organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o955-o956

1,3-Di­thian-2-one azine

aCollege of Life Science and Chemistry, Tianshui Normal University, Tianshui 741000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
*Correspondence e-mail: yhliuyzu@yahoo.com.cn

(Received 24 February 2010; accepted 21 March 2010; online 27 March 2010)

In an asymmetric unit of the title compound, C8H12N2S4, there are two crystallographically independent half mol­ecules lying on inversion centers. One of the mol­ecules is disordered over two positions with relative occupancies of 82.0 (2) and 18.0 (2) for the major and minor components. In the crystal structure, mol­ecules are linked into a three-dimensional framework via inter­molecular C—H⋯N hydrogen-bonding inter­actions.

Related literature

For the synthesis, see: Mayer & Schaefer (1964[Mayer, R. & Schaefer, K. (1964). J. Prakt. Chem. 26, 279-295.]); Xu et al. (2005[Xu, L. Z., Xu, H. Z., Yang, S. H., Li, C. L. & Zhou, K. (2005). Acta Cryst. E61, o31-o32.]). For the use of 2-hydrazono-1,3-dithiol­ane derivatives in coordination chemistry and their biological activity, see: Beghidja et al. (2006[Beghidja, C., Rogez, G., Kortus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140-3141.]); Gou et al. (2004[Gou, S.-H., Chen, H.-C., Fang, Z.-P., Luo, J. & Wang, Y.-L. (2004). Chin. J. Org. Chem. 24, 234-238.]). For 1,3-dithian-2-yl­idene derivatives as anti­mycotic agents and an important synthesis medium, see: Dong et al. (2005[Dong, D., Ouyang, Y., Yu, H., Liu, Q., Liu, J., Wang, M. & Zhu, J. (2005). J. Org. Chem. 70, 4535-4537.]); Ram et al. (1997[Ram, V. J., Nath, M. & ShuklaP, K. (1997). Bioorg. Med. Chem. Lett. 7, 2137-2140.]). For related structures, see: Liu, Liu & Liu (2008[Liu, J.-F., Liu, X.-L. & Liu, Y.-H. (2008). Acta Cryst. E64, o1340.]); Liu, Liu, Dai et al. (2008[Liu, Y.-H., Liu, X.-L., Dai, X.-Q., Xu, W. & Guo, R. (2008). J. Chem. Crystallogr. 38, 109-113.]); Yang et al. (2007[Yang, L.-J., Li, Z.-G., Liu, X.-L. & Liu, Y.-H. (2007). Acta Cryst. E63, o4501.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555-1573.]). For dithian ring conformations, see: Boeyens (1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N2S4

  • Mr = 264.44

  • Monoclinic, P 21 /c

  • a = 9.3999 (11) Å

  • b = 11.9251 (14) Å

  • c = 10.7397 (13) Å

  • β = 91.555 (2)°

  • V = 1203.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.870

  • 10905 measured reflections

  • 2998 independent reflections

  • 2478 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.01

  • 2998 reflections

  • 151 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯N2i 0.97 2.71 3.620 (7) 157
C4′—H4C⋯N2i 0.97 2.70 3.503 (7) 141
C6—H6B⋯N1i 0.97 2.62 3.397 (6) 137
C6—H6B⋯N1′ii 0.97 2.68 3.428 (6) 134
C2′—H2D⋯N2iii 0.97 2.64 3.529 (7) 152
C2—H2B⋯N2iii 0.97 2.78 3.523 (7) 134
C8—H8B⋯N1iv 0.97 2.73 3.654 (3) 159
C8—H8B⋯N1′ 0.97 2.70 3.591 (3) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of 2-hydrazono-1,3-dithiolane have been abstracted for their coordination chemistry and biological activities (Beghidja et al., 2006; Gou et al., 2004). The derivatives of 1,3-dithian-2-ylidene and thiazolidin-2-ylidene are a novel class of antimycotic agents and important synthesis mediam (Ram et al., 1997; Dong et al., 2005). But very few derivatives of 2-hydrazono-1,3-dithiane have been reported. As on going research in this field in our laboratory (Liu et al., 2008; Yang et al., 2007), we report herein the structure of the title compound.

In the title compound, there are two crystallographically independent half molecules in the asymmetric unit, which lie on centres of symmetry; referred as molecules A and B. The atoms of the molecule B are disordered over two positions with relative occupancies of 82.0 (2) and 18.0 (2) for the major and minor components, respectively. All the dithian rings adopt twist-boat conformations (Boeyens, 1978). The atoms S1/S2/C1/C3/N1 in molecule A lie in a plane and the atoms C2 and C4 lie above and below this plane. Similarly, atoms S3/S4/C5/C7/N2 in molecule B also lie in a plane and the atoms C6 and C8 lie above and below the plane. The molecular dimensions in the two molecules are similar with the corresponding molecular dimensions reported in similar structures from our previous work (Yang et al.., 2007; Liu, Liu & Liu, (2008); Liu, Liu, Dai et al., (2008).

In the crystal structure the molecules are joined into a zig-zag chain by C8–H8B···N1 inter-molecular hydrogen-bond (Fig. 2, Tab. 1). At the same time C2–H2B···N2 inter-molecular hydrogen-bonds form another zig-zag chain along the molecular long axis and vertically the first chain. Both of them generate a sheet with edge-fused R44(22) rings in graph set notation (Bernstein et al., 1995) in the ab-plane. Besides these chains, there are two more zig-zag chains, formed by C6–H6B···N1 and C4–H4B···N2 inter-molecular hydrogen-bonds which make up the adjacent sheet into a three dimensional frame work along the c axis (Fig. 3).

Related literature top

For the synthesis, see: Mayer & Schaefer (1964); Xu et al. (2005). For the use of 2-hydrazono-1,3-dithiolane derivatives in coordination chemistry and their biological activity, see: Beghidja et al. (2006); Gou et al. (2004). For 1,3-dithian-2-ylidene derivatives as antimycotic agents and an important synthesis medium, see: Dong et al. (2005); Ram et al. (1997). For related structures, see: Liu, Liu & Liu (2008); Liu, Liu, Dai et al. (2008); Yang et al. (2007). For graph-set notation, see: Bernstein et al. (1995). For dithian ring conformations, see: Boeyens (1978).

Experimental top

The title compound was prepared according to the reference method (Mayer & Schaefer, 1964; Xu et al., 2005) and crystallized from a mixture of ethanol and petroleum ether (1:8).

Refinement top

The atoms of the molecule B are disordered over two positions with relative occupancies of 82.0 (2) and 18.0 (2) for the major and minor components, respectively; their anisotropic dispalcement parameters were constrained to be equal. Restraints were applied to bond distances in the disordered molecule B in reference to the molecule A. All H atoms were placed at ideal positions and allowed to ride on the parent C atoms, with C–H = 0.97 and Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules of the title compound, showing 30% probability ellipsoids; minor fraction of molecule B has been plotted with dashed lines. The symmetry codes are: (i) x+1, y+1, z; (ii) x+2, y, z].
[Figure 2] Fig. 2. Unit cell packing of the title compound, showing the formation of a sheet in the ab plane. The H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. Unit cell packing of the title compound, showing three dimensional frame work as a result of C–H···N inter-molecular hydrogen-bonds (as dashed lines) viewed along the a axis. The H atoms not involved in hydrogen bonding have been omitted for clarity.
1,3-Dithian-2-one azine top
Crystal data top
C8H12N2S4F(000) = 552
Mr = 264.44Dx = 1.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5734 reflections
a = 9.3999 (11) Åθ = 2.8–28.2°
b = 11.9251 (14) ŵ = 0.75 mm1
c = 10.7397 (13) ÅT = 293 K
β = 91.555 (2)°Block, colorless
V = 1203.4 (2) Å30.22 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2998 independent reflections
Radiation source: fine-focus sealed tube2478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ & ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.852, Tmax = 0.870k = 1515
10905 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.7487P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.65 e Å3
14 restraintsΔρmin = 0.41 e Å3
Crystal data top
C8H12N2S4V = 1203.4 (2) Å3
Mr = 264.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3999 (11) ŵ = 0.75 mm1
b = 11.9251 (14) ÅT = 293 K
c = 10.7397 (13) Å0.22 × 0.21 × 0.19 mm
β = 91.555 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2478 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.870Rint = 0.055
10905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04614 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.01Δρmax = 0.65 e Å3
2998 reflectionsΔρmin = 0.41 e Å3
151 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.71338 (9)0.70901 (9)0.02533 (9)0.0596 (3)0.820 (2)
S20.74955 (10)0.49843 (7)0.12799 (9)0.0510 (2)0.820 (2)
N10.5250 (2)0.5510 (2)0.0239 (2)0.0424 (5)0.820 (2)
C10.6487 (3)0.5788 (2)0.0219 (2)0.0373 (5)0.820 (2)
C20.9037 (4)0.6810 (11)0.0147 (11)0.0581 (12)0.820 (2)
H2A0.92350.61250.05980.070*0.820 (2)
H2B0.95400.74160.05450.070*0.820 (2)
C30.9597 (16)0.6690 (9)0.1184 (11)0.0525 (15)0.820 (2)
H3A1.04890.62820.11850.063*0.820 (2)
H3B0.97870.74300.15250.063*0.820 (2)
C40.8569 (18)0.6085 (10)0.2011 (13)0.0554 (15)0.820 (2)
H4A0.79300.66370.23550.053 (9)*0.820 (2)
H4B0.91090.57580.27020.072 (12)*0.820 (2)
S1'0.6929 (5)0.6622 (4)0.0158 (5)0.0596 (3)0.180 (2)
S2'0.7925 (5)0.4809 (4)0.1612 (5)0.0510 (2)0.180 (2)
N1'0.5477 (10)0.4742 (9)0.0420 (10)0.0424 (5)0.180 (2)
C1'0.6632 (10)0.5345 (8)0.0577 (10)0.0373 (5)0.180 (2)
C2'0.8826 (16)0.687 (5)0.007 (6)0.0581 (12)0.180 (2)
H2C0.92530.64860.07560.070*0.180 (2)
H2D0.89810.76700.01900.070*0.180 (2)
C3'0.962 (8)0.653 (5)0.112 (5)0.0525 (15)0.180 (2)
H3D1.02850.59400.09200.063*0.180 (2)
H3C1.01710.71680.14230.063*0.180 (2)
C4'0.868 (9)0.613 (4)0.215 (7)0.0554 (15)0.180 (2)
H4D0.79350.66670.22980.066*0.180 (2)
H4C0.92360.60180.29110.066*0.180 (2)
S30.72455 (7)0.16120 (6)0.00561 (6)0.0599 (2)
S40.79852 (6)0.03342 (5)0.16643 (6)0.04884 (18)
N20.9581 (2)0.04587 (17)0.02005 (18)0.0489 (5)
C50.8418 (2)0.05424 (19)0.0413 (2)0.0428 (5)
C60.6094 (2)0.0073 (2)0.1744 (2)0.0541 (6)
H6A0.56490.02590.09450.065*
H6B0.57020.05700.23620.065*
C70.5708 (4)0.1115 (3)0.2068 (4)0.0831 (11)
H7A0.57980.12050.29650.100*
H7B0.47170.12390.18310.100*
C80.6605 (3)0.2012 (2)0.1454 (3)0.0649 (7)
H8A0.74150.21850.19990.078*
H8B0.60410.26900.13610.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0474 (4)0.0466 (6)0.0836 (5)0.0132 (4)0.0182 (4)0.0194 (4)
S20.0423 (5)0.0480 (4)0.0625 (5)0.0055 (3)0.0045 (3)0.0150 (3)
N10.0389 (12)0.0444 (12)0.0440 (11)0.0099 (10)0.0005 (9)0.0025 (9)
C10.0360 (11)0.0375 (14)0.0385 (13)0.0038 (11)0.0038 (9)0.0002 (9)
C20.0420 (16)0.069 (2)0.063 (2)0.015 (3)0.002 (2)0.0097 (18)
C30.0398 (14)0.048 (4)0.069 (2)0.008 (3)0.0076 (15)0.002 (2)
C40.044 (3)0.0705 (19)0.051 (4)0.0066 (13)0.006 (3)0.0005 (16)
S1'0.0474 (4)0.0466 (6)0.0836 (5)0.0132 (4)0.0182 (4)0.0194 (4)
S2'0.0423 (5)0.0480 (4)0.0625 (5)0.0055 (3)0.0045 (3)0.0150 (3)
N1'0.0389 (12)0.0444 (12)0.0440 (11)0.0099 (10)0.0005 (9)0.0025 (9)
C1'0.0360 (11)0.0375 (14)0.0385 (13)0.0038 (11)0.0038 (9)0.0002 (9)
C2'0.0420 (16)0.069 (2)0.063 (2)0.015 (3)0.002 (2)0.0097 (18)
C3'0.0398 (14)0.048 (4)0.069 (2)0.008 (3)0.0076 (15)0.002 (2)
C4'0.044 (3)0.0705 (19)0.051 (4)0.0066 (13)0.006 (3)0.0005 (16)
S30.0493 (4)0.0688 (5)0.0621 (4)0.0031 (3)0.0130 (3)0.0238 (3)
S40.0423 (3)0.0489 (3)0.0557 (3)0.0007 (2)0.0075 (2)0.0089 (2)
N20.0451 (10)0.0511 (11)0.0511 (10)0.0027 (8)0.0109 (8)0.0014 (8)
C50.0382 (10)0.0455 (11)0.0449 (11)0.0057 (9)0.0069 (8)0.0018 (9)
C60.0391 (11)0.0677 (16)0.0560 (13)0.0061 (11)0.0097 (10)0.0143 (11)
C70.0716 (19)0.080 (2)0.100 (2)0.0246 (17)0.0506 (18)0.0327 (18)
C80.0587 (15)0.0575 (15)0.0798 (18)0.0140 (13)0.0237 (13)0.0095 (13)
Geometric parameters (Å, º) top
S1—C11.748 (3)C2'—H2C0.9700
S1—C21.821 (5)C2'—H2D0.9700
S2—C11.749 (3)C3'—C4'1.512 (10)
S2—C41.821 (4)C3'—H3D0.9700
N1—C11.293 (3)C3'—H3C0.9700
N1—N1i1.406 (4)C4'—H4D0.9700
C2—C31.516 (5)C4'—H4C0.9700
C2—H2A0.9700S3—C51.751 (2)
C2—H2B0.9700S3—C81.810 (3)
C3—C41.514 (5)S4—C51.759 (2)
C3—H3A0.9700S4—C61.809 (2)
C3—H3B0.9700N2—C51.296 (3)
C4—H4A0.9700N2—N2ii1.409 (4)
C4—H4B0.9700C6—C71.505 (4)
S1'—C1'1.741 (8)C6—H6A0.9700
S1'—C2'1.809 (10)C6—H6B0.9700
S2'—C1'1.746 (8)C7—C81.523 (4)
S2'—C4'1.811 (10)C7—H7A0.9700
N1'—C1'1.309 (9)C7—H7B0.9700
N1'—N1'i1.40 (2)C8—H8A0.9700
C2'—C3'1.513 (10)C8—H8B0.9700
C1—S1—C299.6 (4)C4'—C3'—C2'115 (6)
C1—S2—C499.8 (6)C4'—C3'—H3D108.6
C1—N1—N1i112.9 (3)C2'—C3'—H3D108.6
N1—C1—S1115.7 (2)C4'—C3'—H3C108.6
N1—C1—S2125.0 (2)C2'—C3'—H3C108.6
S1—C1—S2119.30 (14)H3D—C3'—H3C107.6
C3—C2—S1113.1 (9)C3'—C4'—S2'106 (4)
C3—C2—H2A109.0C3'—C4'—H4D110.5
S1—C2—H2A109.0S2'—C4'—H4D110.5
C3—C2—H2B109.0C3'—C4'—H4C110.5
S1—C2—H2B109.0S2'—C4'—H4C110.5
H2A—C2—H2B107.8H4D—C4'—H4C108.7
C4—C3—C2112.8 (12)C5—S3—C899.00 (12)
C4—C3—H3A109.0C5—S4—C6100.47 (11)
C2—C3—H3A109.0C5—N2—N2ii112.1 (2)
C4—C3—H3B109.0N2—C5—S3116.29 (17)
C2—C3—H3B109.0N2—C5—S4123.96 (19)
H3A—C3—H3B107.8S3—C5—S4119.75 (12)
C3—C4—S2116.5 (8)C7—C6—S4114.6 (2)
C3—C4—H4A108.2C7—C6—H6A108.6
S2—C4—H4A108.2S4—C6—H6A108.6
C3—C4—H4B108.2C7—C6—H6B108.6
S2—C4—H4B108.2S4—C6—H6B108.6
H4A—C4—H4B107.3H6A—C6—H6B107.6
C1'—S1'—C2'107 (2)C6—C7—C8114.9 (2)
C1'—S2'—C4'98 (3)C6—C7—H7A108.5
C1'—N1'—N1'i111.0 (11)C8—C7—H7A108.5
N1'—C1'—S1'124.3 (7)C6—C7—H7B108.5
N1'—C1'—S2'116.2 (7)C8—C7—H7B108.5
S1'—C1'—S2'119.4 (5)H7A—C7—H7B107.5
C3'—C2'—S1'118 (4)C7—C8—S3113.8 (2)
C3'—C2'—H2C107.9C7—C8—H8A108.8
S1'—C2'—H2C107.9S3—C8—H8A108.8
C3'—C2'—H2D107.9C7—C8—H8B108.8
S1'—C2'—H2D107.9S3—C8—H8B108.8
H2C—C2'—H2D107.2H8A—C8—H8B107.7
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N2iii0.972.713.620 (7)157
C4—H4C···N2iii0.972.703.503 (7)141
C6—H6B···N1iii0.972.623.397 (6)137
C6—H6B···N1iv0.972.683.428 (6)134
C2—H2D···N2v0.972.643.529 (7)152
C2—H2B···N2v0.972.783.523 (7)134
C8—H8B···N1i0.972.733.654 (3)159
C8—H8B···N10.972.703.591 (3)154
Symmetry codes: (i) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H12N2S4
Mr264.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.3999 (11), 11.9251 (14), 10.7397 (13)
β (°) 91.555 (2)
V3)1203.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.22 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.852, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
10905, 2998, 2478
Rint0.055
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.01
No. of reflections2998
No. of parameters151
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.41

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N2i0.972.713.620 (7)157
C4'—H4C···N2i0.972.703.503 (7)141
C6—H6B···N1i0.972.623.397 (6)137
C6—H6B···N1'ii0.972.683.428 (6)134
C2'—H2D···N2iii0.972.643.529 (7)152
C2—H2B···N2iii0.972.783.523 (7)134
C8—H8B···N1iv0.972.733.654 (3)159
C8—H8B···N1'0.972.703.591 (3)154
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Tianshui Normal College (No. TSA 0602) and Yangzhou University (No. 2006XJJ03) for financial support of this work.

References

First citationBeghidja, C., Rogez, G., Kortus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, D., Ouyang, Y., Yu, H., Liu, Q., Liu, J., Wang, M. & Zhu, J. (2005). J. Org. Chem. 70, 4535–4537.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGou, S.-H., Chen, H.-C., Fang, Z.-P., Luo, J. & Wang, Y.-L. (2004). Chin. J. Org. Chem. 24, 234–238.  CAS Google Scholar
First citationLiu, Y.-H., Liu, X.-L., Dai, X.-Q., Xu, W. & Guo, R. (2008). J. Chem. Crystallogr. 38, 109–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J.-F., Liu, X.-L. & Liu, Y.-H. (2008). Acta Cryst. E64, o1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMayer, R. & Schaefer, K. (1964). J. Prakt. Chem. 26, 279–295.  CrossRef CAS Web of Science Google Scholar
First citationRam, V. J., Nath, M. & ShuklaP, K. (1997). Bioorg. Med. Chem. Lett. 7, 2137–2140.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L. Z., Xu, H. Z., Yang, S. H., Li, C. L. & Zhou, K. (2005). Acta Cryst. E61, o31–o32.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L.-J., Li, Z.-G., Liu, X.-L. & Liu, Y.-H. (2007). Acta Cryst. E63, o4501.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o955-o956
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds