metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m434-m435

Di­azido­bis­(propane-1,3-di­amine)copper(II)

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: iuklodhi@yahoo.com, onurs@omu.edu.tr

(Received 4 March 2010; accepted 18 March 2010; online 24 March 2010)

In the title complex, [Cu(N3)2(C3H10N2)2], the CuII ion resides on a centre of symmetry and is in a Jahn–Teller distorted octa­hedral coordination environment comprising two N atoms from azide anions in axial positions and four N atoms from propane-1,3-diamine (tn) ligands in equatorial positions. Inter­molecular N—H⋯N hydrogen bonds produce R21(6), R22(8), R22(12) and R42(8) rings, generating a two-dimensional layer.

Related literature

For related structures, see: Escuer et al. (1997[Escuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem. 36, 1233-1236.]); Gu et al. (2007[Gu, Z.-G., Song, Y., Zuo, J.-L. & You, X.-Z. (2007). Inorg. Chem. 46, 9522-9524.]); Mondal & Mukherjee (2008[Mondal, K.-C. & Mukherjee, P.-S. (2008). Inorg. Chem. 47, 4215-4225.]); Monfort et al. (2000[Monfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191-193.]); Shen et al. (2000[Shen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633-3635.]); Sundberg & Sillanpaa (1993[Sundberg, M. R. & Sillanpaa, R. (1993). Acta Chem. Scand. 47, 1173-1178.]); Sundberg & Uggla (1997[Sundberg, M. R. & Uggla, R. (1997). Inorg. Chim. Acta, 254, 259-265.]); Sundberg et al. (2001[Sundberg, M. R., Kivekas, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212-217.]); Zhang et al. (2009[Zhang, K.-J., Meng, X.-G. & Li, X.-L. (2009). Acta Cryst. E65, m1678-m1679.]); Luo et al. (2004[Luo, J., Zhou, X.-G., Gao, S., Weng, L.-H., Shao, Z.-H., Zhang, C.-M., Li, Y.-R., Zhang, J. & Cai, R.-F. (2004). Polyhedron, 23, 1243-1248.]); Triki et al. (2005[Triki, S., Garcia, C. J. G., Ruiz, E. & Pala, J. S. (2005). Inorg. Chem. 44, 5501-5508.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(N3)2(C3H10N2)2]

  • Mr = 295.86

  • Triclinic, [P \overline 1]

  • a = 6.6869 (4) Å

  • b = 6.7743 (4) Å

  • c = 8.2445 (8) Å

  • α = 93.296 (3)°

  • β = 98.306 (3)°

  • γ = 119.453 (2)°

  • V = 318.19 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 296 K

  • 0.27 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • 5360 measured reflections

  • 1497 independent reflections

  • 1467 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.077

  • S = 1.01

  • 1497 reflections

  • 95 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Cu1 2.0333 (13)
N2—Cu1 2.0302 (13)
N3—N5 1.169 (2)
N4—N5 1.168 (2)
N4—Cu1 2.6740 (17)
N5—N4—Cu1 99.05 (12)
N4—N5—N3 179.8 (2)
N2—Cu1—N1 87.19 (5)
N2—Cu1—N4 83.92 (5)
N1—Cu1—N4 87.19 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.84 (1) 2.12 (2) 2.962 (2) 173 (2)
N1—H2⋯N4ii 0.85 (2) 2.66 (2) 3.511 (2) 173 (2)
N2—H3⋯N3ii 0.83 (2) 2.44 (2) 3.220 (2) 158 (2)
N2—H4⋯N3iii 0.80 (2) 2.31 (2) 3.078 (2) 162 (2)
Symmetry codes: (i) -x+3, -y, -z; (ii) -x+3, -y+1, -z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, metal azide complexes have attracted great attention (Mondal & Mukherjee, 2008; Gu et al., 2007). The azide anion has rich coordination modes (Shen et al., 2000), and many metal-azide complexes have been reported (Monfort et al., 2000). In most of the compounds reported to date, the co-ligands are neutral organic ligands, while charged ligands are very scarce (Escuer et al., 1997). The 1,3-diaminopropane (tn) ligand behaves as a strong chelatator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H-bond donor due to the existence of amino groups (Sundberg et al., 2001). Previously, the polymorphic dinuclear compound featuring both bridging and terminal azido groups was reported (Luo et al., 2004; Triki et al., 2005). Herein, we report the synthesis and structure of the mononuclear complex with only terminal azido ligands.

The molecular structure and atom-labelling scheme are shown in Fig. 1. The CuII atom is located on a center of symmetry and is coordinated by four N atoms from two tn ligands and two N atoms from two azide anions. The geometry around the CuII ion (Table 1) is that of a distorted octahedron, the equatorial plane of which (N1/N2/N1i/N2i) is formed by four amino N atoms [symmetry code: (i) 2-x, -y, -z]. The axial positions in the octahedron are occupied by two N atoms (N4 and N4i). The Cu1—N4 distance is longer than the corresponding distances in related structures (Luo et al., 2004; Triki et al., 2005). This elongation can be attributed to the static Jahn-Teller effect. The tn ligand shows chelating coordination behavior and displays a chair conformation in the equatorial direction. This kind of coordination mode was also found in the similar complexes (Sundberg et al., 2001; Sundberg & Sillanpaa, 1993; Sundberg & Uggla, 1997). The Cu1—N1 and Cu1—N2 bond lengths are very similar to those in the previously reported Bis(4-aminobenzenesulfonato-κO)bis(propane-1,3-diamine-κ2N,N')copper(II) dihydrate (Zhang et al., 2009).

Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H3, to atom N3ii so forming a C(6) (Bernstein et al., 1995) chain running parallel to the [110] direction. Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H4, to atom N3iii so forming a C(6) chain running parallel to the [-100] direction. Similarly, amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H1, to atom N3i so forming a C(6) chain running parallel to the [100] direction. Amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H2, to atom N4ii so forming a C(4) chain running parallel to the [110] direction. The combination of C(4) and C(6) chains produce R21(6), R22(8), R22(12) and R42(8) rings (Fig. 2).

Related literature top

For related structures, see: Escuer et al. (1997); Gu et al. (2007); Mondal & Mukherjee (2008); Monfort et al. (2000); Shen et al. (2000); Sundberg & Sillanpaa (1993); Sundberg & Uggla (1997); Sundberg et al. (2001); Zhang et al. (2009); Luo et al. (2004); Triki et al. (2005). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

Copper(II) sulphate (0.16 g, 1.0 mmol) was dissolved in methanol (20 ml). Sodium azide (0.134 g, 2.0 mmol) and 1,3-diaminopropane(0.148 g, 2.0 mmol) were added and the mixture refluxed for 3 hours. A blue solution formed, which was filtered. After a few days, blue blocks were obtained from the methanol filtrate.

Refinement top

All H atoms bound to C atoms were refined using a riding model, with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene C atoms. Amino H atoms were located in difference maps and refined subject to a DFIX restraint of N—H = 0.87 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of one molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) 2-x, -y, -z.]
[Figure 2] Fig. 2. Part of the crystal structure showing the formation of R21(6), R22(8), R22(12) and R42(8) rings. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 2).
Diazidobis(propane-1,3-diamine)copper(II) top
Crystal data top
[Cu(N3)2(C3H10N2)2]Z = 1
Mr = 295.86F(000) = 155
Triclinic, P1Dx = 1.544 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6869 (4) ÅCell parameters from 4650 reflections
b = 6.7743 (4) Åθ = 3.5–28.6°
c = 8.2445 (8) ŵ = 1.72 mm1
α = 93.296 (3)°T = 296 K
β = 98.306 (3)°Blocks, blue
γ = 119.453 (2)°0.27 × 0.25 × 0.22 mm
V = 318.19 (4) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
1467 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.0°, θmin = 2.5°
ϕ and ω scansh = 85
5360 measured reflectionsk = 88
1497 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.0082P]
where P = (Fo2 + 2Fc2)/3
1497 reflections(Δ/σ)max < 0.001
95 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(N3)2(C3H10N2)2]γ = 119.453 (2)°
Mr = 295.86V = 318.19 (4) Å3
Triclinic, P1Z = 1
a = 6.6869 (4) ÅMo Kα radiation
b = 6.7743 (4) ŵ = 1.72 mm1
c = 8.2445 (8) ÅT = 296 K
α = 93.296 (3)°0.27 × 0.25 × 0.22 mm
β = 98.306 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
1467 reflections with I > 2σ(I)
5360 measured reflectionsRint = 0.023
1497 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0184 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.42 e Å3
1497 reflectionsΔρmin = 0.44 e Å3
95 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2523 (3)0.1281 (3)0.3530 (2)0.0388 (4)
H1A1.39290.16120.43000.047*
H1B1.12510.01750.37000.047*
C21.1953 (3)0.3138 (3)0.3892 (2)0.0401 (4)
H2A1.32070.45740.36790.048*
H2B1.19160.33120.50620.048*
C30.9655 (3)0.2714 (3)0.2899 (2)0.0400 (4)
H3A0.83810.13110.31360.048*
H3B0.94120.39640.32330.048*
N11.2889 (2)0.1090 (2)0.18062 (17)0.0313 (3)
H11.338 (3)0.017 (3)0.173 (2)0.029 (5)*
H21.398 (3)0.241 (3)0.169 (3)0.034 (5)*
N20.9619 (2)0.2524 (2)0.10959 (17)0.0317 (3)
H31.078 (3)0.368 (3)0.093 (3)0.037 (5)*
H40.855 (3)0.261 (4)0.060 (3)0.040 (6)*
N31.5787 (3)0.2474 (3)0.1503 (2)0.0483 (4)
N41.2752 (3)0.3278 (3)0.1626 (2)0.0446 (3)
N51.4271 (2)0.2879 (2)0.15632 (16)0.0310 (3)
Cu11.00000.00000.00000.02769 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (9)0.0354 (8)0.0248 (8)0.0114 (7)0.0028 (6)0.0058 (6)
C20.0409 (9)0.0375 (8)0.0246 (7)0.0085 (7)0.0031 (6)0.0030 (6)
C30.0374 (8)0.0407 (9)0.0331 (8)0.0141 (7)0.0078 (7)0.0065 (7)
N10.0284 (6)0.0309 (6)0.0293 (6)0.0132 (5)0.0013 (5)0.0012 (5)
N20.0278 (6)0.0320 (7)0.0304 (7)0.0136 (5)0.0001 (5)0.0004 (5)
N30.0379 (8)0.0398 (8)0.0659 (11)0.0211 (7)0.0029 (7)0.0040 (7)
N40.0365 (7)0.0575 (9)0.0397 (8)0.0255 (7)0.0029 (6)0.0027 (7)
N50.0288 (6)0.0254 (6)0.0294 (6)0.0069 (5)0.0043 (5)0.0056 (5)
Cu10.02519 (16)0.03367 (17)0.02129 (17)0.01466 (12)0.00046 (10)0.00212 (10)
Geometric parameters (Å, º) top
C1—N11.486 (2)N1—H10.843 (14)
C1—C21.509 (3)N1—H20.852 (15)
C1—H1A0.9700N2—Cu12.0302 (13)
C1—H1B0.9700N2—H30.826 (16)
C2—C31.513 (2)N2—H40.801 (15)
C2—H2A0.9700N3—N51.169 (2)
C2—H2B0.9700N4—N51.168 (2)
C3—N21.480 (2)N4—Cu12.6740 (17)
C3—H3A0.9700Cu1—N2i2.0302 (13)
C3—H3B0.9700Cu1—N1i2.0333 (13)
N1—Cu12.0333 (13)
N1—C1—C2111.99 (13)C1—N1—H2106.5 (15)
N1—C1—H1A109.2Cu1—N1—H2110.7 (14)
C2—C1—H1A109.2H1—N1—H2108.1 (19)
N1—C1—H1B109.2C3—N2—Cu1118.90 (11)
C2—C1—H1B109.2C3—N2—H3108.0 (15)
H1A—C1—H1B107.9Cu1—N2—H3101.3 (15)
C1—C2—C3114.90 (15)C3—N2—H4110.7 (17)
C1—C2—H2A108.5Cu1—N2—H4113.0 (17)
C3—C2—H2A108.5H3—N2—H4103 (2)
C1—C2—H2B108.5N5—N4—Cu199.05 (12)
C3—C2—H2B108.5N4—N5—N3179.8 (2)
H2A—C2—H2B107.5N2—Cu1—N2i180.00 (7)
N2—C3—C2111.68 (13)N2—Cu1—N187.19 (5)
N2—C3—H3A109.3N2i—Cu1—N192.81 (5)
C2—C3—H3A109.3N2—Cu1—N1i92.81 (5)
N2—C3—H3B109.3N2i—Cu1—N1i87.19 (5)
C2—C3—H3B109.3N1—Cu1—N1i180.00 (6)
H3A—C3—H3B107.9N2—Cu1—N483.92 (5)
C1—N1—Cu1115.28 (10)N2i—Cu1—N496.08 (5)
C1—N1—H1107.0 (13)N1—Cu1—N487.19 (5)
Cu1—N1—H1109.1 (14)N1i—Cu1—N492.81 (5)
N1—C1—C2—C364.96 (19)C1—N1—Cu1—N252.35 (11)
C1—C2—C3—N260.6 (2)C1—N1—Cu1—N2i127.65 (11)
C2—C1—N1—Cu166.39 (15)C1—N1—Cu1—N4136.40 (11)
C2—C3—N2—Cu160.49 (17)N5—N4—Cu1—N2137.75 (12)
C3—N2—Cu1—N150.92 (12)N5—N4—Cu1—N2i42.25 (12)
C3—N2—Cu1—N1i129.08 (12)N5—N4—Cu1—N150.28 (12)
C3—N2—Cu1—N4138.39 (12)N5—N4—Cu1—N1i129.72 (12)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3ii0.84 (1)2.12 (2)2.962 (2)173 (2)
N1—H2···N4iii0.85 (2)2.66 (2)3.511 (2)173 (2)
N2—H3···N3iii0.83 (2)2.44 (2)3.220 (2)158 (2)
N2—H4···N3iv0.80 (2)2.31 (2)3.078 (2)162 (2)
Symmetry codes: (ii) x+3, y, z; (iii) x+3, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(N3)2(C3H10N2)2]
Mr295.86
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.6869 (4), 6.7743 (4), 8.2445 (8)
α, β, γ (°)93.296 (3), 98.306 (3), 119.453 (2)
V3)318.19 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.27 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5360, 1497, 1467
Rint0.023
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.077, 1.01
No. of reflections1497
No. of parameters95
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—Cu12.0333 (13)N4—N51.168 (2)
N2—Cu12.0302 (13)N4—Cu12.6740 (17)
N3—N51.169 (2)
N5—N4—Cu199.05 (12)N2—Cu1—N483.92 (5)
N4—N5—N3179.8 (2)N1—Cu1—N487.19 (5)
N2—Cu1—N187.19 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.843 (14)2.123 (15)2.962 (2)173.3 (19)
N1—H2···N4ii0.852 (15)2.664 (16)3.511 (2)173.4 (19)
N2—H3···N3ii0.826 (16)2.438 (17)3.220 (2)158 (2)
N2—H4···N3iii0.801 (15)2.305 (17)3.078 (2)162 (2)
Symmetry codes: (i) x+3, y, z; (ii) x+3, y+1, z; (iii) x1, y, z.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project Strengthening of the Materials Chemistry Laboratory at GCUL.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEscuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem. 36, 1233–1236.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGu, Z.-G., Song, Y., Zuo, J.-L. & You, X.-Z. (2007). Inorg. Chem. 46, 9522–9524.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuo, J., Zhou, X.-G., Gao, S., Weng, L.-H., Shao, Z.-H., Zhang, C.-M., Li, Y.-R., Zhang, J. & Cai, R.-F. (2004). Polyhedron, 23, 1243–1248.  Web of Science CSD CrossRef CAS Google Scholar
First citationMondal, K.-C. & Mukherjee, P.-S. (2008). Inorg. Chem. 47, 4215–4225.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMonfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191–193.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633–3635.  Web of Science CrossRef CAS Google Scholar
First citationSundberg, M. R., Kivekas, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationSundberg, M. R. & Sillanpaa, R. (1993). Acta Chem. Scand. 47, 1173–1178.  CrossRef CAS Web of Science Google Scholar
First citationSundberg, M. R. & Uggla, R. (1997). Inorg. Chim. Acta, 254, 259–265.  CSD CrossRef CAS Web of Science Google Scholar
First citationTriki, S., Garcia, C. J. G., Ruiz, E. & Pala, J. S. (2005). Inorg. Chem. 44, 5501–5508.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, K.-J., Meng, X.-G. & Li, X.-L. (2009). Acta Cryst. E65, m1678–m1679.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m434-m435
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds