metal-organic compounds
Diazidobis(propane-1,3-diamine)copper(II)
aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: iuklodhi@yahoo.com, onurs@omu.edu.tr
In the title complex, [Cu(N3)2(C3H10N2)2], the CuII ion resides on a centre of symmetry and is in a Jahn–Teller distorted octahedral coordination environment comprising two N atoms from azide anions in axial positions and four N atoms from propane-1,3-diamine (tn) ligands in equatorial positions. Intermolecular N—H⋯N hydrogen bonds produce R21(6), R22(8), R22(12) and R42(8) rings, generating a two-dimensional layer.
Related literature
For related structures, see: Escuer et al. (1997); Gu et al. (2007); Mondal & Mukherjee (2008); Monfort et al. (2000); Shen et al. (2000); Sundberg & Sillanpaa (1993); Sundberg & Uggla (1997); Sundberg et al. (2001); Zhang et al. (2009); Luo et al. (2004); Triki et al. (2005). For graph-set motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810010184/om2325sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810010184/om2325Isup2.hkl
Copper(II) sulphate (0.16 g, 1.0 mmol) was dissolved in methanol (20 ml). Sodium azide (0.134 g, 2.0 mmol) and 1,3-diaminopropane(0.148 g, 2.0 mmol) were added and the mixture refluxed for 3 hours. A blue solution formed, which was filtered. After a few days, blue blocks were obtained from the methanol filtrate.
All H atoms bound to C atoms were refined using a riding model, with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene C atoms. Amino H atoms were located in difference maps and refined subject to a DFIX restraint of N—H = 0.87 (2) Å.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(N3)2(C3H10N2)2] | Z = 1 |
Mr = 295.86 | F(000) = 155 |
Triclinic, P1 | Dx = 1.544 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6869 (4) Å | Cell parameters from 4650 reflections |
b = 6.7743 (4) Å | θ = 3.5–28.6° |
c = 8.2445 (8) Å | µ = 1.72 mm−1 |
α = 93.296 (3)° | T = 296 K |
β = 98.306 (3)° | Blocks, blue |
γ = 119.453 (2)° | 0.27 × 0.25 × 0.22 mm |
V = 318.19 (4) Å3 |
Bruker Kappa APEXII diffractometer | 1467 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 28.0°, θmin = 2.5° |
ϕ and ω scans | h = −8→5 |
5360 measured reflections | k = −8→8 |
1497 independent reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0676P)2 + 0.0082P] where P = (Fo2 + 2Fc2)/3 |
1497 reflections | (Δ/σ)max < 0.001 |
95 parameters | Δρmax = 0.42 e Å−3 |
4 restraints | Δρmin = −0.44 e Å−3 |
[Cu(N3)2(C3H10N2)2] | γ = 119.453 (2)° |
Mr = 295.86 | V = 318.19 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.6869 (4) Å | Mo Kα radiation |
b = 6.7743 (4) Å | µ = 1.72 mm−1 |
c = 8.2445 (8) Å | T = 296 K |
α = 93.296 (3)° | 0.27 × 0.25 × 0.22 mm |
β = 98.306 (3)° |
Bruker Kappa APEXII diffractometer | 1467 reflections with I > 2σ(I) |
5360 measured reflections | Rint = 0.023 |
1497 independent reflections |
R[F2 > 2σ(F2)] = 0.018 | 4 restraints |
wR(F2) = 0.077 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.42 e Å−3 |
1497 reflections | Δρmin = −0.44 e Å−3 |
95 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.2523 (3) | 0.1281 (3) | 0.3530 (2) | 0.0388 (4) | |
H1A | 1.3929 | 0.1612 | 0.4300 | 0.047* | |
H1B | 1.1251 | −0.0175 | 0.3700 | 0.047* | |
C2 | 1.1953 (3) | 0.3138 (3) | 0.3892 (2) | 0.0401 (4) | |
H2A | 1.3207 | 0.4574 | 0.3679 | 0.048* | |
H2B | 1.1916 | 0.3312 | 0.5062 | 0.048* | |
C3 | 0.9655 (3) | 0.2714 (3) | 0.2899 (2) | 0.0400 (4) | |
H3A | 0.8381 | 0.1311 | 0.3136 | 0.048* | |
H3B | 0.9412 | 0.3964 | 0.3233 | 0.048* | |
N1 | 1.2889 (2) | 0.1090 (2) | 0.18062 (17) | 0.0313 (3) | |
H1 | 1.338 (3) | 0.017 (3) | 0.173 (2) | 0.029 (5)* | |
H2 | 1.398 (3) | 0.241 (3) | 0.169 (3) | 0.034 (5)* | |
N2 | 0.9619 (2) | 0.2524 (2) | 0.10959 (17) | 0.0317 (3) | |
H3 | 1.078 (3) | 0.368 (3) | 0.093 (3) | 0.037 (5)* | |
H4 | 0.855 (3) | 0.261 (4) | 0.060 (3) | 0.040 (6)* | |
N3 | 1.5787 (3) | 0.2474 (3) | −0.1503 (2) | 0.0483 (4) | |
N4 | 1.2752 (3) | 0.3278 (3) | −0.1626 (2) | 0.0446 (3) | |
N5 | 1.4271 (2) | 0.2879 (2) | −0.15632 (16) | 0.0310 (3) | |
Cu1 | 1.0000 | 0.0000 | 0.0000 | 0.02769 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0421 (9) | 0.0354 (8) | 0.0248 (8) | 0.0114 (7) | −0.0028 (6) | 0.0058 (6) |
C2 | 0.0409 (9) | 0.0375 (8) | 0.0246 (7) | 0.0085 (7) | 0.0031 (6) | −0.0030 (6) |
C3 | 0.0374 (8) | 0.0407 (9) | 0.0331 (8) | 0.0141 (7) | 0.0078 (7) | −0.0065 (7) |
N1 | 0.0284 (6) | 0.0309 (6) | 0.0293 (6) | 0.0132 (5) | −0.0013 (5) | 0.0012 (5) |
N2 | 0.0278 (6) | 0.0320 (7) | 0.0304 (7) | 0.0136 (5) | −0.0001 (5) | −0.0004 (5) |
N3 | 0.0379 (8) | 0.0398 (8) | 0.0659 (11) | 0.0211 (7) | 0.0029 (7) | 0.0040 (7) |
N4 | 0.0365 (7) | 0.0575 (9) | 0.0397 (8) | 0.0255 (7) | 0.0029 (6) | 0.0027 (7) |
N5 | 0.0288 (6) | 0.0254 (6) | 0.0294 (6) | 0.0069 (5) | 0.0043 (5) | 0.0056 (5) |
Cu1 | 0.02519 (16) | 0.03367 (17) | 0.02129 (17) | 0.01466 (12) | −0.00046 (10) | −0.00212 (10) |
C1—N1 | 1.486 (2) | N1—H1 | 0.843 (14) |
C1—C2 | 1.509 (3) | N1—H2 | 0.852 (15) |
C1—H1A | 0.9700 | N2—Cu1 | 2.0302 (13) |
C1—H1B | 0.9700 | N2—H3 | 0.826 (16) |
C2—C3 | 1.513 (2) | N2—H4 | 0.801 (15) |
C2—H2A | 0.9700 | N3—N5 | 1.169 (2) |
C2—H2B | 0.9700 | N4—N5 | 1.168 (2) |
C3—N2 | 1.480 (2) | N4—Cu1 | 2.6740 (17) |
C3—H3A | 0.9700 | Cu1—N2i | 2.0302 (13) |
C3—H3B | 0.9700 | Cu1—N1i | 2.0333 (13) |
N1—Cu1 | 2.0333 (13) | ||
N1—C1—C2 | 111.99 (13) | C1—N1—H2 | 106.5 (15) |
N1—C1—H1A | 109.2 | Cu1—N1—H2 | 110.7 (14) |
C2—C1—H1A | 109.2 | H1—N1—H2 | 108.1 (19) |
N1—C1—H1B | 109.2 | C3—N2—Cu1 | 118.90 (11) |
C2—C1—H1B | 109.2 | C3—N2—H3 | 108.0 (15) |
H1A—C1—H1B | 107.9 | Cu1—N2—H3 | 101.3 (15) |
C1—C2—C3 | 114.90 (15) | C3—N2—H4 | 110.7 (17) |
C1—C2—H2A | 108.5 | Cu1—N2—H4 | 113.0 (17) |
C3—C2—H2A | 108.5 | H3—N2—H4 | 103 (2) |
C1—C2—H2B | 108.5 | N5—N4—Cu1 | 99.05 (12) |
C3—C2—H2B | 108.5 | N4—N5—N3 | 179.8 (2) |
H2A—C2—H2B | 107.5 | N2—Cu1—N2i | 180.00 (7) |
N2—C3—C2 | 111.68 (13) | N2—Cu1—N1 | 87.19 (5) |
N2—C3—H3A | 109.3 | N2i—Cu1—N1 | 92.81 (5) |
C2—C3—H3A | 109.3 | N2—Cu1—N1i | 92.81 (5) |
N2—C3—H3B | 109.3 | N2i—Cu1—N1i | 87.19 (5) |
C2—C3—H3B | 109.3 | N1—Cu1—N1i | 180.00 (6) |
H3A—C3—H3B | 107.9 | N2—Cu1—N4 | 83.92 (5) |
C1—N1—Cu1 | 115.28 (10) | N2i—Cu1—N4 | 96.08 (5) |
C1—N1—H1 | 107.0 (13) | N1—Cu1—N4 | 87.19 (5) |
Cu1—N1—H1 | 109.1 (14) | N1i—Cu1—N4 | 92.81 (5) |
N1—C1—C2—C3 | 64.96 (19) | C1—N1—Cu1—N2 | 52.35 (11) |
C1—C2—C3—N2 | −60.6 (2) | C1—N1—Cu1—N2i | −127.65 (11) |
C2—C1—N1—Cu1 | −66.39 (15) | C1—N1—Cu1—N4 | 136.40 (11) |
C2—C3—N2—Cu1 | 60.49 (17) | N5—N4—Cu1—N2 | 137.75 (12) |
C3—N2—Cu1—N1 | −50.92 (12) | N5—N4—Cu1—N2i | −42.25 (12) |
C3—N2—Cu1—N1i | 129.08 (12) | N5—N4—Cu1—N1 | 50.28 (12) |
C3—N2—Cu1—N4 | −138.39 (12) | N5—N4—Cu1—N1i | −129.72 (12) |
Symmetry code: (i) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N3ii | 0.84 (1) | 2.12 (2) | 2.962 (2) | 173 (2) |
N1—H2···N4iii | 0.85 (2) | 2.66 (2) | 3.511 (2) | 173 (2) |
N2—H3···N3iii | 0.83 (2) | 2.44 (2) | 3.220 (2) | 158 (2) |
N2—H4···N3iv | 0.80 (2) | 2.31 (2) | 3.078 (2) | 162 (2) |
Symmetry codes: (ii) −x+3, −y, −z; (iii) −x+3, −y+1, −z; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(N3)2(C3H10N2)2] |
Mr | 295.86 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.6869 (4), 6.7743 (4), 8.2445 (8) |
α, β, γ (°) | 93.296 (3), 98.306 (3), 119.453 (2) |
V (Å3) | 318.19 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.72 |
Crystal size (mm) | 0.27 × 0.25 × 0.22 |
Data collection | |
Diffractometer | Bruker Kappa APEXII diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5360, 1497, 1467 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.077, 1.01 |
No. of reflections | 1497 |
No. of parameters | 95 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.44 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
N1—Cu1 | 2.0333 (13) | N4—N5 | 1.168 (2) |
N2—Cu1 | 2.0302 (13) | N4—Cu1 | 2.6740 (17) |
N3—N5 | 1.169 (2) | ||
N5—N4—Cu1 | 99.05 (12) | N2—Cu1—N4 | 83.92 (5) |
N4—N5—N3 | 179.8 (2) | N1—Cu1—N4 | 87.19 (5) |
N2—Cu1—N1 | 87.19 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N3i | 0.843 (14) | 2.123 (15) | 2.962 (2) | 173.3 (19) |
N1—H2···N4ii | 0.852 (15) | 2.664 (16) | 3.511 (2) | 173.4 (19) |
N2—H3···N3ii | 0.826 (16) | 2.438 (17) | 3.220 (2) | 158 (2) |
N2—H4···N3iii | 0.801 (15) | 2.305 (17) | 3.078 (2) | 162 (2) |
Symmetry codes: (i) −x+3, −y, −z; (ii) −x+3, −y+1, −z; (iii) x−1, y, z. |
Acknowledgements
IUK thanks the Higher Education Commission of Pakistan for its financial support under the project Strengthening of the Materials Chemistry Laboratory at GCUL.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Escuer, A., Vicente, R., Mautner, F. A. & Goher, M. A. S. (1997). Inorg. Chem. 36, 1233–1236. CSD CrossRef PubMed CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gu, Z.-G., Song, Y., Zuo, J.-L. & You, X.-Z. (2007). Inorg. Chem. 46, 9522–9524. Web of Science CSD CrossRef PubMed CAS Google Scholar
Luo, J., Zhou, X.-G., Gao, S., Weng, L.-H., Shao, Z.-H., Zhang, C.-M., Li, Y.-R., Zhang, J. & Cai, R.-F. (2004). Polyhedron, 23, 1243–1248. Web of Science CSD CrossRef CAS Google Scholar
Mondal, K.-C. & Mukherjee, P.-S. (2008). Inorg. Chem. 47, 4215–4225. Web of Science CSD CrossRef PubMed CAS Google Scholar
Monfort, M., Resino, I., Ribas, J. & Stoeckli-Evans, H. (2000). Angew. Chem. Int. Ed. 39, 191–193. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, Z., Zuo, J.-L., Gao, S., Song, Y., Che, C.-M., Fun, H.-K. & You, X.-Z. (2000). Angew. Chem. Int. Ed. 39, 3633–3635. Web of Science CrossRef CAS Google Scholar
Sundberg, M. R., Kivekas, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212–217. Web of Science CSD CrossRef CAS Google Scholar
Sundberg, M. R. & Sillanpaa, R. (1993). Acta Chem. Scand. 47, 1173–1178. CrossRef CAS Web of Science Google Scholar
Sundberg, M. R. & Uggla, R. (1997). Inorg. Chim. Acta, 254, 259–265. CSD CrossRef CAS Web of Science Google Scholar
Triki, S., Garcia, C. J. G., Ruiz, E. & Pala, J. S. (2005). Inorg. Chem. 44, 5501–5508. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, K.-J., Meng, X.-G. & Li, X.-L. (2009). Acta Cryst. E65, m1678–m1679. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, metal azide complexes have attracted great attention (Mondal & Mukherjee, 2008; Gu et al., 2007). The azide anion has rich coordination modes (Shen et al., 2000), and many metal-azide complexes have been reported (Monfort et al., 2000). In most of the compounds reported to date, the co-ligands are neutral organic ligands, while charged ligands are very scarce (Escuer et al., 1997). The 1,3-diaminopropane (tn) ligand behaves as a strong chelatator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H-bond donor due to the existence of amino groups (Sundberg et al., 2001). Previously, the polymorphic dinuclear compound featuring both bridging and terminal azido groups was reported (Luo et al., 2004; Triki et al., 2005). Herein, we report the synthesis and structure of the mononuclear complex with only terminal azido ligands.
The molecular structure and atom-labelling scheme are shown in Fig. 1. The CuII atom is located on a center of symmetry and is coordinated by four N atoms from two tn ligands and two N atoms from two azide anions. The geometry around the CuII ion (Table 1) is that of a distorted octahedron, the equatorial plane of which (N1/N2/N1i/N2i) is formed by four amino N atoms [symmetry code: (i) 2-x, -y, -z]. The axial positions in the octahedron are occupied by two N atoms (N4 and N4i). The Cu1—N4 distance is longer than the corresponding distances in related structures (Luo et al., 2004; Triki et al., 2005). This elongation can be attributed to the static Jahn-Teller effect. The tn ligand shows chelating coordination behavior and displays a chair conformation in the equatorial direction. This kind of coordination mode was also found in the similar complexes (Sundberg et al., 2001; Sundberg & Sillanpaa, 1993; Sundberg & Uggla, 1997). The Cu1—N1 and Cu1—N2 bond lengths are very similar to those in the previously reported Bis(4-aminobenzenesulfonato-κO)bis(propane-1,3-diamine-κ2N,N')copper(II) dihydrate (Zhang et al., 2009).
Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H3, to atom N3ii so forming a C(6) (Bernstein et al., 1995) chain running parallel to the [110] direction. Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H4, to atom N3iii so forming a C(6) chain running parallel to the [-100] direction. Similarly, amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H1, to atom N3i so forming a C(6) chain running parallel to the [100] direction. Amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H2, to atom N4ii so forming a C(4) chain running parallel to the [110] direction. The combination of C(4) and C(6) chains produce R21(6), R22(8), R22(12) and R42(8) rings (Fig. 2).