organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Bi­thio­phene

aCentro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, bREQUIMTE , Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: jnlow111@googlemail.com

(Received 10 March 2010; accepted 19 March 2010; online 24 March 2010)

The title compound, C8H6S2, is disordered [occupancy ratio = 0.839 (2):0.161 (2)] and sits across a centre of symmetry. In the crystal, the mol­ecules are linked by a weak C—H⋯π inter­action.

Related literature

For a discussion of the disorder in this compound, see: Visser et al. (1968[Visser, G. J., Heeres, G. J., Wolters, J. & Vos, A. (1968). Acta Cryst. B24, 467-473.]). For thio­phene C–S bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6S2

  • Mr = 166.25

  • Orthorhombic, P c c n

  • a = 7.5187 (7) Å

  • b = 18.2181 (17) Å

  • c = 5.5029 (5) Å

  • V = 753.77 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 150 K

  • 0.60 × 0.40 × 0.04 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.709, Tmax = 0.976

  • 11635 measured reflections

  • 1151 independent reflections

  • 987 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.10

  • 1151 reflections

  • 59 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg and Cg′ are the centroids of the thio­phene ring in the major and minor occupancy disorder components, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cgi 0.95 2.86 3.6039 (17) 136
C2—H2⋯Cgi 0.95 2.86 3.607 (5) 136
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The disorder in the title compound was discussed briefly by Visser et al. (1968). However, this paper gives no coordinates and the structure determination was at room temperature. This is a low temerature determination. A view of the major, 0.839 (2), site occupancy, and minor, 0.161 (2), site occupancy, components are shown in Fig. 1. There is a weak C–H···π interaction, C2–H2···Cg(thiophene) (0.5-x, y, z-0.5) in which H2···Cg is 2.86Å and C2···Cg is 3.6039 (17) Å. The angle at H2 ia 136° for the major component. The C2···Cg2 distance for the minor component is 3.607 (5) Å. The H2···Cg distance and angle at H2 are the same.

Related literature top

For a discussion of the disorder in this compound, see: Visser et al. (1968). For thiophene C–S bond distances, see: Allen et al. (1987).

Experimental top

The compound was obtained commercially and re-crystallised from dichloromethane.

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.95Å. The S atom was disordered by rotation of 180° around the bond connecting the 2 thiophene rings. The C—S distances were restrained the average value quoted in Allen, et al., 1987 using tight restraints. Specifically, the C2-C5a and C4-C5 bonds were restrained in SHELXL97 refinements using DFIX 1.380 0.001 and the C5-S1, C2-S1, C4-S1A and C5A-S1A bonds were restrained using DFIX 1.72 0.001. The anisotropic thermal parameters for atom C5A (minor component) were constrained to be the same as those those of atom C5 (major component) using the EADP instruction.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The molecule sits across the centre-of-symmetry at (0.5,0.5,0.5). The bonds in the minor component are marked as dotted lines.
3,3'-bithiophene top
Crystal data top
C8H6S2Dx = 1.465 Mg m3
Mr = 166.25Melting point: 406 K
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
a = 7.5187 (7) ÅCell parameters from 124 reflections
b = 18.2181 (17) Åθ = 2.8–30.5°
c = 5.5029 (5) ŵ = 0.62 mm1
V = 753.77 (12) Å3T = 150 K
Z = 4Plate, yellow
F(000) = 3440.60 × 0.40 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
1151 independent reflections
Radiation source: fine-focus sealed tube987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 30.6°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.709, Tmax = 0.976k = 2326
11635 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3736P]
where P = (Fo2 + 2Fc2)/3
1151 reflections(Δ/σ)max = 0.001
59 parametersΔρmax = 0.48 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
C8H6S2V = 753.77 (12) Å3
Mr = 166.25Z = 4
Orthorhombic, PccnMo Kα radiation
a = 7.5187 (7) ŵ = 0.62 mm1
b = 18.2181 (17) ÅT = 150 K
c = 5.5029 (5) Å0.60 × 0.40 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
1151 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
987 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.976Rint = 0.039
11635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.10Δρmax = 0.48 e Å3
1151 reflectionsΔρmin = 0.33 e Å3
59 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.44974 (10)0.67774 (2)0.55925 (11)0.03155 (18)0.839 (2)
C5A0.446 (2)0.6612 (2)0.5331 (18)0.0246 (5)0.161 (2)
H5A0.40030.70610.47180.030*0.161 (2)
C20.4207 (2)0.59508 (6)0.4154 (2)0.0255 (3)
H20.35740.58910.26730.031*
C30.50025 (17)0.53842 (7)0.5407 (2)0.0199 (3)
C40.58337 (19)0.56308 (7)0.7572 (3)0.0262 (3)
H40.64390.53140.86660.031*
C50.5674 (8)0.63775 (10)0.7926 (7)0.0246 (5)0.839 (2)
H50.61500.66360.92770.030*0.839 (2)
S1A0.5658 (13)0.65626 (13)0.7988 (13)0.0391 (12)0.161 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0353 (3)0.0217 (2)0.0377 (3)0.0028 (2)0.0068 (2)0.00256 (18)
C5A0.0243 (10)0.0215 (10)0.0279 (10)0.0028 (13)0.0000 (8)0.0033 (10)
C20.0264 (7)0.0274 (6)0.0227 (6)0.0032 (5)0.0010 (5)0.0039 (5)
C30.0152 (6)0.0247 (6)0.0198 (6)0.0022 (5)0.0025 (5)0.0022 (5)
C40.0234 (7)0.0303 (7)0.0249 (6)0.0026 (5)0.0034 (5)0.0015 (5)
C50.0243 (10)0.0215 (10)0.0279 (10)0.0028 (13)0.0000 (8)0.0033 (10)
S1A0.040 (2)0.0276 (17)0.049 (2)0.001 (2)0.0038 (15)0.0074 (17)
Geometric parameters (Å, º) top
S1—C21.7152 (9)C3—C41.4181 (19)
S1—C51.7215 (10)C3—C3i1.470 (3)
C5A—C21.3802 (10)C4—C51.3794 (10)
C5A—S1A1.7203 (10)C4—S1A1.7180 (10)
C5A—H5A0.9500C4—H40.9500
C2—C31.3778 (19)C5—H50.9500
C2—H20.9500
C2—S1—C592.19 (8)C4—C3—C3i123.98 (15)
C2—C5A—S1A115.2 (3)C5—C4—C3113.15 (13)
C2—C5A—H5A122.4C3—C4—S1A113.04 (17)
S1A—C5A—H5A122.4C5—C4—H4123.4
C3—C2—C5A111.1 (2)C3—C4—H4123.4
C3—C2—S1111.81 (10)S1A—C4—H4123.5
C3—C2—H2124.1C4—C5—S1110.87 (12)
C5A—C2—H2124.9C4—C5—H5124.6
S1—C2—H2124.1S1—C5—H5124.6
C2—C3—C4111.98 (11)C4—S1A—C5A88.8 (2)
C2—C3—C3i124.05 (15)
S1A—C5A—C2—C30.2 (15)C3i—C3—C4—C5179.3 (3)
C5—S1—C2—C30.6 (3)C2—C3—C4—S1A1.3 (5)
C5A—C2—C3—C41.0 (8)C3i—C3—C4—S1A178.5 (4)
S1—C2—C3—C40.73 (16)C3—C4—C5—S10.1 (5)
C5A—C2—C3—C3i178.8 (8)C2—S1—C5—C40.3 (4)
S1—C2—C3—C3i179.03 (14)C3—C4—S1A—C5A1.0 (10)
C2—C3—C4—C50.5 (3)C2—C5A—S1A—C40.4 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg and Cg' are the centroids of the thiophene ring in the major and minor occupancy disorder components, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cgii0.952.863.6039 (17)136
C2—H2···Cg'ii0.952.863.607 (5)136
Symmetry code: (ii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC8H6S2
Mr166.25
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)150
a, b, c (Å)7.5187 (7), 18.2181 (17), 5.5029 (5)
V3)753.77 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.60 × 0.40 × 0.04
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.709, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
11635, 1151, 987
Rint0.039
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.10
No. of reflections1151
No. of parameters59
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg and Cg' are the centroids of the thiophene ring in the major and minor occupancy disorder components, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cgi0.952.863.6039 (17)136
C2—H2···Cg'i0.952.863.607 (5)136
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

LRG thanks the Fundação para o Ensino e Cultura Fernando Pessoa for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVisser, G. J., Heeres, G. J., Wolters, J. & Vos, A. (1968). Acta Cryst. B24, 467–473.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds