metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

n-Butyl­di­chlorido{4-cyclo­hexyl-1-[phenyl(2-pyridyl-κN)methyl­ene]­thiosemicarbazidato-κ2N1,S}tin(IV) chloro­form monosolvate

aFaculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 April 2010; accepted 20 April 2010; online 24 April 2010)

The monodeprotonated Schiff base ligand in the title com­pound, [Sn(C4H9)(C19H21N4S)Cl2]·CHCl3, N,N′,S-chelates to the Sn atom, which is six-coordinated in an octa­hedral environment. The three coordinating atoms along with the butyl C atom comprise a square plane, above and below which are positioned the Cl atoms. The amino group is a hydrogen-bond donor to a Cl atom of an adjacent mol­ecule, the hydrogen bond giving rise to a helical chain propagating in [010]. The Cl and H atoms of the chloro­form mol­ecule are disordered over two positions in an 0.67:0.33 ratio.

Related literature

For the crystal structures of other metal derivatives of the Schiff base, see: Joseph et al. (2004[Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069-3080.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)(C19H21N4S)Cl2]·CHCl3

  • Mr = 703.53

  • Monoclinic, P 21 /n

  • a = 14.5095 (9) Å

  • b = 13.7308 (8) Å

  • c = 15.7412 (10) Å

  • β = 94.418 (1)°

  • V = 3126.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.618, Tmax = 0.777

  • 29403 measured reflections

  • 7179 independent reflections

  • 5127 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.202

  • S = 1.10

  • 7179 reflections

  • 332 parameters

  • 105 restraints

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.142 (7)
Sn1—N1 2.250 (5)
Sn1—N2 2.221 (5)
Sn1—S1 2.475 (2)
Sn1—Cl1 2.515 (2)
Sn1—Cl2 2.496 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl1i 0.86 2.54 3.383 (6) 167
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

The mono-deprotonated anion of 2-benzoylpyridine 4-cyclohexyl thiosemicarbazone is a ligand that N,N',S-binds to metal atoms (Joseph et al., 2004). Whereas similar ligands have been complexed with diorganotin and triorganotin systems, the monoorganotin analogs have not been so extensively studied. The mono-deprotonated Schiff-base ligand in SnCl2(C4H9)(C19H12N4S).CHCl3 N,N',S-chelates to the tin atom, which is six-coordinate in an octahedral environment (Scheme I, Fig. 1). The three coordinating atoms along with the ipso-butyl carbon comprise a square plane, above and below which are positioned the chlorine atoms.

Related literature top

For the crystal structures of other metal derivatives of the Schiff base, see: Joseph et al. (2004).

Experimental top

2-Benzoylpyridine 4-cyclohexyl thiosemicarbazone was synthesized by using a literature method (Joseph et al., 2004). The compound (0.34 g, 1 mmol) was dissolved in dry methanol (10 ml) in a Schlenk apparatus under a nitrogen atmosphere. n-Butyltin trichoride (0.28 g, 1 mmol) dissolved in methanol (10 ml) was added. The mixture was heated for an hour. The solvent was removed and the yellow compound recrystallized from chloroform/methanol (1:1) in 70% yield, m.p. 478-480 K.

Refinement top

Hydrogen atoms were placed in calculated positions (C—H 0.93 to 0.97, N–H 0.86 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C).

For the butyl chain and cyclohexyl ring, the 1,2 carbon-carbon distances were restrained to 1.54±0.01 Å and the 1,3 ones to 2.51±0.01 Å. The anisotropic displacement ellipsoids of the Cβ, Cγ and Cδ atoms of the chain were restrained to be nearly isotropic.

The solvent molecule is disodered over two positions. The occupancy could not be refined, and was estimated by an examination of their temperature factors to be a 2:1 disorder. The six carbon-chlorine distances were restrained to within 0.01 Å of each other, as were the pairs of chlorine-chlorine distances. The anisotropic temperature factors were similar restrained to be nearly isotropic.

The final difference Fourier map had a peak/hole in the vicinity of the solvent molecule.

Structure description top

The mono-deprotonated anion of 2-benzoylpyridine 4-cyclohexyl thiosemicarbazone is a ligand that N,N',S-binds to metal atoms (Joseph et al., 2004). Whereas similar ligands have been complexed with diorganotin and triorganotin systems, the monoorganotin analogs have not been so extensively studied. The mono-deprotonated Schiff-base ligand in SnCl2(C4H9)(C19H12N4S).CHCl3 N,N',S-chelates to the tin atom, which is six-coordinate in an octahedral environment (Scheme I, Fig. 1). The three coordinating atoms along with the ipso-butyl carbon comprise a square plane, above and below which are positioned the chlorine atoms.

For the crystal structures of other metal derivatives of the Schiff base, see: Joseph et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of SnCl2(C4H9)(C19H21N4S).CHCl3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the chloroform molecule is not shown.
n-Butyldichlorido{4-cyclohexyl-1-[phenyl(2-pyridyl- κN)methylene]thiosemicarbazidato-κ2N1,S}tin(IV) chloroform monosolvate top
Crystal data top
[Sn(C4H9)(C19H21N4S)Cl2]·CHCl3F(000) = 1416
Mr = 703.53Dx = 1.495 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8312 reflections
a = 14.5095 (9) Åθ = 2.3–24.6°
b = 13.7308 (8) ŵ = 1.33 mm1
c = 15.7412 (10) ÅT = 293 K
β = 94.418 (1)°Prism, orange
V = 3126.8 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
7179 independent reflections
Radiation source: fine-focus sealed tube5127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.618, Tmax = 0.777k = 1717
29403 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1058P)2 + 5.4806P]
where P = (Fo2 + 2Fc2)/3
7179 reflections(Δ/σ)max = 0.001
332 parametersΔρmax = 1.48 e Å3
105 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Sn(C4H9)(C19H21N4S)Cl2]·CHCl3V = 3126.8 (3) Å3
Mr = 703.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.5095 (9) ŵ = 1.33 mm1
b = 13.7308 (8) ÅT = 293 K
c = 15.7412 (10) Å0.40 × 0.30 × 0.20 mm
β = 94.418 (1)°
Data collection top
Bruker SMART APEX
diffractometer
7179 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5127 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.777Rint = 0.032
29403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058105 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.10Δρmax = 1.48 e Å3
7179 reflectionsΔρmin = 1.14 e Å3
332 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.64810 (3)0.58870 (3)0.13740 (3)0.04946 (18)
Cl10.66887 (14)0.53556 (13)0.29057 (11)0.0682 (5)
Cl20.65057 (13)0.61135 (14)0.01975 (11)0.0670 (4)
Cl30.8024 (6)0.4670 (4)0.4790 (4)0.168 (3)0.67
Cl40.9050 (5)0.3830 (5)0.6208 (4)0.154 (2)0.67
Cl50.7217 (6)0.3399 (7)0.5849 (7)0.251 (4)0.67
Cl3'0.7344 (11)0.4338 (15)0.5063 (12)0.225 (9)0.33
Cl4'0.9232 (11)0.4198 (17)0.4959 (12)0.282 (11)0.33
Cl5'0.8460 (14)0.3630 (19)0.6443 (6)0.271 (13)0.33
S10.70794 (10)0.75442 (11)0.16994 (11)0.0531 (4)
N10.6704 (4)0.4298 (3)0.1105 (3)0.0500 (11)
N20.7996 (3)0.5648 (4)0.1381 (3)0.0458 (10)
N30.8608 (3)0.6390 (3)0.1461 (3)0.0518 (12)
N40.8811 (4)0.8021 (4)0.1619 (4)0.0697 (16)
H40.85880.85780.17450.084*
C10.5004 (5)0.5961 (6)0.1334 (6)0.077 (2)
H1A0.47660.60690.07490.092*
H1B0.47730.53350.15090.092*
C20.4634 (6)0.6725 (9)0.1871 (9)0.133 (4)
H2A0.48900.73410.17020.159*
H2B0.48760.66040.24530.159*
C30.3626 (7)0.6855 (10)0.1881 (10)0.152 (5)
H3A0.34930.69440.24710.182*
H3B0.34700.74620.15890.182*
C40.2979 (9)0.6108 (13)0.1514 (13)0.209 (8)
H4A0.23550.63350.15350.314*
H4B0.30590.55160.18360.314*
H4C0.31010.59870.09330.314*
C50.6025 (5)0.3647 (5)0.0968 (5)0.0636 (17)
H50.54150.38600.09280.076*
C60.6202 (5)0.2677 (5)0.0883 (5)0.0712 (19)
H60.57180.22390.07740.085*
C70.7096 (6)0.2356 (5)0.0961 (5)0.0706 (19)
H70.72280.16960.09140.085*
C80.7794 (5)0.3018 (4)0.1109 (4)0.0576 (15)
H80.84060.28100.11720.069*
C90.7591 (4)0.3990 (4)0.1165 (4)0.0486 (13)
C100.8304 (4)0.4756 (4)0.1303 (4)0.0484 (13)
C110.9298 (2)0.4507 (3)0.1343 (3)0.0560 (15)
C120.9676 (3)0.4104 (4)0.0638 (3)0.0686 (18)
H120.93050.39910.01400.082*
C131.0611 (4)0.3869 (4)0.0678 (4)0.088 (3)
H131.08640.35990.02070.106*
C141.1167 (3)0.4038 (5)0.1423 (5)0.106 (4)
H141.17920.38800.14500.127*
C151.0788 (3)0.4441 (6)0.2127 (4)0.123 (4)
H151.11600.45540.26250.148*
C160.9854 (4)0.4676 (5)0.2087 (3)0.087 (3)
H160.96010.49460.25590.105*
C170.8230 (4)0.7263 (4)0.1580 (4)0.0515 (13)
C180.9787 (4)0.7986 (5)0.1466 (5)0.072 (2)
H180.99570.73110.13500.087*
C191.0359 (5)0.8338 (9)0.2262 (5)0.107 (3)
H19A1.01710.89940.23990.128*
H19B1.02430.79200.27390.128*
C201.1388 (5)0.8330 (11)0.2126 (6)0.136 (5)
H20A1.17310.85980.26260.163*
H20B1.15900.76630.20580.163*
C211.1596 (6)0.8913 (9)0.1353 (7)0.121 (5)
H21A1.14840.95970.14600.145*
H21B1.22450.88390.12570.145*
C221.1017 (6)0.8603 (10)0.0562 (6)0.129 (4)
H22A1.12010.79550.03950.155*
H22B1.11200.90460.00990.155*
C230.9983 (5)0.8599 (10)0.0720 (7)0.110 (3)
H23A0.97830.92610.08170.132*
H23B0.96290.83550.02160.132*
C240.8274 (6)0.3624 (8)0.5359 (6)0.134 (4)
H240.84520.30830.50000.161*0.67
H24'0.81850.29660.51270.161*0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0436 (3)0.0431 (3)0.0616 (3)0.00057 (16)0.00317 (18)0.00019 (17)
Cl10.0875 (12)0.0550 (9)0.0624 (10)0.0180 (8)0.0071 (8)0.0049 (7)
Cl20.0722 (11)0.0693 (10)0.0584 (9)0.0024 (8)0.0024 (8)0.0029 (8)
Cl30.247 (7)0.095 (3)0.162 (5)0.047 (4)0.004 (5)0.012 (3)
Cl40.142 (4)0.179 (5)0.132 (4)0.034 (4)0.037 (4)0.043 (4)
Cl50.218 (7)0.239 (8)0.300 (9)0.027 (7)0.053 (7)0.020 (7)
Cl3'0.212 (12)0.233 (12)0.229 (12)0.036 (9)0.001 (9)0.021 (9)
Cl4'0.286 (14)0.267 (14)0.286 (14)0.009 (10)0.019 (10)0.005 (10)
Cl5'0.283 (16)0.277 (15)0.253 (15)0.022 (10)0.017 (10)0.010 (10)
S10.0492 (8)0.0414 (7)0.0698 (10)0.0030 (6)0.0113 (7)0.0050 (7)
N10.048 (3)0.042 (2)0.059 (3)0.004 (2)0.003 (2)0.000 (2)
N20.045 (2)0.042 (2)0.050 (3)0.0014 (19)0.000 (2)0.000 (2)
N30.046 (3)0.037 (2)0.073 (3)0.001 (2)0.008 (2)0.008 (2)
N40.055 (3)0.040 (3)0.116 (5)0.004 (2)0.024 (3)0.019 (3)
C10.048 (4)0.092 (6)0.091 (6)0.002 (4)0.008 (4)0.011 (4)
C20.087 (6)0.132 (8)0.179 (9)0.019 (6)0.010 (6)0.048 (7)
C30.112 (7)0.152 (9)0.193 (9)0.022 (7)0.020 (7)0.049 (8)
C40.189 (11)0.206 (12)0.236 (12)0.013 (9)0.029 (9)0.030 (9)
C50.062 (4)0.052 (4)0.075 (4)0.006 (3)0.002 (3)0.002 (3)
C60.070 (4)0.055 (4)0.087 (5)0.018 (3)0.001 (4)0.004 (4)
C70.089 (5)0.041 (3)0.081 (5)0.008 (3)0.001 (4)0.002 (3)
C80.066 (4)0.039 (3)0.067 (4)0.002 (3)0.000 (3)0.001 (3)
C90.056 (3)0.042 (3)0.048 (3)0.005 (2)0.001 (3)0.002 (2)
C100.049 (3)0.040 (3)0.055 (3)0.005 (2)0.001 (2)0.004 (2)
C110.053 (3)0.039 (3)0.075 (4)0.004 (3)0.003 (3)0.003 (3)
C120.067 (4)0.062 (4)0.077 (5)0.009 (3)0.012 (4)0.004 (3)
C130.080 (6)0.083 (5)0.105 (7)0.018 (4)0.027 (5)0.005 (5)
C140.058 (5)0.098 (7)0.159 (11)0.023 (5)0.003 (5)0.016 (6)
C150.080 (6)0.145 (9)0.136 (9)0.039 (6)0.049 (6)0.053 (8)
C160.069 (5)0.101 (7)0.089 (6)0.023 (5)0.017 (4)0.027 (5)
C170.052 (3)0.041 (3)0.062 (4)0.001 (2)0.008 (3)0.005 (3)
C180.056 (4)0.045 (3)0.118 (6)0.008 (3)0.026 (4)0.017 (4)
C190.063 (5)0.157 (10)0.101 (7)0.010 (6)0.004 (5)0.006 (7)
C200.061 (6)0.185 (14)0.162 (11)0.005 (7)0.005 (6)0.013 (11)
C210.075 (6)0.105 (8)0.186 (14)0.025 (5)0.031 (8)0.023 (8)
C220.097 (8)0.146 (11)0.153 (11)0.006 (8)0.066 (8)0.014 (9)
C230.083 (6)0.148 (10)0.101 (7)0.014 (7)0.024 (5)0.011 (7)
C240.151 (8)0.116 (7)0.133 (8)0.019 (7)0.008 (7)0.009 (7)
Geometric parameters (Å, º) top
Sn1—C12.142 (7)C7—C81.368 (9)
Sn1—N12.250 (5)C7—H70.9300
Sn1—N22.221 (5)C8—C91.371 (8)
Sn1—S12.475 (2)C8—H80.9300
Sn1—Cl12.515 (2)C9—C101.479 (8)
Sn1—Cl22.496 (2)C10—C111.480 (7)
Cl3—C241.715 (8)C11—C121.3900
Cl4—C241.704 (8)C11—C161.3900
Cl5—C241.795 (8)C12—C131.3900
Cl3'—C241.703 (10)C12—H120.9300
Cl4'—C241.755 (9)C13—C141.3900
Cl5'—C241.707 (10)C13—H130.9300
S1—C171.738 (6)C14—C151.3900
N1—C51.336 (8)C14—H140.9300
N1—C91.350 (8)C15—C161.3900
N2—C101.313 (7)C15—H150.9300
N2—N31.351 (7)C16—H160.9300
N3—C171.338 (7)C18—C231.489 (12)
N4—C171.337 (8)C18—C191.527 (8)
N4—C181.456 (8)C18—H180.9800
N4—H40.8600C19—C201.525 (8)
C1—C21.474 (8)C19—H19A0.9700
C1—H1A0.9700C19—H19B0.9700
C1—H1B0.9700C20—C211.507 (9)
C2—C31.475 (8)C20—H20A0.9700
C2—H2A0.9700C20—H20B0.9700
C2—H2B0.9700C21—C221.510 (9)
C3—C41.478 (9)C21—H21A0.9700
C3—H3A0.9700C21—H21B0.9700
C3—H3B0.9700C22—C231.540 (8)
C4—H4A0.9600C22—H22A0.9700
C4—H4B0.9600C22—H22B0.9700
C4—H4C0.9600C23—H23A0.9700
C5—C61.364 (10)C23—H23B0.9700
C5—H50.9300C24—H240.9800
C6—C71.367 (11)C24—H24'0.9801
C6—H60.9300
C1—Sn1—N2174.1 (2)C15—C14—C13120.0
C1—Sn1—N1101.4 (2)C15—C14—H14120.0
N2—Sn1—N172.61 (18)C13—C14—H14120.0
C1—Sn1—S1107.3 (2)C14—C15—C16120.0
N2—Sn1—S178.67 (13)C14—C15—H15120.0
N1—Sn1—S1151.28 (13)C16—C15—H15120.0
C1—Sn1—Cl293.2 (2)C15—C16—C11120.0
N2—Sn1—Cl286.17 (13)C15—C16—H16120.0
N1—Sn1—Cl285.49 (14)C11—C16—H16120.0
S1—Sn1—Cl293.38 (6)N4—C17—N3116.1 (5)
C1—Sn1—Cl195.0 (3)N4—C17—S1115.5 (4)
N2—Sn1—Cl184.68 (13)N3—C17—S1128.4 (5)
N1—Sn1—Cl183.71 (14)N4—C18—C23111.0 (6)
S1—Sn1—Cl193.11 (6)N4—C18—C19109.1 (6)
Cl2—Sn1—Cl1167.54 (7)C23—C18—C19110.1 (7)
C17—S1—Sn195.6 (2)N4—C18—H18108.9
C5—N1—C9119.3 (5)C23—C18—H18108.9
C5—N1—Sn1124.4 (5)C19—C18—H18108.9
C9—N1—Sn1116.1 (4)C20—C19—C18111.0 (6)
C10—N2—N3119.1 (5)C20—C19—H19A109.4
C10—N2—Sn1118.7 (4)C18—C19—H19A109.4
N3—N2—Sn1122.2 (4)C20—C19—H19B109.4
C17—N3—N2114.5 (5)C18—C19—H19B109.4
C17—N4—C18125.8 (5)H19A—C19—H19B108.0
C17—N4—H4117.1C21—C20—C19111.6 (7)
C18—N4—H4117.1C21—C20—H20A109.3
C2—C1—Sn1115.1 (6)C19—C20—H20A109.3
C2—C1—H1A108.5C21—C20—H20B109.3
Sn1—C1—H1A108.5C19—C20—H20B109.3
C2—C1—H1B108.5H20A—C20—H20B108.0
Sn1—C1—H1B108.5C22—C21—C20112.5 (7)
H1A—C1—H1B107.5C22—C21—H21A109.1
C1—C2—C3119.8 (7)C20—C21—H21A109.1
C1—C2—H2A107.4C22—C21—H21B109.1
C3—C2—H2A107.4C20—C21—H21B109.1
C1—C2—H2B107.4H21A—C21—H21B107.8
C3—C2—H2B107.4C21—C22—C23110.8 (7)
H2A—C2—H2B106.9C21—C22—H22A109.5
C4—C3—C2120.8 (9)C23—C22—H22A109.5
C4—C3—H3A107.1C21—C22—H22B109.5
C2—C3—H3A107.1C23—C22—H22B109.5
C4—C3—H3B107.1H22A—C22—H22B108.1
C2—C3—H3B107.1C18—C23—C22112.1 (8)
H3A—C3—H3B106.8C18—C23—H23A109.2
C3—C4—H4A109.5C22—C23—H23A109.2
C3—C4—H4B109.5C18—C23—H23B109.2
H4A—C4—H4B109.5C22—C23—H23B109.2
C3—C4—H4C109.5H23A—C23—H23B107.9
H4A—C4—H4C109.5Cl5'—C24—Cl434.0 (7)
H4B—C4—H4C109.5Cl5'—C24—Cl3'109.4 (8)
N1—C5—C6121.8 (7)Cl4—C24—Cl3'125.5 (11)
N1—C5—H5119.1Cl5'—C24—Cl3121.9 (12)
C6—C5—H5119.1Cl4—C24—Cl3111.8 (7)
C7—C6—C5119.3 (7)Cl3'—C24—Cl341.0 (7)
C7—C6—H6120.3Cl5'—C24—Cl4'106.7 (7)
C5—C6—H6120.3Cl4—C24—Cl4'73.3 (7)
C6—C7—C8119.1 (6)Cl3'—C24—Cl4'106.0 (7)
C6—C7—H7120.4Cl3—C24—Cl4'65.1 (7)
C8—C7—H7120.4Cl5'—C24—Cl569.3 (7)
C9—C8—C7119.8 (7)Cl4—C24—Cl5103.1 (6)
C9—C8—H8120.1Cl3'—C24—Cl562.1 (7)
C7—C8—H8120.1Cl3—C24—Cl5102.5 (6)
N1—C9—C8120.6 (6)Cl4'—C24—Cl5163.2 (12)
N1—C9—C10116.1 (5)Cl5'—C24—H24123.4
C8—C9—C10123.3 (6)Cl4—C24—H24112.9
N2—C10—C11123.3 (5)Cl3'—C24—H24121.2
N2—C10—C9116.0 (5)Cl3—C24—H24112.9
C11—C10—C9120.7 (5)Cl4'—C24—H2483.2
C12—C11—C16120.0Cl5—C24—H24112.9
C12—C11—C10120.1 (4)Cl5'—C24—H24'112.5
C16—C11—C10119.9 (4)Cl4—C24—H24'120.3
C13—C12—C11120.0Cl3'—C24—H24'110.5
C13—C12—H12120.0Cl3—C24—H24'124.2
C11—C12—H12120.0Cl4'—C24—H24'111.5
C12—C13—C14120.0Cl5—C24—H24'84.7
C12—C13—H13120.0H24—C24—H24'28.2
C14—C13—H13120.0
C1—Sn1—S1—C17174.4 (3)C5—N1—C9—C10179.0 (6)
N2—Sn1—S1—C175.4 (2)Sn1—N1—C9—C106.7 (7)
N1—Sn1—S1—C176.8 (4)C7—C8—C9—N12.3 (10)
Cl2—Sn1—S1—C1780.0 (2)C7—C8—C9—C10178.5 (6)
Cl1—Sn1—S1—C1789.4 (2)N3—N2—C10—C113.3 (9)
C1—Sn1—N1—C50.0 (6)Sn1—N2—C10—C11176.8 (4)
N2—Sn1—N1—C5179.7 (6)N3—N2—C10—C9176.4 (5)
S1—Sn1—N1—C5178.9 (4)Sn1—N2—C10—C93.5 (7)
Cl2—Sn1—N1—C592.3 (5)N1—C9—C10—N22.2 (8)
Cl1—Sn1—N1—C593.9 (5)C8—C9—C10—N2177.0 (6)
C1—Sn1—N1—C9174.0 (5)N1—C9—C10—C11177.5 (5)
N2—Sn1—N1—C96.2 (4)C8—C9—C10—C113.3 (9)
S1—Sn1—N1—C94.8 (6)N2—C10—C11—C12117.1 (6)
Cl2—Sn1—N1—C993.6 (4)C9—C10—C11—C1262.6 (7)
Cl1—Sn1—N1—C980.1 (4)N2—C10—C11—C1663.1 (7)
C1—Sn1—N2—C108 (3)C9—C10—C11—C16117.3 (5)
N1—Sn1—N2—C105.2 (4)C16—C11—C12—C130.0
S1—Sn1—N2—C10174.1 (5)C10—C11—C12—C13179.8 (5)
Cl2—Sn1—N2—C1091.7 (4)C11—C12—C13—C140.0
Cl1—Sn1—N2—C1079.9 (4)C12—C13—C14—C150.0
C1—Sn1—N2—N3172 (2)C13—C14—C15—C160.0
N1—Sn1—N2—N3174.7 (5)C14—C15—C16—C110.0
S1—Sn1—N2—N36.0 (4)C12—C11—C16—C150.0
Cl2—Sn1—N2—N388.3 (4)C10—C11—C16—C15179.8 (5)
Cl1—Sn1—N2—N3100.2 (4)C18—N4—C17—N36.0 (11)
C10—N2—N3—C17176.7 (6)C18—N4—C17—S1174.4 (6)
Sn1—N2—N3—C173.4 (7)N2—N3—C17—N4176.7 (6)
N2—Sn1—C1—C2154 (2)N2—N3—C17—S13.7 (9)
N1—Sn1—C1—C2151.1 (9)Sn1—S1—C17—N4173.2 (5)
S1—Sn1—C1—C228.3 (9)Sn1—S1—C17—N37.3 (6)
Cl2—Sn1—C1—C2122.8 (9)C17—N4—C18—C23117.7 (9)
Cl1—Sn1—C1—C266.6 (9)C17—N4—C18—C19120.8 (9)
Sn1—C1—C2—C3178.8 (11)N4—C18—C19—C20179.1 (8)
C1—C2—C3—C413 (3)C23—C18—C19—C2057.1 (11)
C9—N1—C5—C60.2 (11)C18—C19—C20—C2155.1 (13)
Sn1—N1—C5—C6174.0 (6)C19—C20—C21—C2253.4 (14)
N1—C5—C6—C71.6 (12)C20—C21—C22—C2352.4 (14)
C5—C6—C7—C81.0 (12)N4—C18—C23—C22178.1 (8)
C6—C7—C8—C90.9 (11)C19—C18—C23—C2257.2 (11)
C5—N1—C9—C81.8 (9)C21—C22—C23—C1855.0 (13)
Sn1—N1—C9—C8172.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.862.543.383 (6)167
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)(C19H21N4S)Cl2]·CHCl3
Mr703.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.5095 (9), 13.7308 (8), 15.7412 (10)
β (°) 94.418 (1)
V3)3126.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.618, 0.777
No. of measured, independent and
observed [I > 2σ(I)] reflections
29403, 7179, 5127
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.202, 1.10
No. of reflections7179
No. of parameters332
No. of restraints105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.48, 1.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.142 (7)Sn1—S12.475 (2)
Sn1—N12.250 (5)Sn1—Cl12.515 (2)
Sn1—N22.221 (5)Sn1—Cl22.496 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.862.543.383 (6)167
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank MOSTI (grant No. 06-01-09-SF0046), Universiti Malaysia Sarawak and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJoseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds