organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o875-o876

N′-(2,4-Di­chloro­benzyl­­idene)-3-meth­oxy­benzohydrazide

aDepartment of Chemistry and Chemical Engineering, Zaozhuang University, Zaozhuang Shandong 277160, People's Republic of China
*Correspondence e-mail: renchonggui@163.com

(Received 14 March 2010; accepted 15 March 2010; online 20 March 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H12Cl2N2O2. The dihedral angle between the two benzene rings is 27.6 (4)° in one mol­ecule and 16.4 (4)° in the other. Both mol­ecules adopt an E configuration about the C=N bonds. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains in the a-axis direction.

Related literature

For the biological properties of Schiff base compounds, see: Jeewoth et al. (1999[Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445-448.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576-o577.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]). For the structures of related Schiff bases previously reported by the author, see: Ren (2009a[Ren, C.-G. (2009a). Acta Cryst. E65, o1503-o1504.],b[Ren, C.-G. (2009b). Acta Cryst. E65, o1505-o1506.]). For related structures, see: Cui et al. (2007[Cui, J.-C., Pan, Q.-X., Yin, H.-D. & Qiao, Y.-L. (2007). Acta Cryst. E63, o2633.]); Jing et al. (2007[Jing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4902.]); Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]); Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]); Lin et al. (2007[Lin, X.-C., Yin, H. & Lin, Y. (2007). Acta Cryst. E63, o2864.]); Alhadi et al. (2008[Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.]); Xue et al. (2008[Xue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). Acta Cryst. E64, o1938.]); Wang et al. (2008[Wang, X.-Y., Cao, G.-B. & Yang, T. (2008). Acta Cryst. E64, o2022.]); Lu (2008[Lu, J.-F. (2008). Acta Cryst. E64, o2032.]); Diao et al. (2008[Diao, Y.-P., Huang, S.-S., Zhang, H.-L. & Kang, T.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 165-166.]); Qiu (2009[Qiu, X.-Y. (2009). Z. Kristallogr. New Cryst. Struct. 224, 109-110.]); Mohd Lair et al. (2009a[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.],b[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2N2O2

  • Mr = 323.17

  • Triclinic, [P \overline 1]

  • a = 8.298 (1) Å

  • b = 12.988 (2) Å

  • c = 14.138 (2) Å

  • α = 88.746 (3)°

  • β = 87.711 (2)°

  • γ = 84.020 (3)°

  • V = 1514.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.966

  • 6065 measured reflections

  • 4120 independent reflections

  • 2565 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 22.9°

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.121

  • S = 1.02

  • 4120 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.86 2.02 2.844 (4) 161
N1—H1⋯O4ii 0.86 2.06 2.880 (3) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The Schiff base compounds show excellent biological properties (Jeewoth et al., 1999; Ren et al., 2002; Eltayeb et al., 2008; Sinha et al., 2008). Recently, the author has reported a few Schiff bases (Ren, 2009a,b). In this paper, the title new Schiff base compound is reported.

In the title compound, Fig. 1, the dihedral angle between the two benzene rings is 27.6 (4)° in one molecule and 16.4 (4)° in another molecule. All the bond lengths are within normal values (Allen et al., 1987) and comparable to those in other similar compounds (Cui et al., 2007; Jing et al., 2007; Ma et al., 2008; Salhin et al., 2007; Lin et al., 2007; Alhadi et al., 2008; Xue et al., 2008; Wang et al., 2008; Lu, 2008; Diao et al., 2008; Qiu, 2009; Mohd Lair et al., 2009a,b).

In the crystal structure, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1), forming chains toward the a direction (Fig. 2).

Related literature top

For the biological properties of Schiff base compounds, see: Jeewoth et al. (1999); Ren et al. (2002); Eltayeb et al. (2008); Sinha et al. (2008). For the structures of related Schiff bases previously reported by the author, see: Ren (2009a,b). For related structures, see: Cui et al. (2007); Jing et al. (2007); Ma et al. (2008); Salhin et al. (2007); Lin et al. (2007); Alhadi et al. (2008); Xue et al. (2008); Wang et al. (2008); Lu (2008); Diao et al. (2008); Qiu (2009); Mohd Lair et al. (2009a,b). For reference structural data, see: Allen et al. (1987).

Experimental top

All the starting materials were obtained with AR grade from Lancaster. 2,4-Dichlorobenzaldehyde (1.0 mmol, 174.0 mg) and 3-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were refluxed in a 30 ml me thanol solution for 30 min to give a clear colorless solution. Colorless needle-shaped single crystals of the compound were obtained by slow evaporation of the solution for a week at room temperature.

Refinement top

H atoms were constrained to ideal geometries, with d(C–H) = 0.93 Å, d(N–H) = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). The resolution is 22.92°, and the sin(theta)/Lambda < 0.6, which is caused by the weak diffraction of the crystal.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound with 30% probability ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the compound with hydrogen bonds drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
N'-(2,4-Dichlorobenzylidene)-3-methoxybenzohydrazide top
Crystal data top
C15H12Cl2N2O2Z = 4
Mr = 323.17F(000) = 664
Triclinic, P1Dx = 1.418 Mg m3
a = 8.298 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.988 (2) ÅCell parameters from 1156 reflections
c = 14.138 (2) Åθ = 2.8–23.5°
α = 88.746 (3)°µ = 0.43 mm1
β = 87.711 (2)°T = 298 K
γ = 84.020 (3)°Block, colorless
V = 1514.0 (4) Å30.10 × 0.08 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4120 independent reflections
Radiation source: fine-focus sealed tube2565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 22.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.958, Tmax = 0.966k = 1014
6065 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2383P]
where P = (Fo2 + 2Fc2)/3
4120 reflections(Δ/σ)max = 0.001
381 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H12Cl2N2O2γ = 84.020 (3)°
Mr = 323.17V = 1514.0 (4) Å3
Triclinic, P1Z = 4
a = 8.298 (1) ÅMo Kα radiation
b = 12.988 (2) ŵ = 0.43 mm1
c = 14.138 (2) ÅT = 298 K
α = 88.746 (3)°0.10 × 0.08 × 0.08 mm
β = 87.711 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4120 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2565 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.966Rint = 0.024
6065 measured reflectionsθmax = 22.9°
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
4120 reflectionsΔρmin = 0.21 e Å3
381 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30439 (13)0.32267 (9)1.09237 (7)0.0867 (4)
Cl20.83230 (16)0.50607 (10)1.16976 (8)0.1062 (5)
Cl30.1167 (2)0.70669 (11)0.60769 (9)0.1330 (6)
Cl40.35105 (15)0.45751 (9)0.67302 (8)0.1007 (4)
N10.4406 (3)0.2114 (2)0.75587 (19)0.0555 (8)
H10.34120.20330.77090.067*
N20.5340 (3)0.2588 (2)0.8166 (2)0.0531 (7)
N30.0370 (3)0.7340 (2)0.3205 (2)0.0556 (8)
N40.0573 (3)0.7900 (2)0.2608 (2)0.0574 (8)
H4A0.15000.80560.27770.069*
O10.6495 (3)0.18861 (18)0.64745 (16)0.0631 (7)
O20.3350 (4)0.1097 (3)0.3553 (2)0.1031 (10)
O30.2072 (4)0.9215 (3)0.1371 (2)0.1031 (10)
O40.1296 (3)0.79782 (19)0.14806 (16)0.0669 (7)
C10.3271 (5)0.0976 (3)0.4518 (3)0.0720 (12)
C20.2182 (5)0.0314 (3)0.4875 (4)0.0827 (14)
H20.15650.00140.44620.099*
C30.2003 (5)0.0137 (3)0.5828 (3)0.0762 (12)
H30.12720.03130.60570.091*
C40.2901 (4)0.0622 (3)0.6454 (3)0.0595 (10)
H40.27640.05130.71030.071*
C50.4007 (4)0.1271 (2)0.6100 (2)0.0472 (8)
C60.4199 (4)0.1441 (3)0.5135 (2)0.0593 (10)
H60.49590.18700.49030.071*
C70.4439 (7)0.1770 (4)0.3170 (3)0.121 (2)
H7A0.41260.24580.33910.181*
H7B0.44200.17690.24920.181*
H7C0.55140.15410.33660.181*
C80.5085 (4)0.1778 (3)0.6720 (2)0.0502 (9)
C90.4671 (4)0.2843 (3)0.8961 (2)0.0542 (9)
H90.36170.26950.91090.065*
C100.5559 (4)0.3368 (2)0.9639 (2)0.0496 (9)
C110.7065 (4)0.3690 (3)0.9398 (2)0.0573 (10)
H110.75030.35660.87900.069*
C120.7937 (4)0.4184 (3)1.0020 (3)0.0647 (10)
H120.89550.43760.98400.078*
C130.7290 (5)0.4392 (3)1.0910 (3)0.0660 (11)
C140.5802 (5)0.4090 (3)1.1195 (3)0.0677 (11)
H140.53760.42221.18030.081*
C150.4949 (4)0.3583 (3)1.0553 (3)0.0568 (9)
C160.1987 (5)0.9281 (3)0.0409 (3)0.0718 (11)
C170.1040 (4)0.8705 (3)0.0187 (3)0.0618 (10)
H170.03830.82480.00620.074*
C180.1085 (4)0.8818 (3)0.1148 (3)0.0525 (9)
C190.2046 (4)0.9498 (3)0.1527 (3)0.0704 (11)
H190.20850.95610.21790.084*
C200.2954 (5)1.0084 (3)0.0920 (4)0.0891 (14)
H200.35891.05560.11650.107*
C210.2917 (5)0.9971 (4)0.0028 (4)0.0869 (14)
H210.35321.03680.04280.104*
C220.1221 (7)0.8470 (4)0.1775 (3)0.1154 (19)
H22A0.15670.77990.15110.173*
H22B0.14320.84670.24470.173*
H22C0.00800.86320.16420.173*
C230.0139 (4)0.7167 (3)0.4036 (3)0.0564 (9)
H230.10820.74290.42120.068*
C240.0752 (4)0.6559 (3)0.4711 (2)0.0527 (9)
C250.0405 (5)0.6459 (3)0.5646 (3)0.0659 (10)
C260.1259 (5)0.5868 (3)0.6285 (3)0.0726 (12)
H260.10050.58200.69200.087*
C270.2481 (5)0.5360 (3)0.5956 (3)0.0683 (11)
C280.2864 (5)0.5438 (3)0.5027 (3)0.0778 (12)
H280.36980.50900.48100.093*
C290.2012 (4)0.6033 (3)0.4413 (3)0.0674 (11)
H290.22850.60870.37810.081*
C300.0012 (4)0.8200 (3)0.1750 (3)0.0531 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0859 (8)0.1052 (9)0.0706 (7)0.0250 (7)0.0176 (6)0.0033 (6)
Cl20.1145 (10)0.1176 (10)0.0918 (9)0.0174 (8)0.0375 (7)0.0345 (7)
Cl30.1856 (15)0.1449 (12)0.0878 (9)0.0930 (11)0.0557 (9)0.0140 (8)
Cl40.1080 (10)0.1002 (9)0.0905 (9)0.0132 (7)0.0349 (7)0.0183 (7)
N10.0392 (17)0.075 (2)0.0551 (19)0.0155 (16)0.0011 (15)0.0138 (16)
N20.0478 (18)0.0611 (19)0.0521 (19)0.0122 (15)0.0036 (15)0.0047 (15)
N30.0415 (18)0.067 (2)0.058 (2)0.0088 (15)0.0041 (16)0.0035 (16)
N40.0361 (17)0.077 (2)0.061 (2)0.0155 (16)0.0023 (15)0.0086 (16)
O10.0404 (15)0.0914 (19)0.0610 (16)0.0221 (14)0.0026 (12)0.0127 (13)
O20.113 (3)0.130 (3)0.065 (2)0.007 (2)0.0319 (18)0.015 (2)
O30.123 (3)0.104 (3)0.075 (2)0.006 (2)0.031 (2)0.0132 (19)
O40.0465 (16)0.095 (2)0.0618 (16)0.0221 (14)0.0070 (13)0.0059 (14)
C10.069 (3)0.088 (3)0.055 (3)0.018 (3)0.019 (2)0.019 (2)
C20.053 (3)0.095 (3)0.102 (4)0.002 (3)0.029 (3)0.035 (3)
C30.053 (3)0.076 (3)0.102 (4)0.014 (2)0.005 (2)0.017 (3)
C40.042 (2)0.068 (2)0.069 (3)0.007 (2)0.0035 (19)0.011 (2)
C50.038 (2)0.054 (2)0.049 (2)0.0020 (18)0.0058 (16)0.0042 (17)
C60.052 (2)0.068 (3)0.057 (2)0.001 (2)0.0038 (19)0.005 (2)
C70.180 (6)0.118 (4)0.058 (3)0.020 (4)0.016 (3)0.007 (3)
C80.045 (2)0.056 (2)0.050 (2)0.0073 (19)0.0034 (18)0.0003 (18)
C90.045 (2)0.062 (2)0.056 (2)0.0084 (19)0.0048 (18)0.0019 (19)
C100.051 (2)0.049 (2)0.048 (2)0.0026 (18)0.0083 (18)0.0001 (17)
C110.048 (2)0.065 (2)0.059 (2)0.004 (2)0.0059 (19)0.0113 (19)
C120.057 (2)0.070 (3)0.069 (3)0.011 (2)0.009 (2)0.006 (2)
C130.071 (3)0.058 (2)0.070 (3)0.001 (2)0.023 (2)0.010 (2)
C140.086 (3)0.066 (3)0.050 (2)0.004 (2)0.011 (2)0.006 (2)
C150.060 (2)0.053 (2)0.056 (2)0.0006 (19)0.0043 (19)0.0035 (19)
C160.065 (3)0.079 (3)0.066 (3)0.012 (2)0.011 (2)0.012 (2)
C170.052 (2)0.066 (3)0.066 (3)0.003 (2)0.008 (2)0.004 (2)
C180.038 (2)0.055 (2)0.062 (3)0.0000 (18)0.0044 (18)0.0057 (19)
C190.057 (3)0.075 (3)0.082 (3)0.018 (2)0.010 (2)0.012 (2)
C200.069 (3)0.085 (3)0.117 (4)0.027 (3)0.017 (3)0.019 (3)
C210.052 (3)0.094 (4)0.113 (4)0.014 (3)0.002 (3)0.031 (3)
C220.180 (6)0.099 (4)0.059 (3)0.010 (4)0.023 (3)0.003 (3)
C230.050 (2)0.063 (2)0.058 (2)0.0098 (19)0.004 (2)0.0012 (19)
C240.049 (2)0.054 (2)0.055 (2)0.0016 (19)0.0003 (18)0.0036 (18)
C250.082 (3)0.060 (2)0.057 (3)0.012 (2)0.010 (2)0.002 (2)
C260.103 (4)0.066 (3)0.047 (2)0.002 (3)0.001 (2)0.001 (2)
C270.067 (3)0.063 (3)0.072 (3)0.002 (2)0.024 (2)0.001 (2)
C280.055 (3)0.108 (3)0.071 (3)0.020 (2)0.007 (2)0.004 (3)
C290.054 (2)0.098 (3)0.051 (2)0.016 (2)0.002 (2)0.003 (2)
C300.040 (2)0.061 (2)0.057 (2)0.0032 (19)0.0033 (19)0.0022 (19)
Geometric parameters (Å, º) top
Cl1—C151.750 (4)C10—C111.387 (4)
Cl2—C131.733 (4)C10—C151.392 (4)
Cl3—C251.730 (4)C11—C121.371 (4)
Cl4—C271.739 (4)C11—H110.9300
N1—C81.353 (4)C12—C131.369 (5)
N1—N21.376 (3)C12—H120.9300
N1—H10.8600C13—C141.377 (5)
N2—C91.268 (4)C14—C151.390 (5)
N3—C231.272 (4)C14—H140.9300
N3—N41.376 (3)C16—C211.374 (5)
N4—C301.351 (4)C16—C171.389 (5)
N4—H4A0.8600C17—C181.372 (5)
O1—C81.229 (3)C17—H170.9300
O2—C11.369 (4)C18—C191.380 (5)
O2—C71.406 (5)C18—C301.490 (4)
O3—C161.363 (4)C19—C201.387 (5)
O3—C221.400 (5)C19—H190.9300
O4—C301.229 (4)C20—C211.354 (6)
C1—C61.376 (5)C20—H200.9300
C1—C21.385 (6)C21—H210.9300
C2—C31.366 (5)C22—H22A0.9600
C2—H20.9300C22—H22B0.9600
C3—C41.382 (5)C22—H22C0.9600
C3—H30.9300C23—C241.454 (4)
C4—C51.382 (4)C23—H230.9300
C4—H40.9300C24—C251.366 (5)
C5—C61.382 (4)C24—C291.390 (5)
C5—C81.488 (4)C25—C261.392 (5)
C6—H60.9300C26—C271.367 (5)
C7—H7A0.9600C26—H260.9300
C7—H7B0.9600C27—C281.363 (5)
C7—H7C0.9600C28—C291.374 (5)
C9—C101.455 (4)C28—H280.9300
C9—H90.9300C29—H290.9300
C8—N1—N2118.6 (3)C13—C14—H14120.7
C8—N1—H1120.7C15—C14—H14120.7
N2—N1—H1120.7C14—C15—C10122.0 (3)
C9—N2—N1116.1 (3)C14—C15—Cl1117.8 (3)
C23—N3—N4116.0 (3)C10—C15—Cl1120.2 (3)
C30—N4—N3118.6 (3)O3—C16—C21116.1 (4)
C30—N4—H4A120.7O3—C16—C17124.4 (4)
N3—N4—H4A120.7C21—C16—C17119.4 (4)
C1—O2—C7117.1 (4)C18—C17—C16119.3 (4)
C16—O3—C22117.3 (4)C18—C17—H17120.4
O2—C1—C6125.1 (4)C16—C17—H17120.4
O2—C1—C2115.8 (4)C17—C18—C19121.0 (3)
C6—C1—C2119.1 (4)C17—C18—C30116.8 (3)
C3—C2—C1120.7 (4)C19—C18—C30122.2 (3)
C3—C2—H2119.6C18—C19—C20119.0 (4)
C1—C2—H2119.6C18—C19—H19120.5
C2—C3—C4120.5 (4)C20—C19—H19120.5
C2—C3—H3119.7C21—C20—C19120.1 (4)
C4—C3—H3119.7C21—C20—H20119.9
C3—C4—C5118.9 (4)C19—C20—H20119.9
C3—C4—H4120.5C20—C21—C16121.2 (4)
C5—C4—H4120.5C20—C21—H21119.4
C6—C5—C4120.5 (3)C16—C21—H21119.4
C6—C5—C8117.1 (3)O3—C22—H22A109.5
C4—C5—C8122.4 (3)O3—C22—H22B109.5
C1—C6—C5120.2 (4)H22A—C22—H22B109.5
C1—C6—H6119.9O3—C22—H22C109.5
C5—C6—H6119.9H22A—C22—H22C109.5
O2—C7—H7A109.5H22B—C22—H22C109.5
O2—C7—H7B109.5N3—C23—C24120.0 (3)
H7A—C7—H7B109.5N3—C23—H23120.0
O2—C7—H7C109.5C24—C23—H23120.0
H7A—C7—H7C109.5C25—C24—C29116.8 (3)
H7B—C7—H7C109.5C25—C24—C23123.1 (3)
O1—C8—N1122.8 (3)C29—C24—C23120.1 (3)
O1—C8—C5121.5 (3)C24—C25—C26122.5 (4)
N1—C8—C5115.7 (3)C24—C25—Cl3120.0 (3)
N2—C9—C10119.8 (3)C26—C25—Cl3117.4 (3)
N2—C9—H9120.1C27—C26—C25118.5 (4)
C10—C9—H9120.1C27—C26—H26120.8
C11—C10—C15116.5 (3)C25—C26—H26120.8
C11—C10—C9121.1 (3)C28—C27—C26120.8 (4)
C15—C10—C9122.4 (3)C28—C27—Cl4119.9 (4)
C12—C11—C10122.6 (3)C26—C27—Cl4119.3 (3)
C12—C11—H11118.7C27—C28—C29119.6 (4)
C10—C11—H11118.7C27—C28—H28120.2
C13—C12—C11119.2 (4)C29—C28—H28120.2
C13—C12—H12120.4C28—C29—C24121.8 (4)
C11—C12—H12120.4C28—C29—H29119.1
C12—C13—C14121.0 (3)C24—C29—H29119.1
C12—C13—Cl2120.4 (3)O4—C30—N4122.4 (3)
C14—C13—Cl2118.6 (3)O4—C30—C18122.0 (3)
C13—C14—C15118.6 (3)N4—C30—C18115.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.862.022.844 (4)161
N1—H1···O4ii0.862.062.880 (3)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12Cl2N2O2
Mr323.17
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.298 (1), 12.988 (2), 14.138 (2)
α, β, γ (°)88.746 (3), 87.711 (2), 84.020 (3)
V3)1514.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.10 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6065, 4120, 2565
Rint0.024
θmax (°)22.9
(sin θ/λ)max1)0.548
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.02
No. of reflections4120
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.862.022.844 (4)161.4
N1—H1···O4ii0.862.062.880 (3)159.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The author acknowledges Zaozhuang University for funding this study.

References

First citationAlhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, J.-C., Pan, Q.-X., Yin, H.-D. & Qiao, Y.-L. (2007). Acta Cryst. E63, o2633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Huang, S.-S., Zhang, H.-L. & Kang, T.-G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 165–166.  CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, o576–o577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem. 24, 445–448.  Web of Science CrossRef CAS Google Scholar
First citationJing, Z.-L., Yu, M. & Chen, X. (2007). Acta Cryst. E63, o4902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, X.-C., Yin, H. & Lin, Y. (2007). Acta Cryst. E63, o2864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F. (2008). Acta Cryst. E64, o2032.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y. (2009). Z. Kristallogr. New Cryst. Struct. 224, 109–110.  CAS Google Scholar
First citationRen, C.-G. (2009a). Acta Cryst. E65, o1503–o1504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, C.-G. (2009b). Acta Cryst. E65, o1505–o1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-Y., Cao, G.-B. & Yang, T. (2008). Acta Cryst. E64, o2022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXue, L.-W., Han, Y.-J., Hao, C.-J., Zhao, G.-Q. & Liu, Q.-R. (2008). Acta Cryst. E64, o1938.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o875-o876
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds