organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o806-o807

5,6,7,8-Tetra­hydro­quinoline 1-oxide hemihydrate

aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bInstitute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw 42, POB 58, Poland
*Correspondence e-mail: kar@ap.siedlce.pl

(Received 3 March 2010; accepted 8 March 2010; online 13 March 2010)

In the title compound, C9H11NO·0.5H2O, the asymmetric unit contains two similar mol­ecules of 5,6,7,8-tetra­hydro­quinoline 1-oxide and one water mol­ecule. The water mol­ecule links the two O atoms of both independent N-oxides into dimers via O—H⋯O hydrogen bonds, forming a three-dimensional network along [101], which is additionally stabilized by weak C—H⋯O inter­molecular inter­actions. In each mol­ecule, the saturated six-membered rings exist in a conformation inter­mediate between a half-chair and sofa.

Related literature

For background to the chemistry of the title compound and its applications, see: Coperet et al. (1998[Coperet, Ch., Adolfsson, H., Khoung, T. V., Yudin, A. K. & Sharpless, K. B. (1998). J. Org. Chem. 63, 1740-1741.]); Li (2005[Li, J. J. (2005). Name Reactions in Heterocyclic Chemistry, p. 340. Hoboken, New Jersey: John Wiley & Sons, Inc.]); Kaiser et al. (2006[Kaiser, S., Smidt, S. P. & Pfaltz, A. (2006). Angew. Chem. Int. Ed. 45, 5194-5197.]); Kaczorowski et al. (2009[Kaczorowski, T., Justyniak, I., Lipińska, T., Lipkowski, J. & Lewiński, J. (2009). J. Am. Chem. Soc. 131, 5393-5395.]). For the synthesis, see: Jacobs et al. (2000[Jacobs, C., Frotscher, M., Dannhardt, G. & Hartmann, R. W. (2000). J. Med. Chem. 43, 1841-1851.]); Barbay et al. (2008[Barbay, J. K., Gong, Y., Buntinx, M., Li, J., Claes, C., Hornby, P. J., Van Lommen, G., Van Wauwe, J. & He, W. (2008). Bioorg. Med. Chem. Lett. 18, 2544-2548.]). For the biological activity of 5,6,7,8-tetra­hydro­quinoline derivatives, see: Calhoun et al. (1995[Calhoun, W., Carlson, R. P., Crossley, R., Datko, L. J., Dietrich, S., Heatherington, K., Marshall, L. A., Meade, P. J., Opalko, A. & Shepherd, R. G. (1995). J. Med. Chem. 38, 1473-1481.]); Abd El-Salam et al. (2009[Abd El-Salam, O. I., Abou El Ella, D. A., Ismail, N. S. M. & Abdullah, M. (2009). Pharmazie, 64, 147-155.]). For a related structure, see: HXTHQO (CSD, November 2009 release). For structure inter­pretation tools, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1, pp. 16-19. New York: Plenum Press.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO·0.5H2O

  • Mr = 158.20

  • Orthorhombic, P b c a

  • a = 14.725 (4) Å

  • b = 14.464 (4) Å

  • c = 15.474 (3) Å

  • V = 3295.7 (14) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.832, Tmax = 0.873

  • 11258 measured reflections

  • 2727 independent reflections

  • 1989 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.205

  • S = 1.39

  • 2727 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H21⋯O1A 0.96 (3) 1.87 (3) 2.825 (3) 170 (3)
O2—H22⋯O1B 0.95 (4) 1.86 (3) 2.799 (3) 170 (3)
C2B—H2B⋯O1A 0.93 2.53 3.454 (3) 171
C3A—H3A⋯O2i 0.93 2.50 3.392 (3) 160
C3B—H3B⋯O2ii 0.93 2.56 3.342 (4) 142
C5A—H52A⋯O1Biii 0.97 2.49 3.383 (4) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

5,6,7,8-Tetrahydroquinoline 1-oxide, (I), is an important intermediate for the synthesis of quinoline derivatives via Boekelheide rearrangement (Li, 2002; Kaiser et al., 2006; Coperet et al., 1998). The 5,6,7,8-tetrahydroquinoline moiety is found as a subunit in numerous medicinally interesting compounds (Calhoun et al., 1995; Abd El-Salam et al., 2009). Compound (I) can be obtained by the reaction of 5,6,7,8-tetrahydroquinoline with hydrogen peroxide or with MCPBA (Jacobs et al., 2000; Barbay et al., 2008). A search of the Cambridge Structural Database (November 2009 Release; Allen, 2002; Bruno et al., 2002) showed 26 organic compounds with the 5,6,7,8-tetrahydroquinoline moiety. Due to our interest in the preparartion of new nanomaterials based on organometallic complexes similar to those obtained from Cinchona alkaloids (Kaczorowski et al., 2009), a new method of synthesis for (I), by the oxidation of 5,6,7,8-tetrahydroquinoline with the catalytic system of oxone/TlOAc/PhI in a water-acetonitrile solution at room temperature has been developed and its crystal and molecular structure reported.

The asymmetric unit contains two similar molecules of 5,6,7,8-tetrahydroquinoline 1-oxide and one water molecule (Fig. 1). The water molecule links the two O atoms of both independent N-oxides by O—H···O hydrogen bonds into dimmers, which form a three-dimensional network along the [101] (Fig. 2). Additional weak C—H···O intermolecular interactions help stabilize the crystal packing (Table 1). The water molecule is observed in the 1H NMR spectrum as a broad signal at 2.4 ppm and in the IR spectrum as two absorption maxima for two different O—H bonds at 3368 and 3312 cm-1, respectively. The bond distances and angles in (I) are in normal ranges (Allen et al., 1987) and are comparable to the corresponding values observed in related structure of 5-hydroxy-5,6,7,8-tetrahydroquinoline 1-oxide (HXTHQO; CSD, November 2009 Release). In (I) the 6-membered fused-ring systems of the molecules A and B, are observed in an intermediate conformation between a half-chair and sofa with asymmetry parameters ΔCs(C6A) = 13.4 (3)°, ΔC2(C6A,C7A) = 11.2 (4)°, ΔCs(C6B) = 11.1 (2)° and ΔC2(C6B, C7B) =14.8 (3)° (Duax & Norton, 1975).

Related literature top

For background information, see: Coperet et al. (1998); Li (2005); Kaiser et al. (2006); Kaczorowski et al. (2009). For the synthesis, see: Jacobs et al. (2000); Barbay et al. (2008). For the biological activity of 5,6,7,8-tetrahydroquinoline derivatives, see: Calhoun et al. (1995); Abd El-Salam et al. (2009). For a related structure, see: HXTHQO (CSD, November 2009 release). For structure interpretation tools, see: Duax & Norton (1975); Allen et al. (1987); Allen (2002); Bruno et al. (2002).

Experimental top

The title compound, C9H11NO.0.5H2O, was synthesized by the oxidation process of the 5,6,7,8-tetrahydroquinoline with an oxone/TlOAc/PhI in water-acetonitrile solution, catalytic system at room temperature. To a solution of 5,6,7,8-tetrahydroquinoline (333 mg, 0.325 ml, 2.5 mmol,), in acetonitrile (7.5 ml) and water (7.5 ml), PhI (1.25 ml of a 0.1M solution in MeCN, 0.124 mmol) and thallous acetate (50 µl of 0.16M solution in water, 0.008 mmol) were added. Next, oxone (6.98 g, 11.5 mmol) was added in five portions over 6 h under stirring at room temperature. Substrate disappearing and new product forming was observed by TLC (Rf = 0.75 and Rf = 015, respectively, in ethyl acetate/methanol 50:1). The next day (after 20 h), 10% sodium hydroxide (10 ml), dichloromethane (30 ml) and water (30 ml) were added and the mixture was stirred for 5 min. The organic solution was separated and the aqueous phase was extracted with CH2Cl2 (2 x 15 ml). The combined organic phase was dried (anhydrous Na2SO4) and concentrated. Pure products 350 mg (95.0%) were obtained in oily form. After purification on column chromatography with silica gel and using ethyl acetate, the trace of the substrate was first removed. The product was eluted with a mixture of ethyl acetate/methanol (50:1) and colourless crystals were obtained. Yield: 310 mg (83%) and m.p. 344 K. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a dichloromethane/hexane (1:10) solution.

Refinement top

The H atoms of the water molecule involved in the intramolecular hydrogen bonds were located by difference Fourier synthesis and refined freely [O—H = 0.96 (3) and 0.95 (4) Å]. The remaining H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2). All H atoms were refined with Uiso(H) = 1.5Ueq(O, C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Dashed lines indicate O—H ··· O hydrogen bonds.
[Figure 2] Fig. 2. A view of the molecular packing in (I) (black - molecules A, red - molecules B, green - H2O). Dashed lines indicate O—H ··· O hydrogen bonds and weak C—H···O intermolecular interactions.
5,6,7,8-Tetrahydroquinoline 1-oxide hemihydrate top
Crystal data top
C9H11NO·0.5H2OF(000) = 1360
Mr = 158.20Dx = 1.275 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 3676 reflections
a = 14.725 (4) Åθ = 5.7–66.9°
b = 14.464 (4) ŵ = 0.70 mm1
c = 15.474 (3) ÅT = 293 K
V = 3295.7 (14) Å3Block, colourless
Z = 160.28 × 0.26 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2727 independent reflections
Radiation source: fine-focus sealed tube1989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 65.4°, θmin = 5.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1716
Tmin = 0.832, Tmax = 0.873k = 1617
11258 measured reflectionsl = 1810
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.39(Δ/σ)max < 0.001
2727 reflectionsΔρmax = 0.44 e Å3
215 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (4)
Crystal data top
C9H11NO·0.5H2OV = 3295.7 (14) Å3
Mr = 158.20Z = 16
Orthorhombic, PbcaCu Kα radiation
a = 14.725 (4) ŵ = 0.70 mm1
b = 14.464 (4) ÅT = 293 K
c = 15.474 (3) Å0.28 × 0.26 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2727 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1989 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.873Rint = 0.053
11258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.39Δρmax = 0.44 e Å3
2727 reflectionsΔρmin = 0.24 e Å3
215 parameters
Special details top

Experimental. 1H MNR (400 MHz, CDCl3) δ: 8.13 (d, 1H, J = 6.0 Hz), 7.04–6.99 (m, 2H), 2.93 (t, 2H, J = 6.4 Hz), 2.75 (t, 2H, J = 6.4 Hz), 2.40 (br s, 1H), 1.92–1.85 (m, 2H), 1,78–1.72 (m, 2H); 13C MNR (100 MHz, CDCl3) δ: 148.8, 136.9, 136.4, 126.6, 121.9, 28.6, 24.6, 21.8, 21.6; IR (KBr, ν, cm-1): 3368 (s, OH), 3312 (s, OH), 3076 (m), 3050 (m), 3009 (m), 2935 (s), 2871 (m), 2837 (m), 2498 (w), 2410 (w), 2151 (w), 1970 (w), 1686 (m, NO), 1596 (m), 1482 (m), 1449 (s), 1334 (m), 1253 (s), 1232 (s), 1211 (s), 1194 (s), 1155 (m), 1089 (m), 1074 (s), 1041 (m), 971 (s), 897 (m), 865 (w), 830 (m), 797 (s), 701 (m), 676 (m).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.11925 (15)0.33158 (10)0.13008 (9)0.0703 (6)
N1A0.13994 (15)0.41708 (12)0.11018 (11)0.0502 (6)
C2A0.16947 (18)0.47498 (16)0.17206 (15)0.0581 (7)
H2A0.17370.45470.22900.087*
C3A0.1930 (2)0.56261 (17)0.15166 (17)0.0666 (8)
H3A0.21430.60250.19420.100*
C4A0.1853 (2)0.59244 (16)0.06758 (18)0.0669 (8)
H4A0.20180.65270.05360.100*
C5A0.1449 (2)0.56465 (16)0.08980 (17)0.0686 (8)
H51A0.09000.60100.09640.103*
H52A0.19610.60410.10410.103*
C6A0.1422 (2)0.4849 (2)0.15194 (16)0.0774 (9)
H61A0.12680.50750.20910.116*
H62A0.20180.45660.15510.116*
C7A0.0749 (2)0.41457 (18)0.12508 (14)0.0673 (8)
H71A0.07410.36490.16720.101*
H72A0.01490.44240.12420.101*
C8A0.09560 (19)0.37485 (14)0.03650 (13)0.0534 (7)
H81A0.04080.34720.01320.080*
H82A0.14050.32620.04260.080*
C9A0.13012 (16)0.44502 (14)0.02589 (12)0.0455 (6)
C10A0.15331 (17)0.53397 (15)0.00343 (15)0.0520 (6)
O1B0.13846 (14)0.36329 (13)0.38241 (10)0.0701 (6)
N1B0.05059 (15)0.35441 (11)0.39183 (10)0.0489 (6)
C2B0.0012 (2)0.33685 (15)0.32153 (14)0.0571 (7)
H2B0.02580.33140.26740.086*
C3B0.0921 (2)0.32725 (16)0.32982 (17)0.0647 (8)
H3B0.12770.31480.28150.097*
C4B0.1320 (2)0.33585 (16)0.40978 (19)0.0658 (7)
H4B0.19460.32970.41530.099*
C5B0.1198 (3)0.3615 (2)0.57197 (19)0.0843 (11)
H51B0.16950.31790.57760.126*
H52B0.14410.42320.58000.126*
C6B0.0486 (3)0.3418 (2)0.64194 (17)0.0941 (12)
H61B0.07470.35380.69840.141*
H62B0.03150.27710.63970.141*
C7B0.0323 (3)0.3992 (2)0.63022 (15)0.0853 (11)
H71B0.07470.38700.67680.128*
H72B0.01510.46380.63310.128*
C8B0.0784 (2)0.38036 (16)0.54433 (14)0.0591 (7)
H81B0.11620.43290.52950.089*
H82B0.11770.32700.55050.089*
C9B0.01368 (19)0.36319 (13)0.47254 (13)0.0475 (6)
C10B0.0792 (2)0.35369 (15)0.48235 (15)0.0569 (7)
O20.21964 (17)0.24427 (13)0.26255 (13)0.0781 (7)
H210.188 (2)0.269 (2)0.213 (2)0.117*
H220.195 (2)0.280 (2)0.308 (2)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.1126 (19)0.0511 (9)0.0473 (9)0.0176 (9)0.0026 (9)0.0080 (7)
N1A0.0606 (16)0.0485 (10)0.0415 (9)0.0037 (8)0.0024 (8)0.0043 (8)
C2A0.0615 (18)0.0618 (14)0.0510 (11)0.0026 (12)0.0041 (11)0.0143 (11)
C3A0.067 (2)0.0616 (14)0.0708 (15)0.0049 (12)0.0088 (14)0.0202 (12)
C4A0.070 (2)0.0476 (12)0.0833 (17)0.0082 (12)0.0021 (15)0.0046 (12)
C5A0.079 (2)0.0593 (14)0.0676 (14)0.0017 (13)0.0070 (14)0.0177 (12)
C6A0.099 (3)0.0823 (18)0.0509 (12)0.0069 (16)0.0040 (14)0.0130 (13)
C7A0.086 (3)0.0698 (16)0.0463 (12)0.0007 (14)0.0053 (12)0.0003 (11)
C8A0.069 (2)0.0491 (12)0.0426 (11)0.0037 (10)0.0005 (11)0.0051 (9)
C9A0.0486 (16)0.0471 (11)0.0408 (10)0.0002 (9)0.0054 (10)0.0019 (9)
C10A0.0497 (17)0.0473 (12)0.0590 (12)0.0006 (9)0.0060 (11)0.0004 (11)
O1B0.0602 (16)0.0916 (13)0.0584 (10)0.0088 (10)0.0101 (9)0.0125 (9)
N1B0.0553 (16)0.0495 (10)0.0418 (9)0.0027 (8)0.0034 (9)0.0025 (8)
C2B0.071 (2)0.0567 (13)0.0439 (11)0.0008 (12)0.0046 (12)0.0036 (10)
C3B0.074 (2)0.0562 (14)0.0638 (15)0.0020 (12)0.0162 (14)0.0025 (11)
C4B0.0531 (19)0.0587 (14)0.0855 (18)0.0083 (12)0.0009 (15)0.0121 (13)
C5B0.089 (3)0.0870 (19)0.0769 (18)0.0294 (17)0.0379 (18)0.0192 (15)
C6B0.142 (4)0.086 (2)0.0537 (15)0.026 (2)0.0270 (18)0.0116 (14)
C7B0.136 (4)0.0739 (17)0.0454 (13)0.0120 (19)0.0020 (16)0.0034 (13)
C8B0.081 (2)0.0520 (12)0.0446 (11)0.0045 (11)0.0058 (12)0.0046 (10)
C9B0.0632 (19)0.0377 (10)0.0416 (11)0.0064 (9)0.0042 (10)0.0016 (8)
C10B0.065 (2)0.0469 (12)0.0583 (13)0.0125 (11)0.0090 (12)0.0092 (10)
O20.0836 (19)0.0752 (12)0.0755 (11)0.0184 (10)0.0147 (11)0.0021 (9)
Geometric parameters (Å, º) top
O1A—N1A1.310 (2)N1B—C2B1.353 (3)
N1A—C2A1.344 (3)N1B—C9B1.368 (3)
N1A—C9A1.373 (3)C2B—C3B1.352 (4)
C2A—C3A1.351 (3)C2B—H2B0.9300
C2A—H2A0.9300C3B—C4B1.375 (4)
C3A—C4A1.375 (4)C3B—H3B0.9300
C3A—H3A0.9300C4B—C10B1.390 (4)
C4A—C10A1.387 (4)C4B—H4B0.9300
C4A—H4A0.9300C5B—C10B1.514 (4)
C5A—C6A1.503 (4)C5B—C6B1.534 (5)
C5A—C10A1.514 (3)C5B—H51B0.9700
C5A—H51A0.9700C5B—H52B0.9700
C5A—H52A0.9700C6B—C7B1.462 (5)
C6A—C7A1.480 (4)C6B—H61B0.9700
C6A—H61A0.9700C6B—H62B0.9700
C6A—H62A0.9700C7B—C8B1.517 (4)
C7A—C8A1.517 (3)C7B—H71B0.9700
C7A—H71A0.9700C7B—H72B0.9700
C7A—H72A0.9700C8B—C9B1.484 (3)
C8A—C9A1.490 (3)C8B—H81B0.9700
C8A—H81A0.9700C8B—H82B0.9700
C8A—H82A0.9700C9B—C10B1.383 (4)
C9A—C10A1.376 (3)O2—H210.96 (3)
O1B—N1B1.308 (3)O2—H220.95 (4)
O1A—N1A—C2A119.72 (18)O1B—N1B—C9B119.0 (2)
O1A—N1A—C9A118.46 (17)C2B—N1B—C9B121.9 (2)
C2A—N1A—C9A121.83 (19)N1B—C2B—C3B120.1 (2)
N1A—C2A—C3A120.0 (2)N1B—C2B—H2B120.0
N1A—C2A—H2A120.0C3B—C2B—H2B120.0
C3A—C2A—H2A120.0C2B—C3B—C4B119.9 (3)
C2A—C3A—C4A119.6 (2)C2B—C3B—H3B120.0
C2A—C3A—H3A120.2C4B—C3B—H3B120.0
C4A—C3A—H3A120.2C3B—C4B—C10B120.3 (3)
C3A—C4A—C10A120.9 (2)C3B—C4B—H4B119.8
C3A—C4A—H4A119.5C10B—C4B—H4B119.8
C10A—C4A—H4A119.5C10B—C5B—C6B111.2 (3)
C6A—C5A—C10A112.75 (19)C10B—C5B—H51B109.4
C6A—C5A—H51A109.0C6B—C5B—H51B109.4
C10A—C5A—H51A109.0C10B—C5B—H52B109.4
C6A—C5A—H52A109.0C6B—C5B—H52B109.4
C10A—C5A—H52A109.0H51B—C5B—H52B108.0
H51A—C5A—H52A107.8C7B—C6B—C5B111.3 (3)
C7A—C6A—C5A111.5 (2)C7B—C6B—H61B109.4
C7A—C6A—H61A109.3C5B—C6B—H61B109.4
C5A—C6A—H61A109.3C7B—C6B—H62B109.4
C7A—C6A—H62A109.3C5B—C6B—H62B109.4
C5A—C6A—H62A109.3H61B—C6B—H62B108.0
H61A—C6A—H62A108.0C6B—C7B—C8B111.8 (2)
C6A—C7A—C8A112.3 (2)C6B—C7B—H71B109.3
C6A—C7A—H71A109.1C8B—C7B—H71B109.3
C8A—C7A—H71A109.1C6B—C7B—H72B109.3
C6A—C7A—H72A109.1C8B—C7B—H72B109.3
C8A—C7A—H72A109.1H71B—C7B—H72B107.9
H71A—C7A—H72A107.9C9B—C8B—C7B113.5 (3)
C9A—C8A—C7A113.33 (19)C9B—C8B—H81B108.9
C9A—C8A—H81A108.9C7B—C8B—H81B108.9
C7A—C8A—H81A108.9C9B—C8B—H82B108.9
C9A—C8A—H82A108.9C7B—C8B—H82B108.9
C7A—C8A—H82A108.9H81B—C8B—H82B107.7
H81A—C8A—H82A107.7N1B—C9B—C10B118.9 (2)
N1A—C9A—C10A119.28 (19)N1B—C9B—C8B116.3 (2)
N1A—C9A—C8A116.81 (18)C10B—C9B—C8B124.7 (2)
C10A—C9A—C8A123.91 (19)C9B—C10B—C4B118.9 (2)
C9A—C10A—C4A118.3 (2)C9B—C10B—C5B118.9 (3)
C9A—C10A—C5A119.6 (2)C4B—C10B—C5B122.2 (3)
C4A—C10A—C5A122.1 (2)H21—O2—H22102 (3)
O1B—N1B—C2B119.10 (19)
O1A—N1A—C2A—C3A178.4 (2)O1B—N1B—C2B—C3B179.9 (2)
C9A—N1A—C2A—C3A2.0 (4)C9B—N1B—C2B—C3B0.2 (3)
N1A—C2A—C3A—C4A0.9 (4)N1B—C2B—C3B—C4B0.4 (4)
C2A—C3A—C4A—C10A0.3 (4)C2B—C3B—C4B—C10B0.5 (4)
C10A—C5A—C6A—C7A49.6 (3)C10B—C5B—C6B—C7B52.8 (3)
C5A—C6A—C7A—C8A59.9 (3)C5B—C6B—C7B—C8B61.4 (3)
C6A—C7A—C8A—C9A38.5 (3)C6B—C7B—C8B—C9B37.8 (3)
O1A—N1A—C9A—C10A178.6 (2)O1B—N1B—C9B—C10B179.94 (19)
C2A—N1A—C9A—C10A1.7 (4)C2B—N1B—C9B—C10B0.1 (3)
O1A—N1A—C9A—C8A0.5 (3)O1B—N1B—C9B—C8B1.3 (3)
C2A—N1A—C9A—C8A179.2 (2)C2B—N1B—C9B—C8B178.68 (18)
C7A—C8A—C9A—N1A172.3 (2)C7B—C8B—C9B—N1B174.06 (19)
C7A—C8A—C9A—C10A8.7 (4)C7B—C8B—C9B—C10B7.4 (3)
N1A—C9A—C10A—C4A0.5 (4)N1B—C9B—C10B—C4B0.2 (3)
C8A—C9A—C10A—C4A179.5 (2)C8B—C9B—C10B—C4B178.7 (2)
N1A—C9A—C10A—C5A178.5 (2)N1B—C9B—C10B—C5B178.77 (19)
C8A—C9A—C10A—C5A0.6 (4)C8B—C9B—C10B—C5B0.3 (3)
C3A—C4A—C10A—C9A0.5 (4)C3B—C4B—C10B—C9B0.4 (3)
C3A—C4A—C10A—C5A179.4 (3)C3B—C4B—C10B—C5B178.5 (2)
C6A—C5A—C10A—C9A19.7 (4)C6B—C5B—C10B—C9B22.2 (3)
C6A—C5A—C10A—C4A159.2 (3)C6B—C5B—C10B—C4B156.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O1A0.96 (3)1.87 (3)2.825 (3)170 (3)
O2—H22···O1B0.95 (4)1.86 (3)2.799 (3)170 (3)
C2B—H2B···O1A0.932.533.454 (3)171
C3A—H3A···O2i0.932.503.392 (3)160
C3B—H3B···O2ii0.932.563.342 (4)142
C5A—H52A···O1Biii0.972.493.383 (4)153
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11NO·0.5H2O
Mr158.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.725 (4), 14.464 (4), 15.474 (3)
V3)3295.7 (14)
Z16
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.28 × 0.26 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.832, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
11258, 2727, 1989
Rint0.053
(sin θ/λ)max1)0.590
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.205, 1.39
No. of reflections2727
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O1A0.96 (3)1.87 (3)2.825 (3)170 (3)
O2—H22···O1B0.95 (4)1.86 (3)2.799 (3)170 (3)
C2B—H2B···O1A0.932.533.454 (3)171
C3A—H3A···O2i0.932.503.392 (3)160
C3B—H3B···O2ii0.932.563.342 (4)142
C5A—H52A···O1Biii0.972.493.383 (4)153
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x+1/2, y+1, z1/2.
 

References

First citationAbd El-Salam, O. I., Abou El Ella, D. A., Ismail, N. S. M. & Abdullah, M. (2009). Pharmazie, 64, 147–155.  PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarbay, J. K., Gong, Y., Buntinx, M., Li, J., Claes, C., Hornby, P. J., Van Lommen, G., Van Wauwe, J. & He, W. (2008). Bioorg. Med. Chem. Lett. 18, 2544–2548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCalhoun, W., Carlson, R. P., Crossley, R., Datko, L. J., Dietrich, S., Heatherington, K., Marshall, L. A., Meade, P. J., Opalko, A. & Shepherd, R. G. (1995). J. Med. Chem. 38, 1473–1481.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCoperet, Ch., Adolfsson, H., Khoung, T. V., Yudin, A. K. & Sharpless, K. B. (1998). J. Org. Chem. 63, 1740–1741.  Web of Science CrossRef CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1, pp. 16–19. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJacobs, C., Frotscher, M., Dannhardt, G. & Hartmann, R. W. (2000). J. Med. Chem. 43, 1841–1851.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaczorowski, T., Justyniak, I., Lipińska, T., Lipkowski, J. & Lewiński, J. (2009). J. Am. Chem. Soc. 131, 5393–5395.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKaiser, S., Smidt, S. P. & Pfaltz, A. (2006). Angew. Chem. Int. Ed. 45, 5194–5197.  Web of Science CrossRef Google Scholar
First citationLi, J. J. (2005). Name Reactions in Heterocyclic Chemistry, p. 340. Hoboken, New Jersey: John Wiley & Sons, Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o806-o807
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds