.6030 (18)172
N1—H1C···O13iv0.891.872.755 (2)172
N1—H1D···O10v0.892.042.919 (2)168
N1—H1E···O2v0.892.092.892 (2)150
N2—H2C···O6vi0.891.892.777 (2)174
N2—H2D···O1vii0.892.182.926 (2)141
N2—H2E···O5iii0.892.082.951 (2)168
Symmetry codes: (i) x1, y1, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z; (vi) x+1, y, z+2; (vii) x+2, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063-06300522).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131–1151.  CAS Google Scholar
First citationChen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322–324.  CrossRef CAS Web of Science Google Scholar
First citationGrice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–761.  CAS Google Scholar
First citationLi, H., Wang, G.-M., Xue, S.-Y. & Liang, Q. (2008). Acta Cryst. E64, m1269–m1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-H., Li, L.-Q. & Zhang, W.-J. (2006). Inorg. Chem. 45, 1430–1432.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPan, C.-Y., Wang, G.-M., Zheng, S.-T. & Yang, G.-Y. (2007). Z. Anorg. Allg. Chem. 633, 336–340.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTouboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342.  Web of Science CrossRef CAS Google Scholar
First citationWang, M.-S., Guo, G.-C., Chen, W.-T., Xu, G., Zhou, W.-W., Wu, K.-J. & Huang, J.-S. (2007). Angew. Chem. Int. Ed. 46, 3909–3911.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, G.-M., Li, J.-H., Huang, H.-L., Li, H. & Zhang, J. (2008a). Inorg. Chem. 47, 5039–5041.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, G.-M., Li, J.-H., Li, Z.-X., Huang, H.-L., Xue, S.-Y. & Liu, H.-L. (2008b). Inorg. Chem. 47, 1270–1272.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). J. Solid State Chem. 177, 4648–4654.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o798-o799
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds