organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

n-Do­decyl­ammonium bromide monohydrate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: diyouying@126.com

(Received 14 March 2010; accepted 18 March 2010; online 24 March 2010)

In the title compound, C12H28N+·Br·H2O, the ionic pairs formed by n-dodecyl­ammonium cations and bromide anions are arranged into thick layers; these layers are linked in a nearly perpendicular fashion [the angle between the layers is 85.84 (5)°] by hydrogen-bonding inter­actions involving the water mol­ecules. The methyl­ene part of the alkyl chain in the cation adopts an all-trans conformation. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯Br, O—H⋯Br and N—H⋯O hydrogen bonds.

Related literature

Long-chain n-alkyl­ammonium halides are widely used as surfacta­nts (Aratono et al., 1998[Aratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161-171.]; Tornblom et al., 2000[Tornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529-1538.]) and as models for biological membranes (Ringsdorf et al., 1988[Ringsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113-158.]). They exhibit polymorphism at room temperature: for solid-solid phase transitions in n–alkyl­ammonium chlorides, see: Terreros et al. (2000[Terreros, A., Galera-Gomez, P. J. & Lopez-Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341-350.]). For a related structure, see: Lundén (1974[Lundén, B.-M. (1974). Acta Cryst. B30, 1756-1760.]).

[Scheme 1]

Experimental

Crystal data
  • C12H28N+·Br·H2O

  • Mr = 284.28

  • Monoclinic, C c

  • a = 4.7921 (5) Å

  • b = 42.810 (4) Å

  • c = 7.8573 (8) Å

  • β = 105.798 (2)°

  • V = 1551.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 293 K

  • 0.42 × 0.14 × 0.06 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.404, Tmax = 0.858

  • 4760 measured reflections

  • 2644 independent reflections

  • 1665 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.081

  • S = 0.92

  • 2644 reflections

  • 145 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 945 Friedel pairs

  • Flack parameter: 0.048 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.89 2.53 3.380 (4) 159
N1—H1B⋯Br1 0.89 2.47 3.340 (4) 166
N1—H1C⋯O1 0.89 1.97 2.834 (7) 165
O1—H1⋯Br1ii 0.83 (4) 2.76 (6) 3.329 (5) 128 (6)
O1—H2⋯Br1iii 0.97 (4) 2.49 (5) 3.361 (5) 149 (5)
Symmetry codes: (i) [x+1, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x+1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Long-chain n-alkylammonium halides are widely used as surfactants (Aratono et al., 1998; Tornblom et al., 2000) and as models for biological membranes (Ringsdorf et al., 1988). They exhibit polymorphism at room temperature; solid-solid phase transitions occurred in n-alkylammonium chlorides (Terreros et al., 2000). As a part of the studies on novel potential phase transfer materials with the thermochemical properties such as n-alkylammonium chlorides, we report the crystal structure of the title compound (Fig. 1).

Atoms C3–C12 are coplanar in the title compound; however, atoms C2–C12 are coplanar in n–dodecylammonium bromide (Ludén, 1974). Although the methylene chain had the extended all–trans conformation, it is slightly curved in the vicinity of the ammonium group, to accommodate the hydrogen–bonding interactions. The hydrogen bonds of n–dodecylammonium bromide monohydrate are more stronger than that of n–dodecylammonium bromide because of N—H···O and O—H···Br hydrogen bonds. Only torsion angle C1–C2–C3–C4 deviates significantly from 180 °, with a value of 170.6 (5)°. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···Br, N—H···O and O—H···Br hydrogen bonds (Table 1).

Related literature top

Long-chain n-alkylammonium halides are widely used as surfactants (Aratono et al., 1998; Tornblom et al., 2000) and as models for biological membranes (Ringsdorf et al., 1988). They exhibit polymorphism at room temperature: for solid-solid phase transitions in n–alkylammonium chlorides, see: Terreros et al. (2000). For a related structure, see: Lundén (1974).

Experimental top

n–Dodecylammonium bromide monohydrate was prepared by the addition of hydrobromic acid to an ethanol solution of n–dodecylamine. The resulting precipitate was filtered off and recrystallized several times from chloroform. Single crystals suitable for X–ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature. Analysis, calculated for C12H30BrNO (Mr = 284.28): C 50.69, H 10.64, N 4.93, O 5.63, Br 28.11%; found: C 50.67, H 10.65, N 4.91, O 5.64, Br 28.13%.

Refinement top

The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). Water molecule bound H atoms were located in difference Fourier maps and their positional parameters refined with a distance restraint [O1—H1 = 0.85 (5) & O1—H2 = 0.80 (5) Å] and a angle restraint. The H atoms of C and N atoms were positioned geometrically, with methylene C—H distances of 0.97 Å, methyl C—H distances of 0.96 Å, N—H 0.89 Å and refined as riding on their parent atoms. TheUiso(H) values were set at 1.2Ueq for the methylene H atoms and at 1.5Ueq for other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. N—H···Br, N—H···O and O—H···Br interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x + 1, - y + 1, z + 1/2; (ii) x, - y +1 , z - 1/2; (iii) x + 1, - y + 1, z - 1/2]
n-Dodecylammonium bromide monohydrate top
Crystal data top
C12H28N+·Br·H2OF(000) = 608
Mr = 284.28Dx = 1.217 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1266 reflections
a = 4.7921 (5) Åθ = 2.9–25.0°
b = 42.810 (4) ŵ = 2.63 mm1
c = 7.8573 (8) ÅT = 293 K
β = 105.798 (2)°Acicular, colourless
V = 1551.0 (3) Å30.42 × 0.14 × 0.06 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2644 independent reflections
Radiation source: fine-focus sealed tube1665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10 pixels mm-1θmax = 27.0°, θmin = 1.9°
ϕ and ω scansh = 65
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 5450
Tmin = 0.404, Tmax = 0.858l = 610
4760 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0277P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
2644 reflectionsΔρmax = 0.40 e Å3
145 parametersΔρmin = 0.24 e Å3
5 restraintsAbsolute structure: Flack (1983), 945 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.048 (19)
Crystal data top
C12H28N+·Br·H2OV = 1551.0 (3) Å3
Mr = 284.28Z = 4
Monoclinic, CcMo Kα radiation
a = 4.7921 (5) ŵ = 2.63 mm1
b = 42.810 (4) ÅT = 293 K
c = 7.8573 (8) Å0.42 × 0.14 × 0.06 mm
β = 105.798 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2644 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1665 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.858Rint = 0.047
4760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081Δρmax = 0.40 e Å3
S = 0.92Δρmin = 0.24 e Å3
2644 reflectionsAbsolute structure: Flack (1983), 945 Friedel pairs
145 parametersAbsolute structure parameter: 0.048 (19)
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.2086 (2)0.524590 (10)0.38293 (16)0.05643 (18)
O10.8268 (12)0.45062 (13)0.1580 (6)0.0760 (15)
H10.734 (13)0.4485 (18)0.053 (6)0.114*
H20.993 (11)0.4589 (15)0.124 (9)0.114*
N10.7249 (9)0.46990 (8)0.4809 (6)0.0502 (12)
H1A0.88310.47310.56970.075*
H1B0.60830.48640.46960.075*
H1C0.77550.46710.38100.075*
C10.5729 (12)0.44200 (13)0.5176 (8)0.0496 (17)
H1D0.39520.43920.42380.059*
H1E0.52120.44490.62760.059*
C20.7567 (11)0.41323 (10)0.5313 (7)0.0480 (14)
H2A0.93450.41610.62490.058*
H2B0.80840.41040.42130.058*
C30.6028 (11)0.38403 (11)0.5696 (7)0.0496 (14)
H3A0.57950.38550.68810.059*
H3B0.41080.38310.48750.059*
C40.7635 (11)0.35416 (10)0.5545 (7)0.0466 (14)
H4A0.79080.35310.43670.056*
H4B0.95400.35500.63820.056*
C50.6137 (11)0.32477 (11)0.5877 (7)0.0484 (14)
H5A0.59550.32540.70760.058*
H5B0.41940.32450.50820.058*
C60.7625 (11)0.29500 (11)0.5641 (7)0.0488 (14)
H6A0.95500.29510.64580.059*
H6B0.78590.29470.44530.059*
C70.6105 (11)0.26515 (11)0.5920 (7)0.0454 (13)
H7A0.59090.26510.71170.055*
H7B0.41680.26510.51170.055*
C80.7621 (11)0.23602 (11)0.5640 (7)0.0484 (14)
H8A0.95550.23610.64470.058*
H8B0.78270.23620.44460.058*
C90.6128 (11)0.20610 (11)0.5905 (7)0.0495 (14)
H9A0.41800.20620.51160.059*
H9B0.59570.20580.71070.059*
C100.7642 (12)0.17604 (11)0.5585 (7)0.0508 (14)
H10A0.78420.17660.43890.061*
H10B0.95790.17570.63870.061*
C110.6143 (13)0.14651 (12)0.5818 (8)0.0592 (16)
H11A0.59460.14590.70140.071*
H11B0.42050.14680.50160.071*
C120.7623 (15)0.11758 (13)0.5502 (9)0.080 (2)
H12A0.78500.11790.43250.121*
H12B0.64830.09980.56340.121*
H12C0.94960.11630.63420.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0519 (3)0.0577 (3)0.0587 (3)0.0057 (6)0.0134 (2)0.0063 (5)
O10.078 (3)0.085 (4)0.069 (3)0.006 (3)0.025 (3)0.006 (3)
N10.051 (3)0.038 (3)0.056 (3)0.006 (2)0.005 (2)0.0026 (19)
C10.050 (4)0.032 (3)0.067 (5)0.001 (3)0.017 (3)0.004 (3)
C20.052 (3)0.036 (3)0.057 (4)0.001 (3)0.016 (3)0.000 (2)
C30.053 (4)0.043 (3)0.059 (4)0.001 (3)0.027 (3)0.007 (3)
C40.047 (3)0.039 (3)0.056 (4)0.000 (3)0.017 (3)0.001 (3)
C50.057 (4)0.041 (3)0.052 (3)0.001 (3)0.024 (3)0.005 (3)
C60.053 (3)0.044 (3)0.049 (3)0.003 (3)0.013 (3)0.000 (3)
C70.048 (3)0.036 (3)0.056 (3)0.001 (3)0.020 (3)0.001 (3)
C80.050 (3)0.042 (3)0.055 (3)0.003 (3)0.017 (3)0.001 (3)
C90.051 (4)0.046 (3)0.056 (4)0.007 (3)0.021 (3)0.001 (3)
C100.058 (4)0.048 (3)0.047 (3)0.000 (3)0.015 (3)0.001 (3)
C110.073 (4)0.041 (3)0.067 (4)0.011 (3)0.026 (3)0.001 (3)
C120.104 (5)0.041 (4)0.097 (5)0.003 (4)0.028 (4)0.007 (3)
Geometric parameters (Å, º) top
O1—H10.83 (4)C6—C71.516 (6)
O1—H20.97 (4)C6—H6A0.9700
N1—C11.468 (7)C6—H6B0.9700
N1—H1A0.8900C7—C81.490 (6)
N1—H1B0.8900C7—H7A0.9700
N1—H1C0.8900C7—H7B0.9700
C1—C21.501 (7)C8—C91.509 (7)
C1—H1D0.9700C8—H8A0.9700
C1—H1E0.9700C8—H8B0.9700
C2—C31.522 (6)C9—C101.532 (7)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—C41.514 (7)C10—C111.490 (7)
C3—H3A0.9700C10—H10A0.9700
C3—H3B0.9700C10—H10B0.9700
C4—C51.506 (6)C11—C121.481 (8)
C4—H4A0.9700C11—H11A0.9700
C4—H4B0.9700C11—H11B0.9700
C5—C61.496 (6)C12—H12A0.9600
C5—H5A0.9700C12—H12B0.9600
C5—H5B0.9700C12—H12C0.9600
H1—O1—H291 (5)C5—C6—H6B108.3
C1—N1—H1A109.5C7—C6—H6B108.3
C1—N1—H1B109.5H6A—C6—H6B107.4
H1A—N1—H1B109.5C8—C7—C6114.3 (4)
C1—N1—H1C109.5C8—C7—H7A108.7
H1A—N1—H1C109.5C6—C7—H7A108.7
H1B—N1—H1C109.5C8—C7—H7B108.7
N1—C1—C2111.6 (5)C6—C7—H7B108.7
N1—C1—H1D109.3H7A—C7—H7B107.6
C2—C1—H1D109.3C7—C8—C9114.9 (4)
N1—C1—H1E109.3C7—C8—H8A108.5
C2—C1—H1E109.3C9—C8—H8A108.5
H1D—C1—H1E108.0C7—C8—H8B108.5
C1—C2—C3112.4 (4)C9—C8—H8B108.5
C1—C2—H2A109.1H8A—C8—H8B107.5
C3—C2—H2A109.1C8—C9—C10115.3 (4)
C1—C2—H2B109.1C8—C9—H9A108.5
C3—C2—H2B109.1C10—C9—H9A108.5
H2A—C2—H2B107.9C8—C9—H9B108.5
C4—C3—C2113.2 (4)C10—C9—H9B108.5
C4—C3—H3A108.9H9A—C9—H9B107.5
C2—C3—H3A108.9C11—C10—C9115.3 (4)
C4—C3—H3B108.9C11—C10—H10A108.5
C2—C3—H3B108.9C9—C10—H10A108.5
H3A—C3—H3B107.8C11—C10—H10B108.5
C5—C4—C3114.6 (4)C9—C10—H10B108.5
C5—C4—H4A108.6H10A—C10—H10B107.5
C3—C4—H4A108.6C12—C11—C10114.8 (5)
C5—C4—H4B108.6C12—C11—H11A108.6
C3—C4—H4B108.6C10—C11—H11A108.6
H4A—C4—H4B107.6C12—C11—H11B108.6
C6—C5—C4115.1 (4)C10—C11—H11B108.6
C6—C5—H5A108.5H11A—C11—H11B107.5
C4—C5—H5A108.5C11—C12—H12A109.5
C6—C5—H5B108.5C11—C12—H12B109.5
C4—C5—H5B108.5H12A—C12—H12B109.5
H5A—C5—H5B107.5C11—C12—H12C109.5
C5—C6—C7115.9 (4)H12A—C12—H12C109.5
C5—C6—H6A108.3H12B—C12—H12C109.5
C7—C6—H6A108.3
N1—C1—C2—C3179.9 (4)C5—C6—C7—C8178.9 (4)
C1—C2—C3—C4170.6 (5)C6—C7—C8—C9179.7 (5)
C2—C3—C4—C5178.7 (4)C7—C8—C9—C10178.9 (4)
C3—C4—C5—C6177.0 (5)C8—C9—C10—C11179.1 (5)
C4—C5—C6—C7178.4 (4)C9—C10—C11—C12179.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.892.533.380 (4)159
N1—H1B···Br10.892.473.340 (4)166
N1—H1C···O10.891.972.834 (7)165
O1—H1···Br1ii0.83 (4)2.76 (6)3.329 (5)128 (6)
O1—H2···Br1iii0.97 (4)2.49 (5)3.361 (5)149 (5)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x, y+1, z1/2; (iii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC12H28N+·Br·H2O
Mr284.28
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)4.7921 (5), 42.810 (4), 7.8573 (8)
β (°) 105.798 (2)
V3)1551.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.42 × 0.14 × 0.06
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.404, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
4760, 2644, 1665
Rint0.047
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.081, 0.92
No. of reflections2644
No. of parameters145
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.24
Absolute structureFlack (1983), 945 Friedel pairs
Absolute structure parameter0.048 (19)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.892.533.380 (4)159.4
N1—H1B···Br10.892.473.340 (4)166.4
N1—H1C···O10.891.972.834 (7)164.6
O1—H1···Br1ii0.83 (4)2.76 (6)3.329 (5)128 (6)
O1—H2···Br1iii0.97 (4)2.49 (5)3.361 (5)149 (5)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x, y+1, z1/2; (iii) x+1, y+1, z1/2.
 

Acknowledgements

We acknowledge financial support by the National Natural Science Foundations of China (20673050 and 20973089).

References

First citationAratono, M., Villeneuve, M., Takiue, T., Ikeda, N. & Iyota, H. (1998). J. Colloid Interface Sci. 200, 161–171.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLundén, B.-M. (1974). Acta Cryst. B30, 1756–1760.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationRingsdorf, H., Schlarb, B. & Venzmer, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 113–158.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTerreros, A., Galera–Gomez, P. J. & Lopez–Cabarcos, E. (2000). J. Therm. Anal. Calorim. 61, 341–350.  Web of Science CrossRef CAS Google Scholar
First citationTornblom, M., Sitnikov, R. & Henriksson, U. (2000). J. Phys. Chem. B, 104, 1529–1538.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds