organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3S,4S)-1-Benzyl­pyrrolidine-3,4-diol

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032, Xi-An, People's Republic of China
*Correspondence e-mail: ping_an1718@yahoo.com.cn

(Received 4 November 2009; accepted 24 December 2009; online 27 March 2010)

In the title compound, C11H15NO2, the pyrrolidine ring adapts a twisted envelope conformation and the two hydroxyl groups are arranged in a trans conformation. The crystal packing is stabilized by inter­molecular O—H⋯N and O—H⋯O hydrogen bonds. A weak C—H⋯π inter­action also occurs.

Related literature

For the preparation of the title compound, see: Nagel et al. (1984[Nagel, U. (1984). Angew. Chem. Int. Ed. 23, 435-436.]); Inoguchi et al. (1990[Inoguchi, K. & Achiwa, K. (1990). Chem. Pharm. Bull. 38, 818-820.]). The title compound is used in the preparation of the chiral phosphine ligand DEGphos, (+)-(3R,4R)-N-benzyl-3,4-bis­(diphenyl­phosphino)pyrrolidine, (Nagel et al., 1984[Nagel, U. (1984). Angew. Chem. Int. Ed. 23, 435-436.]), an efficient ligand for Rh-catalysed asymmetric hydrogenation (Tang & Zhang, 2003[Tang, W. & Zhang, X. (2003). Chem. Rev. 103, 3029-3069.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO2

  • Mr = 193.24

  • Monoclinic, P 21

  • a = 6.0244 (10) Å

  • b = 8.1033 (14) Å

  • c = 10.3981 (18) Å

  • β = 96.016 (2)°

  • V = 504.81 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.31 × 0.27 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.987

  • 1440 measured reflections

  • 1440 independent reflections

  • 1348 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.105

  • S = 1.03

  • 1440 reflections

  • 125 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.13 2.918 (2) 162
O2—H2⋯O1ii 0.82 2.14 2.914 (2) 157
C10—H10⋯Cg2iii 0.98 2.86 3.771 (2) 155
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x+1, y, z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]).

Supporting information


Comment top

The title compound (+)-(3S,4S)-1-benzylpyrrolidine-3,4-diol was obtained from L-tartaric acid by condensation with benzylamine followed by reduction with NaBH4—BF3.Et2O. This is used for preparation of the chiral phosphine ligand DEGphos ((+)-(3R,4R)-N-benzyl-3,4- bis(diphenylphosphino)pyrrolidine, (Nagel et al., 1984), an efficient ligand for Rh-catalyzed asymmetric hydrogenations (Tang & Zhang, 2003).

In the title compound, C11H15NO2, the pyrrolidine ring adapts a twisted envelope formation. The two hydroxyl groups at C9 and C10 are arranged in a trans- conformation. The dihedral angle between the mean planes of the pyrrolidine phenyl rings is 62.4 (2)°. Crystal packing is stabilized by intermolecular O—H···N and O—H···O hydrogen bonds interactions. A weak C—H···Cg2 π ring intermolecular intereaction is also observed, where Cg2 = C1–C6.

Related literature top

For the preparation of the title compound, see: Nagel et al. (1984); Inoguchi et al. (1990). The title compound is used in the preparation of the chiral phosphine ligand DEGphos, (+)-(3R,4R)-N-benzyl-3,4- bis(diphenylphosphino)pyrrolidine, (Nagel et al., 1984), an efficient ligand for Rh-catalysed asymmetric hydrogenations (Tang & Zhang, 2003).

Experimental top

The synthesis of the title compound is described by Nagel et al. (1984). Crystals were grown from its solution in acetone; m.p. 371–373 K.

Refinement top

The absolute structure could not be established from the dffraction data and was assigned based on L-tartaric acid the starting material.

All the H atoms were located in difference Fourier maps. However, they were constrained by riding model approximation. C—Hmethyl=0.97 Å; C—Haryl=0.93 Å; UisoHmethyl and UisoHaryl are both 1.2 U eq(C). O—H is 0.82Å with Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker); data reduction: SAINT (Bruker); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006) and CAMERON (Watkin et al., 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of (I) viewed down the b axis. Dashed lines indicate hydrogen bonds.
(3S,4S)-1-benzylpyrrolidine-3,4-diol top
Crystal data top
C11H15NO2F(000) = 208
Mr = 193.24Dx = 1.271 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1279 reflections
a = 6.0244 (10) Åθ = 3.2–25.6°
b = 8.1033 (14) ŵ = 0.09 mm1
c = 10.3981 (18) ÅT = 293 K
β = 96.016 (2)°Block, colorless
V = 504.81 (15) Å30.31 × 0.27 × 0.14 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1440 independent reflections
Radiation source: fine-focus sealed tube1348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.973, Tmax = 0.987k = 89
1440 measured reflectionsl = 012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
1440 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.11 e Å3
Crystal data top
C11H15NO2V = 504.81 (15) Å3
Mr = 193.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0244 (10) ŵ = 0.09 mm1
b = 8.1033 (14) ÅT = 293 K
c = 10.3981 (18) Å0.31 × 0.27 × 0.14 mm
β = 96.016 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1440 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1348 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.987Rint = 0.000
1440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
1440 reflectionsΔρmin = 0.11 e Å3
125 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5935 (2)0.00443 (18)0.18867 (14)0.0358 (4)
O10.3213 (2)0.36878 (18)0.06145 (13)0.0451 (4)
H10.31660.41390.00940.068*
O20.8566 (2)0.2626 (2)0.03312 (13)0.0556 (5)
H20.98020.29560.06280.083*
C10.7231 (4)0.3493 (3)0.42248 (18)0.0511 (6)
H1A0.60800.33480.47440.061*
C20.8766 (4)0.4734 (3)0.4518 (2)0.0602 (6)
H2A0.86370.54230.52210.072*
C31.0500 (4)0.4951 (3)0.3760 (2)0.0582 (6)
H31.15510.57770.39580.070*
C41.0660 (4)0.3935 (3)0.2711 (2)0.0485 (5)
H41.18140.40840.21950.058*
C50.9109 (3)0.2693 (3)0.24219 (17)0.0420 (5)
H50.92420.20100.17150.050*
C60.7361 (3)0.2451 (3)0.31701 (16)0.0387 (4)
C70.5566 (3)0.1179 (3)0.28805 (19)0.0469 (5)
H7A0.53730.05960.36760.056*
H7B0.41780.17500.26150.056*
C80.3888 (3)0.0952 (3)0.14674 (19)0.0395 (5)
H8A0.28200.02580.09560.047*
H8B0.32030.13840.22010.047*
C90.4714 (3)0.2340 (2)0.06555 (16)0.0359 (4)
H90.48130.19380.02260.043*
C100.7077 (3)0.2710 (2)0.13021 (16)0.0371 (4)
H100.71300.38060.17020.045*
C110.7500 (3)0.1372 (3)0.23333 (17)0.0408 (5)
H11A0.71950.17790.31740.049*
H11B0.90320.09870.23890.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0299 (8)0.0321 (8)0.0458 (8)0.0001 (7)0.0055 (6)0.0030 (6)
O10.0388 (8)0.0407 (8)0.0567 (7)0.0100 (6)0.0099 (6)0.0062 (6)
O20.0317 (7)0.0791 (12)0.0574 (8)0.0028 (8)0.0111 (6)0.0130 (8)
C10.0573 (13)0.0502 (14)0.0466 (11)0.0031 (11)0.0097 (9)0.0049 (9)
C20.0732 (16)0.0519 (15)0.0531 (12)0.0015 (12)0.0049 (11)0.0135 (11)
C30.0554 (14)0.0422 (13)0.0724 (13)0.0059 (11)0.0154 (11)0.0048 (11)
C40.0393 (11)0.0412 (12)0.0639 (11)0.0001 (9)0.0010 (9)0.0071 (10)
C50.0413 (11)0.0373 (11)0.0479 (9)0.0021 (9)0.0068 (8)0.0020 (8)
C60.0412 (10)0.0329 (10)0.0419 (8)0.0043 (9)0.0038 (7)0.0011 (8)
C70.0447 (12)0.0407 (11)0.0578 (11)0.0001 (10)0.0176 (10)0.0067 (10)
C80.0293 (10)0.0364 (11)0.0527 (10)0.0002 (8)0.0043 (8)0.0003 (8)
C90.0307 (9)0.0342 (11)0.0430 (8)0.0024 (8)0.0045 (7)0.0023 (8)
C100.0316 (10)0.0351 (10)0.0447 (9)0.0036 (8)0.0046 (7)0.0017 (8)
C110.0374 (11)0.0396 (11)0.0446 (9)0.0040 (9)0.0001 (7)0.0001 (8)
Geometric parameters (Å, º) top
N1—C81.463 (2)C4—H40.9300
N1—C71.466 (2)C5—C61.387 (3)
N1—C111.473 (3)C5—H50.9300
O1—C91.416 (2)C6—C71.501 (3)
O1—H10.8200C7—H7A0.9700
O2—C101.421 (2)C7—H7B0.9700
O2—H20.8200C8—C91.521 (3)
C1—C21.379 (3)C8—H8A0.9700
C1—C61.393 (3)C8—H8B0.9700
C1—H1A0.9300C9—C101.539 (2)
C2—C31.384 (3)C9—H90.9800
C2—H2A0.9300C10—C111.528 (3)
C3—C41.378 (3)C10—H100.9800
C3—H30.9300C11—H11A0.9700
C4—C51.385 (3)C11—H11B0.9700
C8—N1—C7111.39 (14)C6—C7—H7B108.2
C8—N1—C11102.61 (14)H7A—C7—H7B107.3
C7—N1—C11114.28 (14)N1—C8—C9102.85 (15)
C9—O1—H1109.5N1—C8—H8A111.2
C10—O2—H2109.5C9—C8—H8A111.2
C2—C1—C6121.6 (2)N1—C8—H8B111.2
C2—C1—H1A119.2C9—C8—H8B111.2
C6—C1—H1A119.2H8A—C8—H8B109.1
C1—C2—C3119.7 (2)O1—C9—C8109.99 (14)
C1—C2—H2A120.1O1—C9—C10114.91 (16)
C3—C2—H2A120.1C8—C9—C10104.09 (15)
C4—C3—C2119.6 (2)O1—C9—H9109.2
C4—C3—H3120.2C8—C9—H9109.2
C2—C3—H3120.2C10—C9—H9109.2
C3—C4—C5120.3 (2)O2—C10—C11113.17 (16)
C3—C4—H4119.9O2—C10—C9107.72 (13)
C5—C4—H4119.9C11—C10—C9104.29 (15)
C4—C5—C6121.04 (19)O2—C10—H10110.5
C4—C5—H5119.5C11—C10—H10110.5
C6—C5—H5119.5C9—C10—H10110.5
C5—C6—C1117.69 (19)N1—C11—C10104.06 (13)
C5—C6—C7123.90 (17)N1—C11—H11A110.9
C1—C6—C7118.38 (16)C10—C11—H11A110.9
N1—C7—C6116.51 (14)N1—C11—H11B110.9
N1—C7—H7A108.2C10—C11—H11B110.9
C6—C7—H7A108.2H11A—C11—H11B109.0
N1—C7—H7B108.2
C6—C1—C2—C30.7 (3)C7—N1—C8—C9169.66 (15)
C1—C2—C3—C40.7 (4)C11—N1—C8—C946.96 (17)
C2—C3—C4—C50.6 (3)N1—C8—C9—O1155.98 (15)
C3—C4—C5—C60.5 (3)N1—C8—C9—C1032.37 (18)
C4—C5—C6—C10.4 (3)O1—C9—C10—O2112.90 (17)
C4—C5—C6—C7177.2 (2)C8—C9—C10—O2126.76 (16)
C2—C1—C6—C50.5 (3)O1—C9—C10—C11126.60 (16)
C2—C1—C6—C7177.25 (19)C8—C9—C10—C116.25 (19)
C8—N1—C7—C6166.25 (16)C8—N1—C11—C1042.96 (18)
C11—N1—C7—C678.0 (2)C7—N1—C11—C10163.69 (15)
C5—C6—C7—N111.1 (3)O2—C10—C11—N194.90 (18)
C1—C6—C7—N1171.29 (17)C9—C10—C11—N121.88 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.132.918 (2)162
O2—H2···O1ii0.822.142.914 (2)157
C10—H10···Cg2iii0.982.863.771 (2)155
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H15NO2
Mr193.24
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.0244 (10), 8.1033 (14), 10.3981 (18)
β (°) 96.016 (2)
V3)504.81 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.31 × 0.27 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.973, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
1440, 1440, 1348
Rint0.000
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.105, 1.03
No. of reflections1440
No. of parameters125
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.11

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.132.918 (2)162
O2—H2···O1ii0.822.142.914 (2)157
C10—H10···Cg2iii0.982.863.771 (2)155
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y, z; (iii) x, y1, z.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationInoguchi, K. & Achiwa, K. (1990). Chem. Pharm. Bull. 38, 818–820.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagel, U. (1984). Angew. Chem. Int. Ed. 23, 435–436.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, W. & Zhang, X. (2003). Chem. Rev. 103, 3029–3069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds