metal-organic compounds
Bis[4,4′-(propane-1,3-diyl)dipiperidinium] β-octamolybdate(VI)
aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: faouzi.zid@fst.rnu.tn
The title compound, bis[4,4′-(propane-1,3-diyl)dipiperidinium] β-octamolybdate(VI), (C13H28N2)2[Mo8O26], was produced by hydrothermal reaction of an acidified aqueous solution of Na2MoO4·2H2O and 4,4′-trimethylenedipiperidine (L). The structure of the title compound consists of β-octamolybdate(VI) anion clusters and protonated [H2L]2+ cations. The octamolybdate anion is located around an inversion center. N—H⋯O hydrogen bonds between the cations and anions ensure the cohesion of the structure and result in a three-dimensional network.
Related literature
For applications of polyoxometallates (POMs) in catalyst chemistry, see: Pope (1983). For applications of POMs in materials science, see: Muller et al. (1998). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu et al. (2001); Wu et al. (2002). For the antiviral and antitumour activities of POMs, see: Hasenknopf (2005); Gerth et al. (2005). For related literature, see: Zebiri et al. (2008); Li & Tan (2008). For hydrogen-bonding discussion, see: Blessing (1986); Brown (1976).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810013632/dn2553sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810013632/dn2553Isup2.hkl
La synthèse a été réalisée par voie hydrothermale avec comme réactifs Na2MoO4.2H2O (0,24 g, 1 mmol) et 4,4'-triméthylènedipépiridine (0,1 g, 1 mmol). Le pH de la solution est ajusté à 4 à l'aide de HCl (6 M). La solution préparée est transvasée dans un récipient en Téflon qui est introduit dans une autoclave en acier. L'ensemble est maintenu sous pression à une température voisine de 150°C pendant deux jours. Le refroidissement jusqu'à température ambiante a été réalisé par paliers de 30° par jour. Des cristaux de forme parallélépipédique, de couleur brune, de taille suffisante et de qualité convenable pour une étude structurale sont obtenus.
All H atoms have been positioned geometrically using AFIX23 and AFIX13 instructions of SHELXL97 (Sheldrick, 2008) with the constraint Uiso(H) = 1.2Ueq(C).
Les polyoxométallates (POMs) constituent une large famille de clusters d'oxydes métalliques contenant des métaux de transition (principalement V, Mo et W) en leurs degrés d'oxydation les plus élevés (Pope, 1983). La diversité des structures des POMs leur procure une large polyvalence en termes de forme, de polarité, de potentiels redox, de surface, de distribution de charge et d'acidité, ainsi, beaucoup d'applications leur sont possibles dans divers domaines, parmi lesquels, la catalyse, la science des matériaux et chimie des polymères (Pope, 1983; Muller et al., 1998; Bu et al., 2001; Wu et al., 2002). Par ailleurs de récentes études ont montré qu'une gamme de POMs présente des activités antivirales et anti-tumorales (Hasenknopf, 2005; Gerth et al., 2005). Durant notre étude sur ce type de matériaux nous avons isolé une nouvelle phase dont les cristaux sont de qualité et de taille convenables pour une étude par diffraction des rayons X sur monocristal.
L'unité asymétrique du composé (I) consiste en un cation diprotoné 4,4'-triméthylènedipépiridinium et la moitié d'un cluster β-octamolybdate [Mo8O26]4-, chaque cluster étant organisé autour d'un centre d'inversion (Fig. 1). Une liaison hydrogène faible relie un atome d'hydrogène du cation et un atome d'oxygène externe du cluster β-octamolybdate(VI) (Fig. 1).
Des liaisons hydrogène de type N—H···O, satisfaisant la condition NHO supérieur ou égal à 150°, s'établissent entre les cations organiques et les atomes d'oxygène externes des clusters β-octamolybdate(VI), renforçant ainsi la cohésion de la structure générant ainsi une charpente tridimensionnelle (Fig. 2). Ces liaisons sont considérées comme faibles (N···O: 2,885 (6) et 3,312 (7) (Å)), d'après le critère de Brown portant sur les distances et les angles (Brown, 1976; Blessing, 1986). Le composé étudié est comparable à d'autres composés similaires de la littérature, par exemple NH4(C8H20N)3[Mo8O26] (Zebiri et al., 2008) et (C12H20N4)2[Mo8O26] (Li & Tan, 2008). En effet ces deux composés sont constitués de clusters β-octamolybdate discrets et de cations organiques reliés par des liaisons hydrogène de type NH···O. Dans le deuxième exemple cité, bien qu'il n y ait pas partage d'arêtes ni de sommets entre les clusters, l'existence de liaisons hydrogène entre les cations organiques et les clusters confère à la structure le caractère unidimensionnel.
For the application of polyoxometallates (POMs) in catalyst chemistry, see: Pope (1983). For the application of POMs in materials science, see: Muller et al. (1998). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu et al. (2001); Wu et al. (2002). For the antiviral and antitumour activities of POMs, see: Hasenknopf (2005); Gerth et al. (2005). For related literature, see: Zebiri et al. (2008); Li & Tan (2008). For hydrogen-bonding discussion, see: Blessing (1986); Brown (1976).
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).(C13H28N2)2[Mo8O26] | F(000) = 3136 |
Mr = 1608.26 | Dx = 2.343 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 23.975 (5) Å | θ = 12–15° |
b = 13.935 (4) Å | µ = 2.22 mm−1 |
c = 13.647 (9) Å | T = 298 K |
V = 4559 (3) Å3 | Prism, brown |
Z = 4 | 0.4 × 0.3 × 0.2 mm |
Enraf–Nonius CAD-4 diffractometer | 3996 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
Graphite monochromator | θmax = 27.0°, θmin = 2.2° |
ω/2θ scans | h = −30→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→17 |
Tmin = 0.556, Tmax = 0.642 | l = −1→17 |
5810 measured reflections | 2 standard reflections every 120 min |
4960 independent reflections | intensity decay: 4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.050P)2 + 9.1911P] where P = (Fo2 + 2Fc2)/3 |
4960 reflections | (Δ/σ)max = 0.001 |
289 parameters | Δρmax = 1.05 e Å−3 |
0 restraints | Δρmin = −1.27 e Å−3 |
(C13H28N2)2[Mo8O26] | V = 4559 (3) Å3 |
Mr = 1608.26 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 23.975 (5) Å | µ = 2.22 mm−1 |
b = 13.935 (4) Å | T = 298 K |
c = 13.647 (9) Å | 0.4 × 0.3 × 0.2 mm |
Enraf–Nonius CAD-4 diffractometer | 3996 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.034 |
Tmin = 0.556, Tmax = 0.642 | 2 standard reflections every 120 min |
5810 measured reflections | intensity decay: 4% |
4960 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.05 e Å−3 |
4960 reflections | Δρmin = −1.27 e Å−3 |
289 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4488 (2) | 0.3151 (4) | 0.3293 (4) | 0.0540 (15) | |
H1A | 0.4463 | 0.2575 | 0.3590 | 0.065* | |
H1B | 0.4708 | 0.3081 | 0.2764 | 0.065* | |
N2 | 0.15957 (16) | 0.2275 (3) | 0.8306 (3) | 0.0294 (9) | |
H2A | 0.1468 | 0.1813 | 0.8708 | 0.035* | |
H2B | 0.1300 | 0.2547 | 0.8008 | 0.035* | |
C1 | 0.3795 (2) | 0.4370 (4) | 0.4548 (4) | 0.0312 (11) | |
H1 | 0.3854 | 0.4959 | 0.4170 | 0.037* | |
C2 | 0.3548 (3) | 0.3633 (5) | 0.3856 (4) | 0.0449 (15) | |
H20 | 0.3187 | 0.3857 | 0.3631 | 0.054* | |
H21 | 0.3490 | 0.3036 | 0.4208 | 0.054* | |
C3 | 0.3924 (3) | 0.3444 (5) | 0.2965 (4) | 0.0463 (15) | |
H31 | 0.3762 | 0.2941 | 0.2564 | 0.056* | |
H32 | 0.3950 | 0.4021 | 0.2571 | 0.056* | |
C4 | 0.4753 (3) | 0.3838 (5) | 0.3975 (4) | 0.0504 (16) | |
H41 | 0.4819 | 0.4442 | 0.3641 | 0.060* | |
H42 | 0.5109 | 0.3587 | 0.4192 | 0.060* | |
C5 | 0.4370 (2) | 0.4003 (5) | 0.4866 (4) | 0.0401 (13) | |
H51 | 0.4327 | 0.3406 | 0.5223 | 0.048* | |
H52 | 0.4542 | 0.4468 | 0.5302 | 0.048* | |
C6 | 0.3415 (2) | 0.4628 (4) | 0.5419 (4) | 0.0352 (12) | |
H61 | 0.3615 | 0.5075 | 0.5835 | 0.042* | |
H62 | 0.3091 | 0.4961 | 0.5165 | 0.042* | |
C7 | 0.3214 (2) | 0.3803 (4) | 0.6050 (4) | 0.0340 (12) | |
H71 | 0.3532 | 0.3498 | 0.6359 | 0.041* | |
H72 | 0.3032 | 0.3330 | 0.5638 | 0.041* | |
C8 | 0.2805 (2) | 0.4140 (4) | 0.6843 (4) | 0.0295 (10) | |
H81 | 0.2501 | 0.4479 | 0.6526 | 0.035* | |
H82 | 0.2997 | 0.4596 | 0.7262 | 0.035* | |
C9 | 0.25557 (19) | 0.3348 (3) | 0.7494 (3) | 0.0261 (9) | |
H9 | 0.2860 | 0.3038 | 0.7853 | 0.031* | |
C10 | 0.2149 (2) | 0.3782 (3) | 0.8239 (3) | 0.0274 (10) | |
H101 | 0.2345 | 0.4251 | 0.8637 | 0.033* | |
H102 | 0.1853 | 0.4112 | 0.7893 | 0.033* | |
C11 | 0.1898 (2) | 0.3022 (4) | 0.8900 (4) | 0.0338 (11) | |
H111 | 0.2191 | 0.2718 | 0.9279 | 0.041* | |
H112 | 0.1639 | 0.3321 | 0.9354 | 0.041* | |
C12 | 0.1969 (2) | 0.1832 (4) | 0.7545 (4) | 0.0365 (12) | |
H121 | 0.1751 | 0.1405 | 0.7135 | 0.044* | |
H122 | 0.2254 | 0.1453 | 0.7868 | 0.044* | |
C13 | 0.22476 (19) | 0.2581 (4) | 0.6904 (4) | 0.0299 (10) | |
H131 | 0.1966 | 0.2889 | 0.6501 | 0.036* | |
H132 | 0.2510 | 0.2265 | 0.6470 | 0.036* | |
Mo1 | 0.484896 (16) | 0.38831 (3) | 0.05948 (3) | 0.02043 (11) | |
Mo2 | 0.555686 (16) | 0.54337 (3) | 0.18157 (3) | 0.02254 (11) | |
Mo3 | 0.422788 (16) | 0.61244 (3) | 0.11200 (3) | 0.02489 (11) | |
Mo4 | 0.650139 (17) | 0.54832 (3) | 0.00726 (3) | 0.02559 (11) | |
O1 | 0.47977 (13) | 0.4851 (2) | 0.1631 (2) | 0.0225 (6) | |
O2 | 0.55436 (13) | 0.4788 (2) | 0.0253 (2) | 0.0211 (6) | |
O3 | 0.49781 (13) | 0.3539 (2) | −0.0778 (2) | 0.0230 (6) | |
O4 | 0.41461 (13) | 0.3525 (3) | 0.0625 (2) | 0.0273 (7) | |
O5 | 0.51905 (15) | 0.3005 (3) | 0.1209 (3) | 0.0347 (8) | |
O6 | 0.36637 (13) | 0.5174 (3) | 0.1144 (2) | 0.0279 (7) | |
O7 | 0.39269 (15) | 0.7001 (3) | 0.0433 (3) | 0.0387 (9) | |
O8 | 0.54174 (16) | 0.6221 (3) | 0.2737 (3) | 0.0353 (8) | |
O9 | 0.61609 (14) | 0.6091 (3) | 0.1208 (2) | 0.0295 (8) | |
O10 | 0.42016 (15) | 0.6529 (3) | 0.2296 (3) | 0.0420 (10) | |
O11 | 0.58676 (15) | 0.4471 (3) | 0.2357 (3) | 0.0336 (8) | |
O12 | 0.70309 (16) | 0.6243 (3) | −0.0214 (3) | 0.0415 (10) | |
O13 | 0.68141 (15) | 0.4542 (3) | 0.0665 (3) | 0.0366 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.089 (4) | 0.040 (3) | 0.033 (3) | 0.024 (3) | 0.017 (3) | 0.007 (2) |
N2 | 0.0215 (18) | 0.028 (2) | 0.038 (2) | −0.0026 (17) | −0.0008 (17) | 0.0090 (18) |
C1 | 0.040 (3) | 0.027 (3) | 0.027 (2) | −0.005 (2) | 0.004 (2) | 0.003 (2) |
C2 | 0.055 (4) | 0.051 (3) | 0.029 (3) | −0.020 (3) | 0.004 (2) | 0.003 (3) |
C3 | 0.066 (4) | 0.047 (3) | 0.026 (3) | −0.020 (3) | 0.005 (3) | −0.003 (3) |
C4 | 0.045 (3) | 0.071 (5) | 0.035 (3) | 0.007 (3) | 0.006 (3) | 0.004 (3) |
C5 | 0.038 (3) | 0.050 (3) | 0.033 (3) | 0.000 (3) | 0.003 (2) | 0.003 (3) |
C6 | 0.041 (3) | 0.031 (3) | 0.034 (3) | 0.000 (2) | 0.009 (2) | 0.006 (2) |
C7 | 0.035 (3) | 0.032 (3) | 0.034 (3) | −0.003 (2) | 0.010 (2) | 0.002 (2) |
C8 | 0.032 (3) | 0.027 (2) | 0.029 (2) | 0.000 (2) | 0.005 (2) | 0.001 (2) |
C9 | 0.023 (2) | 0.027 (2) | 0.028 (2) | −0.0002 (19) | 0.0011 (18) | 0.002 (2) |
C10 | 0.030 (2) | 0.025 (2) | 0.028 (2) | −0.0036 (19) | 0.0047 (19) | −0.0025 (19) |
C11 | 0.034 (3) | 0.042 (3) | 0.026 (2) | −0.004 (2) | 0.005 (2) | 0.001 (2) |
C12 | 0.033 (3) | 0.026 (2) | 0.051 (3) | −0.002 (2) | 0.005 (2) | −0.007 (2) |
C13 | 0.023 (2) | 0.030 (2) | 0.036 (2) | −0.0020 (19) | 0.005 (2) | −0.004 (2) |
Mo1 | 0.0216 (2) | 0.0201 (2) | 0.01959 (19) | −0.00003 (14) | −0.00049 (14) | 0.00314 (15) |
Mo2 | 0.0213 (2) | 0.0275 (2) | 0.01882 (19) | −0.00030 (15) | −0.00195 (14) | 0.00103 (15) |
Mo3 | 0.0206 (2) | 0.0281 (2) | 0.0260 (2) | 0.00483 (16) | 0.00207 (15) | −0.00384 (16) |
Mo4 | 0.0195 (2) | 0.0321 (2) | 0.0252 (2) | −0.00429 (16) | −0.00038 (15) | 0.00520 (17) |
O1 | 0.0205 (15) | 0.0300 (17) | 0.0170 (14) | 0.0002 (13) | 0.0031 (12) | 0.0006 (13) |
O2 | 0.0197 (15) | 0.0237 (16) | 0.0198 (15) | −0.0001 (12) | −0.0010 (12) | 0.0010 (12) |
O3 | 0.0209 (15) | 0.0241 (16) | 0.0240 (15) | −0.0016 (13) | −0.0005 (13) | −0.0003 (13) |
O4 | 0.0245 (16) | 0.0300 (18) | 0.0272 (17) | −0.0058 (14) | 0.0000 (13) | 0.0027 (14) |
O5 | 0.037 (2) | 0.0296 (19) | 0.0371 (19) | 0.0021 (16) | −0.0061 (16) | 0.0099 (16) |
O6 | 0.0201 (16) | 0.0387 (19) | 0.0249 (16) | 0.0002 (14) | 0.0026 (13) | −0.0009 (15) |
O7 | 0.0318 (19) | 0.037 (2) | 0.048 (2) | 0.0123 (17) | −0.0005 (17) | 0.0045 (18) |
O8 | 0.036 (2) | 0.042 (2) | 0.0280 (17) | 0.0018 (17) | −0.0007 (15) | −0.0062 (15) |
O9 | 0.0248 (17) | 0.037 (2) | 0.0266 (16) | −0.0101 (14) | −0.0020 (14) | 0.0012 (15) |
O10 | 0.0317 (19) | 0.059 (3) | 0.035 (2) | 0.0075 (19) | 0.0045 (16) | −0.0158 (19) |
O11 | 0.0270 (18) | 0.039 (2) | 0.0353 (19) | 0.0033 (16) | −0.0050 (15) | 0.0038 (16) |
O12 | 0.0287 (19) | 0.053 (2) | 0.043 (2) | −0.0137 (18) | −0.0003 (17) | 0.0127 (19) |
O13 | 0.0295 (19) | 0.044 (2) | 0.036 (2) | 0.0029 (17) | −0.0057 (16) | 0.0088 (17) |
N1—C4 | 1.478 (9) | C10—H101 | 0.9700 |
N1—C3 | 1.482 (9) | C10—H102 | 0.9700 |
N1—H1A | 0.9000 | C11—H111 | 0.9700 |
N1—H1B | 0.9000 | C11—H112 | 0.9700 |
N2—C12 | 1.503 (6) | C12—C13 | 1.517 (7) |
N2—C11 | 1.506 (6) | C12—H121 | 0.9700 |
N2—H2A | 0.9000 | C12—H122 | 0.9700 |
N2—H2B | 0.9000 | C13—H131 | 0.9700 |
C1—C2 | 1.516 (8) | C13—H132 | 0.9700 |
C1—C5 | 1.534 (8) | Mo1—O5 | 1.695 (3) |
C1—C6 | 1.540 (7) | Mo1—O4 | 1.758 (3) |
C1—H1 | 0.9800 | Mo1—O1 | 1.958 (3) |
C2—C3 | 1.536 (8) | Mo1—O3 | 1.958 (3) |
C2—H20 | 0.9700 | Mo1—O2 | 2.140 (3) |
C2—H21 | 0.9700 | Mo1—O2i | 2.378 (3) |
C3—H31 | 0.9700 | Mo1—Mo2 | 3.213 (2) |
C3—H32 | 0.9700 | Mo2—O8 | 1.702 (4) |
C4—C5 | 1.540 (8) | Mo2—O11 | 1.703 (4) |
C4—H41 | 0.9700 | Mo2—O9 | 1.903 (3) |
C4—H42 | 0.9700 | Mo2—O1 | 2.009 (3) |
C5—H51 | 0.9700 | Mo2—O2 | 2.316 (3) |
C5—H52 | 0.9700 | Mo2—O3i | 2.387 (3) |
C6—C7 | 1.514 (7) | Mo3—O7 | 1.700 (4) |
C6—H61 | 0.9700 | Mo3—O10 | 1.703 (4) |
C6—H62 | 0.9700 | Mo3—O6 | 1.894 (3) |
C7—C8 | 1.534 (7) | Mo3—O3i | 2.015 (3) |
C7—H71 | 0.9700 | Mo3—O2i | 2.329 (3) |
C7—H72 | 0.9700 | Mo3—O1 | 2.346 (3) |
C8—C9 | 1.538 (7) | Mo4—O12 | 1.699 (4) |
C8—H81 | 0.9700 | Mo4—O13 | 1.713 (4) |
C8—H82 | 0.9700 | Mo4—O6i | 1.937 (3) |
C9—C13 | 1.528 (7) | Mo4—O9 | 1.945 (4) |
C9—C10 | 1.533 (6) | Mo4—O4i | 2.286 (3) |
C9—H9 | 0.9800 | Mo4—O2 | 2.505 (3) |
C10—C11 | 1.516 (7) | ||
C4—N1—C3 | 113.8 (5) | O5—Mo1—O1 | 99.82 (16) |
C4—N1—H1A | 108.8 | O4—Mo1—O1 | 96.81 (15) |
C3—N1—H1A | 108.8 | O5—Mo1—O3 | 102.72 (16) |
C4—N1—H1B | 108.8 | O4—Mo1—O3 | 95.99 (14) |
C3—N1—H1B | 108.8 | O1—Mo1—O3 | 150.38 (13) |
H1A—N1—H1B | 107.7 | O5—Mo1—O2 | 99.06 (15) |
C12—N2—C11 | 111.7 (4) | O4—Mo1—O2 | 156.65 (14) |
C12—N2—H2A | 109.3 | O1—Mo1—O2 | 78.50 (12) |
C11—N2—H2A | 109.3 | O3—Mo1—O2 | 79.18 (12) |
C12—N2—H2B | 109.3 | O5—Mo1—O2i | 174.01 (15) |
C11—N2—H2B | 109.3 | O4—Mo1—O2i | 81.53 (13) |
H2A—N2—H2B | 107.9 | O1—Mo1—O2i | 77.87 (12) |
C2—C1—C5 | 107.6 (5) | O3—Mo1—O2i | 77.75 (12) |
C2—C1—C6 | 114.0 (5) | O2—Mo1—O2i | 75.12 (12) |
C5—C1—C6 | 113.0 (4) | O5—Mo1—Mo2 | 88.51 (13) |
C2—C1—H1 | 107.3 | O4—Mo1—Mo2 | 133.24 (11) |
C5—C1—H1 | 107.3 | O1—Mo1—Mo2 | 36.43 (9) |
C6—C1—H1 | 107.3 | O3—Mo1—Mo2 | 125.24 (9) |
C1—C2—C3 | 112.3 (5) | O2—Mo1—Mo2 | 46.06 (8) |
C1—C2—H20 | 109.1 | O2i—Mo1—Mo2 | 86.41 (8) |
C3—C2—H20 | 109.1 | O8—Mo2—O11 | 105.86 (18) |
C1—C2—H21 | 109.1 | O8—Mo2—O9 | 99.28 (17) |
C3—C2—H21 | 109.1 | O11—Mo2—O9 | 103.59 (17) |
H20—C2—H21 | 107.9 | O8—Mo2—O1 | 100.10 (16) |
N1—C3—C2 | 110.1 (5) | O11—Mo2—O1 | 97.61 (15) |
N1—C3—H31 | 109.6 | O9—Mo2—O1 | 145.99 (13) |
C2—C3—H31 | 109.6 | O8—Mo2—O2 | 158.21 (15) |
N1—C3—H32 | 109.6 | O11—Mo2—O2 | 95.70 (15) |
C2—C3—H32 | 109.6 | O9—Mo2—O2 | 78.23 (13) |
H31—C3—H32 | 108.2 | O1—Mo2—O2 | 73.42 (12) |
N1—C4—C5 | 109.8 (5) | O8—Mo2—O3i | 86.92 (15) |
N1—C4—H41 | 109.7 | O11—Mo2—O3i | 164.71 (15) |
C5—C4—H41 | 109.7 | O9—Mo2—O3i | 82.07 (13) |
N1—C4—H42 | 109.7 | O1—Mo2—O3i | 71.40 (12) |
C5—C4—H42 | 109.7 | O2—Mo2—O3i | 71.29 (11) |
H41—C4—H42 | 108.2 | O8—Mo2—Mo1 | 135.47 (13) |
C1—C5—C4 | 111.2 (5) | O11—Mo2—Mo1 | 85.78 (13) |
C1—C5—H51 | 109.4 | O9—Mo2—Mo1 | 119.95 (11) |
C4—C5—H51 | 109.4 | O1—Mo2—Mo1 | 35.37 (9) |
C1—C5—H52 | 109.4 | O2—Mo2—Mo1 | 41.72 (8) |
C4—C5—H52 | 109.4 | O3i—Mo2—Mo1 | 79.14 (8) |
H51—C5—H52 | 108.0 | O7—Mo3—O10 | 105.4 (2) |
C7—C6—C1 | 116.8 (4) | O7—Mo3—O6 | 102.07 (17) |
C7—C6—H61 | 108.1 | O10—Mo3—O6 | 100.89 (18) |
C1—C6—H61 | 108.1 | O7—Mo3—O3i | 96.11 (16) |
C7—C6—H62 | 108.1 | O10—Mo3—O3i | 100.15 (16) |
C1—C6—H62 | 108.1 | O6—Mo3—O3i | 147.28 (14) |
H61—C6—H62 | 107.3 | O7—Mo3—O2i | 92.78 (16) |
C6—C7—C8 | 111.9 (4) | O10—Mo3—O2i | 161.40 (16) |
C6—C7—H71 | 109.2 | O6—Mo3—O2i | 78.48 (13) |
C8—C7—H71 | 109.2 | O3i—Mo3—O2i | 73.64 (12) |
C6—C7—H72 | 109.2 | O7—Mo3—O1 | 162.66 (15) |
C8—C7—H72 | 109.2 | O10—Mo3—O1 | 89.54 (16) |
H71—C7—H72 | 107.9 | O6—Mo3—O1 | 83.19 (13) |
C7—C8—C9 | 115.9 (4) | O3i—Mo3—O1 | 72.21 (12) |
C7—C8—H81 | 108.3 | O2i—Mo3—O1 | 71.90 (11) |
C9—C8—H81 | 108.3 | O12—Mo4—O13 | 104.98 (19) |
C7—C8—H82 | 108.3 | O12—Mo4—O6i | 104.46 (17) |
C9—C8—H82 | 108.3 | O13—Mo4—O6i | 97.60 (17) |
H81—C8—H82 | 107.4 | O12—Mo4—O9 | 103.06 (18) |
C13—C9—C10 | 108.6 (4) | O13—Mo4—O9 | 98.10 (17) |
C13—C9—C8 | 112.7 (4) | O6i—Mo4—O9 | 143.39 (14) |
C10—C9—C8 | 110.3 (4) | O12—Mo4—O4i | 92.01 (16) |
C13—C9—H9 | 108.4 | O13—Mo4—O4i | 163.01 (15) |
C10—C9—H9 | 108.4 | O6i—Mo4—O4i | 77.87 (14) |
C8—C9—H9 | 108.4 | O9—Mo4—O4i | 77.50 (14) |
C11—C10—C9 | 111.8 (4) | O12—Mo4—O2 | 161.62 (16) |
C11—C10—H101 | 109.2 | O13—Mo4—O2 | 93.37 (15) |
C9—C10—H101 | 109.2 | O6i—Mo4—O2 | 73.37 (12) |
C11—C10—H102 | 109.2 | O9—Mo4—O2 | 72.87 (12) |
C9—C10—H102 | 109.2 | O4i—Mo4—O2 | 69.64 (11) |
H101—C10—H102 | 107.9 | Mo1—O1—Mo2 | 108.20 (14) |
N2—C11—C10 | 110.7 (4) | Mo1—O1—Mo3 | 110.06 (14) |
N2—C11—H111 | 109.5 | Mo2—O1—Mo3 | 105.02 (14) |
C10—C11—H111 | 109.5 | Mo1—O2—Mo2 | 92.22 (11) |
N2—C11—H112 | 109.5 | Mo1—O2—Mo3i | 92.13 (12) |
C10—C11—H112 | 109.5 | Mo2—O2—Mo3i | 161.78 (15) |
H111—C11—H112 | 108.1 | Mo1—O2—Mo1i | 104.88 (12) |
N2—C12—C13 | 112.2 (4) | Mo2—O2—Mo1i | 98.66 (12) |
N2—C12—H121 | 109.2 | Mo3i—O2—Mo1i | 97.29 (12) |
C13—C12—H121 | 109.2 | Mo1—O2—Mo4 | 164.32 (15) |
N2—C12—H122 | 109.2 | Mo2—O2—Mo4 | 85.83 (10) |
C13—C12—H122 | 109.2 | Mo3i—O2—Mo4 | 85.22 (10) |
H121—C12—H122 | 107.9 | Mo1i—O2—Mo4 | 90.78 (11) |
C12—C13—C9 | 112.9 (4) | Mo1—O3—Mo3i | 108.30 (14) |
C12—C13—H131 | 109.0 | Mo1—O3—Mo2i | 109.63 (14) |
C9—C13—H131 | 109.0 | Mo3i—O3—Mo2i | 103.34 (13) |
C12—C13—H132 | 109.0 | Mo1—O4—Mo4i | 118.04 (17) |
C9—C13—H132 | 109.0 | Mo3—O6—Mo4i | 117.50 (17) |
H131—C13—H132 | 107.8 | Mo2—O9—Mo4 | 117.21 (17) |
O5—Mo1—O4 | 104.29 (17) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O5 | 0.90 | 2.42 | 3.312 (6) | 172 |
N2—H2B···O10ii | 0.90 | 2.01 | 2.886 (5) | 163 |
Symmetry code: (ii) −x+1/2, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C13H28N2)2[Mo8O26] |
Mr | 1608.26 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 298 |
a, b, c (Å) | 23.975 (5), 13.935 (4), 13.647 (9) |
V (Å3) | 4559 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.22 |
Crystal size (mm) | 0.4 × 0.3 × 0.2 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.556, 0.642 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5810, 4960, 3996 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.099, 1.08 |
No. of reflections | 4960 |
No. of parameters | 289 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.05, −1.27 |
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O5 | 0.90 | 2.42 | 3.312 (6) | 171.7 |
N2—H2B···O10i | 0.90 | 2.01 | 2.886 (5) | 163.3 |
Symmetry code: (i) −x+1/2, −y+1, z+1/2. |
References
Blessing, R. H. (1986). Acta Cryst. B42, 613–621. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. (1976). Acta Cryst. A32, 24–31. CrossRef IUCr Journals Web of Science Google Scholar
Bu, W.-M., Ye, L., Yang, G.-Y., Gao, J.-S., Fan, Y.-G., Shao, M.-C. & Xu, J.-Q. (2001). Inorg. Chem. Commun. 4, 1–4. Web of Science CSD CrossRef CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gerth, H. U. V., Rompel, A., Krebs, B., Boos, J. & Lanvers-Kaminsky, C. (2005). Anticancer Drugs, 16, 101–106. Web of Science CrossRef PubMed CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hasenknopf, B. (2005). Front. Biosci. 10, 275–287. Web of Science CrossRef PubMed CAS Google Scholar
Li, S.-L. & Tan, K. (2008). Acta Cryst. E64, m1487. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Muller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239–241. Web of Science CrossRef PubMed Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. New York: Springer-Verlag. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, C.-D., Lu, C.-Z., Lin, X., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 664–666. Web of Science CSD CrossRef CAS Google Scholar
Zebiri, I., Bencharif, L., Direm, A., Bencharif, M. & Benali-Cherif, N. (2008). Acta Cryst. E64, m474–m475. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Les polyoxométallates (POMs) constituent une large famille de clusters d'oxydes métalliques contenant des métaux de transition (principalement V, Mo et W) en leurs degrés d'oxydation les plus élevés (Pope, 1983). La diversité des structures des POMs leur procure une large polyvalence en termes de forme, de polarité, de potentiels redox, de surface, de distribution de charge et d'acidité, ainsi, beaucoup d'applications leur sont possibles dans divers domaines, parmi lesquels, la catalyse, la science des matériaux et chimie des polymères (Pope, 1983; Muller et al., 1998; Bu et al., 2001; Wu et al., 2002). Par ailleurs de récentes études ont montré qu'une gamme de POMs présente des activités antivirales et anti-tumorales (Hasenknopf, 2005; Gerth et al., 2005). Durant notre étude sur ce type de matériaux nous avons isolé une nouvelle phase dont les cristaux sont de qualité et de taille convenables pour une étude par diffraction des rayons X sur monocristal.
L'unité asymétrique du composé (I) consiste en un cation diprotoné 4,4'-triméthylènedipépiridinium et la moitié d'un cluster β-octamolybdate [Mo8O26]4-, chaque cluster étant organisé autour d'un centre d'inversion (Fig. 1). Une liaison hydrogène faible relie un atome d'hydrogène du cation et un atome d'oxygène externe du cluster β-octamolybdate(VI) (Fig. 1).
Des liaisons hydrogène de type N—H···O, satisfaisant la condition NHO supérieur ou égal à 150°, s'établissent entre les cations organiques et les atomes d'oxygène externes des clusters β-octamolybdate(VI), renforçant ainsi la cohésion de la structure générant ainsi une charpente tridimensionnelle (Fig. 2). Ces liaisons sont considérées comme faibles (N···O: 2,885 (6) et 3,312 (7) (Å)), d'après le critère de Brown portant sur les distances et les angles (Brown, 1976; Blessing, 1986). Le composé étudié est comparable à d'autres composés similaires de la littérature, par exemple NH4(C8H20N)3[Mo8O26] (Zebiri et al., 2008) et (C12H20N4)2[Mo8O26] (Li & Tan, 2008). En effet ces deux composés sont constitués de clusters β-octamolybdate discrets et de cations organiques reliés par des liaisons hydrogène de type NH···O. Dans le deuxième exemple cité, bien qu'il n y ait pas partage d'arêtes ni de sommets entre les clusters, l'existence de liaisons hydrogène entre les cations organiques et les clusters confère à la structure le caractère unidimensionnel.