organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2R,3S,6aS,7R,8R,9S,12aS)-1,2,3,7,8,9-Hexa­hydroxy­perhydro­dipyrido[1,2-a:1′,2′-d]pyrazine-6,12-dione

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, bSummit PLC, 91 Milton Park, Abingdon, Oxon OX14 4RY, England, and cDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 24 February 2010; accepted 10 March 2010; online 17 March 2010)

The crystal structure of the title compound, C12H18N2O8, exists as O—H⋯O hydrogen-bonded layers of mol­ecules running parallel to the ab plane. Each mol­ecule is a donor and acceptor for six hydrogen bonds. The absolute stereochemistry was determined by the use of D-glucuronolactone as the starting material.

Related literature

For the isolation and biological activity of pipecolic acids, see: Manning et al. (1985[Manning, K. S., Lynn, D. G., Shabanowitz, J., Fellows, L., Singh, M. & Schrire, B. D. (1985). J. Chem. Soc. Chem. Commun. pp. 127-129.]); di Bello et al. (1984[Bello, I. C. di, Dorling, P., Fellows, L. & Winchester, B. (1984). FEBS Lett. 176, 61-64.]). For the synthesis of pipecolic acids, see: Bashyal et al. (1986[Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1986). Tetrahedron Lett. 27, 3205-3208.]); Bashyal, Chow & Fleet (1987[Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1987). Tetrahedron, 43, 423-430.]); Bashyal, Chow, Fellows & Fleet (1987[Bashyal, B. P., Chow, H.-F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415-422.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18N2O8

  • Mr = 318.28

  • Orthorhombic, P 21 21 21

  • a = 7.8711 (2) Å

  • b = 8.1526 (2) Å

  • c = 19.5783 (5) Å

  • V = 1256.34 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 150 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.85, Tmax = 0.99

  • 12748 measured reflections

  • 1663 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.101

  • S = 0.93

  • 1662 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H81⋯O17i 0.83 1.95 2.756 (4) 162
O22—H221⋯O1ii 0.83 2.22 2.917 (4) 141
O19—H191⋯O11iii 0.82 2.12 2.793 (4) 139
O11—H111⋯O13iv 0.83 1.86 2.685 (4) 173
O17—H171⋯O8iii 0.80 1.87 2.633 (4) 157
O6—H61⋯O19v 0.83 1.97 2.680 (4) 143
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) x, y+1, z; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

2S,3R,4R,5S-Trihydroxypipecolicacid (BR1) 2 (Fig.1), a sugar mimic of glucuronic acid, has been isolated from the seeds of Baphia racemosa (Manning et al., 1985) and shown to inhibit both glucuronidase and iduronidase activity (di Bello et al., 1984). In a modification of the original synthesis of BR1 from D-glucuronolactone (Bashyal et al., 1986, Bashyal, Chow & Fleet, 1987, Bashyal, Chow, Fellows & Fleet, 1987), reduction of the azide 1 afforded a low yield of 2 together with by-products. One of the components of the mixture was crystallized; the structure of this material was determined unequivocally by X-ray crystallographic analysis and shown to be the diketopiperazine 3 (Fig. 2). The absolute stereochemistry was determined by the use of D-glucuronolactone as the starting material. The structure consists of layers of hydrogen bonded molecules running parallel to the ab plane (Fig. 3, Fig. 4). Each molecule is a donor and acceptor for 6 hydrogen bonds. Only classical hydrogen bonding was considered.

Related literature top

For the isolation and biological activity of pipecolic acids, see: Manning et al. (1985); di Bello et al. (1984). For the synthesis of pipecolic acids, see: Bashyal et al. (1986); Bashyal, Chow & Fleet (1987); Bashyal, Chow, Fellows & Fleet (1987).

Experimental top

The title compound was recrystallised by diffusion from a mixture of water and acetonitrile: m.p. 511 K decomposed; [α]D20 + 29.7 (c, 0.35 in H2O).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

One outlying reflection was omitted from the refinement as it was thought to be partially occluded by the beam stop.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic Scheme.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. Packing diagram for the title compound projected along the a-axis. Hydrogen bonds are shown by dotted lines.
[Figure 4] Fig. 4. Packing diagram for the title compound projected along the b axis. Hydrogen bonds are shown by dotted lines.
(1R,2R,3S,6aS,7R,8R, 9S,12aS)-1,2,3,7,8,9-Hexahydroxyperhydrodipyrido[1,2- a:1',2'-d]pyrazine-6,12-dione top
Crystal data top
C12H18N2O8F(000) = 672
Mr = 318.28Dx = 1.683 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1646 reflections
a = 7.8711 (2) Åθ = 5–27°
b = 8.1526 (2) ŵ = 0.14 mm1
c = 19.5783 (5) ÅT = 150 K
V = 1256.34 (5) Å3Plate, colourless
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.85, Tmax = 0.99k = 1010
12748 measured reflectionsl = 2525
1663 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.06P)2 + 0.76P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.93(Δ/σ)max = 0.000342
1662 reflectionsΔρmax = 0.35 e Å3
199 parametersΔρmin = 0.43 e Å3
0 restraints
Crystal data top
C12H18N2O8V = 1256.34 (5) Å3
Mr = 318.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8711 (2) ŵ = 0.14 mm1
b = 8.1526 (2) ÅT = 150 K
c = 19.5783 (5) Å0.40 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1663 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1348 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.99Rint = 0.061
12748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.93Δρmax = 0.35 e Å3
1662 reflectionsΔρmin = 0.43 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4593 (3)0.7922 (2)0.34949 (10)0.0245
C20.5380 (4)0.6635 (3)0.34006 (13)0.0181
N30.6870 (3)0.6583 (3)0.30476 (12)0.0186
C40.8001 (3)0.5165 (3)0.30769 (13)0.0178
C50.9227 (3)0.5430 (3)0.36900 (14)0.0187
O61.0531 (3)0.4227 (2)0.36945 (10)0.0233
C71.0081 (4)0.7115 (3)0.36672 (14)0.0191
O81.0852 (2)0.7438 (2)0.43187 (9)0.0238
C90.8851 (4)0.8502 (3)0.35308 (14)0.0196
C100.7767 (4)0.8115 (4)0.29066 (15)0.0202
O110.9812 (3)0.9966 (2)0.34507 (10)0.0247
C120.7057 (4)0.3552 (3)0.31154 (14)0.0192
O130.7761 (3)0.2272 (2)0.29231 (10)0.0234
N140.5463 (3)0.3566 (3)0.33597 (12)0.0186
C150.4689 (3)0.5025 (3)0.36625 (13)0.0188
C160.4834 (3)0.4874 (3)0.44528 (13)0.0187
O170.3887 (3)0.6143 (2)0.47677 (10)0.0240
C180.4098 (4)0.3245 (3)0.46900 (13)0.0203
O190.4442 (3)0.3016 (3)0.54059 (9)0.0269
C200.4757 (4)0.1754 (3)0.43053 (13)0.0201
C210.4581 (4)0.2045 (3)0.35390 (13)0.0199
O220.3776 (3)0.0390 (2)0.45221 (10)0.0310
H410.86550.51500.26560.0187*
H510.85350.53360.41090.0227*
H711.09740.71160.33160.0230*
H910.80580.86050.39270.0225*
H1020.84590.79640.25090.0230*
H1010.69750.89900.28350.0223*
H1510.34430.50030.35570.0220*
H1610.60540.49420.45880.0216*
H1810.28250.32830.46340.0238*
H2010.59960.15980.44170.0244*
H2120.50770.11180.32860.0232*
H2110.33490.21630.34330.0228*
H811.18090.70270.43650.0340*
H2210.34880.02990.42310.0459*
H1910.48420.38320.55890.0407*
H1110.91141.06450.33110.0377*
H1710.43380.68040.50130.0351*
H611.06600.35930.40210.0354*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (11)0.0201 (10)0.0280 (11)0.0043 (9)0.0024 (9)0.0012 (8)
C20.0189 (14)0.0226 (14)0.0128 (13)0.0006 (13)0.0029 (11)0.0002 (10)
N30.0185 (12)0.0171 (11)0.0203 (13)0.0000 (10)0.0012 (10)0.0030 (9)
C40.0153 (12)0.0194 (13)0.0186 (13)0.0024 (12)0.0012 (10)0.0011 (11)
C50.0174 (13)0.0198 (13)0.0188 (13)0.0017 (11)0.0017 (11)0.0014 (10)
O60.0206 (10)0.0224 (10)0.0270 (10)0.0069 (9)0.0006 (9)0.0050 (9)
C70.0193 (14)0.0209 (13)0.0170 (13)0.0003 (11)0.0006 (11)0.0014 (11)
O80.0191 (10)0.0316 (11)0.0208 (10)0.0048 (9)0.0041 (8)0.0056 (8)
C90.0191 (14)0.0192 (14)0.0205 (14)0.0001 (12)0.0020 (11)0.0008 (10)
C100.0200 (15)0.0205 (13)0.0203 (15)0.0011 (12)0.0010 (11)0.0004 (11)
O110.0265 (10)0.0169 (10)0.0307 (10)0.0000 (10)0.0056 (8)0.0012 (8)
C120.0212 (14)0.0235 (15)0.0129 (14)0.0016 (12)0.0019 (11)0.0007 (11)
O130.0274 (12)0.0206 (10)0.0223 (11)0.0049 (9)0.0016 (9)0.0027 (8)
N140.0182 (12)0.0180 (12)0.0197 (12)0.0009 (11)0.0002 (10)0.0004 (9)
C150.0168 (12)0.0208 (14)0.0186 (12)0.0026 (13)0.0021 (10)0.0015 (12)
C160.0151 (12)0.0214 (14)0.0197 (12)0.0014 (12)0.0006 (10)0.0017 (11)
O170.0259 (11)0.0240 (10)0.0220 (10)0.0037 (9)0.0005 (9)0.0075 (8)
C180.0182 (14)0.0270 (14)0.0158 (14)0.0028 (12)0.0007 (11)0.0015 (11)
O190.0392 (12)0.0261 (10)0.0153 (9)0.0003 (10)0.0045 (9)0.0013 (8)
C200.0200 (13)0.0183 (13)0.0220 (14)0.0013 (12)0.0010 (11)0.0007 (11)
C210.0195 (14)0.0200 (14)0.0201 (14)0.0034 (12)0.0015 (12)0.0005 (11)
O220.0468 (13)0.0227 (11)0.0235 (10)0.0087 (10)0.0064 (10)0.0005 (8)
Geometric parameters (Å, º) top
O1—C21.232 (3)O11—H1110.826
C2—N31.362 (4)C12—O131.240 (3)
C2—C151.510 (4)C12—N141.343 (4)
N3—C41.461 (3)N14—C151.462 (3)
N3—C101.461 (4)N14—C211.464 (3)
C4—C51.555 (4)C15—C161.556 (3)
C4—C121.513 (4)C15—H1511.002
C4—H410.972C16—O171.416 (3)
C5—O61.420 (3)C16—C181.521 (4)
C5—C71.530 (4)C16—H1610.998
C5—H510.988O17—H1710.804
O6—H610.829C18—O191.440 (3)
C7—O81.437 (3)C18—C201.521 (4)
C7—C91.513 (4)C18—H1811.008
C7—H710.983O19—H1910.819
O8—H810.830C20—C211.525 (4)
C9—C101.523 (4)C20—O221.419 (3)
C9—O111.422 (3)C20—H2011.008
C9—H911.000C21—H2120.984
C10—H1020.958C21—H2110.996
C10—H1010.957O22—H2210.832
O1—C2—N3122.3 (3)C4—C12—O13119.8 (3)
O1—C2—C15120.5 (2)C4—C12—N14118.0 (2)
N3—C2—C15117.1 (2)O13—C12—N14122.2 (3)
C2—N3—C4122.0 (2)C12—N14—C15122.7 (2)
C2—N3—C10119.1 (2)C12—N14—C21121.4 (2)
C4—N3—C10112.9 (2)C15—N14—C21113.2 (2)
N3—C4—C5107.4 (2)C2—C15—N14114.8 (2)
N3—C4—C12113.0 (2)C2—C15—C16112.3 (2)
C5—C4—C12112.8 (2)N14—C15—C16108.0 (2)
N3—C4—H41107.4C2—C15—H151107.3
C5—C4—H41109.1N14—C15—H151108.0
C12—C4—H41106.9C16—C15—H151105.9
C4—C5—O6110.9 (2)C15—C16—O17109.7 (2)
C4—C5—C7112.0 (2)C15—C16—C18110.2 (2)
O6—C5—C7107.6 (2)O17—C16—C18107.7 (2)
C4—C5—H51106.8C15—C16—H161109.3
O6—C5—H51109.8O17—C16—H161110.5
C7—C5—H51109.7C18—C16—H161109.5
C5—O6—H61121.6C16—O17—H171121.1
C5—C7—O8108.9 (2)C16—C18—O19109.8 (2)
C5—C7—C9113.3 (2)C16—C18—C20114.6 (2)
O8—C7—C9106.9 (2)O19—C18—C20108.3 (2)
C5—C7—H71109.6C16—C18—H181108.6
O8—C7—H71108.6O19—C18—H181107.2
C9—C7—H71109.5C20—C18—H181108.0
C7—O8—H81114.0C18—O19—H191113.2
C7—C9—C10110.2 (2)C18—C20—C21109.4 (2)
C7—C9—O11107.8 (2)C18—C20—O22107.0 (2)
C10—C9—O11112.5 (2)C21—C20—O22111.5 (2)
C7—C9—H91109.0C18—C20—H201108.8
C10—C9—H91106.9C21—C20—H201108.8
O11—C9—H91110.3O22—C20—H201111.2
C9—C10—N3107.2 (2)C20—C21—N14108.9 (2)
C9—C10—H102111.1C20—C21—H212109.8
N3—C10—H102108.5N14—C21—H212110.0
C9—C10—H101109.1C20—C21—H211107.9
N3—C10—H101110.5N14—C21—H211109.3
H102—C10—H101110.3H212—C21—H211110.9
C9—O11—H111104.2C20—O22—H221118.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H41···O11i0.972.483.455 (4)176
C15—H151···O6ii1.002.393.337 (4)157
O8—H81···O17iii0.831.952.756 (4)162
O22—H221···O1iv0.832.222.917 (4)141
O19—H191···O11v0.822.122.793 (4)139
O11—H111···O13vi0.831.862.685 (4)173
O17—H171···O8v0.801.872.633 (4)157
O6—H61···O19vii0.831.972.680 (4)143
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y1, z; (v) x1/2, y+3/2, z+1; (vi) x, y+1, z; (vii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H18N2O8
Mr318.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)7.8711 (2), 8.1526 (2), 19.5783 (5)
V3)1256.34 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.85, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
12748, 1663, 1348
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 0.93
No. of reflections1662
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.43

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H81···O17i0.831.952.756 (4)162
O22—H221···O1ii0.832.222.917 (4)141
O19—H191···O11iii0.822.122.793 (4)139
O11—H111···O13iv0.831.862.685 (4)173
O17—H171···O8iii0.801.872.633 (4)157
O6—H61···O19v0.831.972.680 (4)143
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1/2, y+3/2, z+1; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1.
 

Acknowledgements

We would like to thank the Chemical Crystallography department and ALT at the University of Oxford for use of the diffractometers.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBashyal, B. P., Chow, H.-F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415–422.  CrossRef CAS Web of Science Google Scholar
First citationBashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1986). Tetrahedron Lett. 27, 3205–3208.  CrossRef CAS Web of Science Google Scholar
First citationBashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1987). Tetrahedron, 43, 423–430.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBello, I. C. di, Dorling, P., Fellows, L. & Winchester, B. (1984). FEBS Lett. 176, 61–64.  PubMed Google Scholar
First citationManning, K. S., Lynn, D. G., Shabanowitz, J., Fellows, L., Singh, M. & Schrire, B. D. (1985). J. Chem. Soc. Chem. Commun. pp. 127–129.  CrossRef Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds