metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­[4,4′-(propane-1,3-di­yl)­dipiperidin­ium] β-octa­molybdate(VI)

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: faouzi.zid@fst.rnu.tn

(Received 29 March 2010; accepted 13 April 2010; online 17 April 2010)

The title compound, bis­[4,4′-(propane-1,3-di­yl)­dipiperidin­ium] β-octa­molybdate(VI), (C13H28N2)2[Mo8O26], was produced by hydro­thermal reaction of an acidified aqueous solution of Na2MoO4·2H2O and 4,4′-trimethyl­ene­dipiperidine (L). The structure of the title compound consists of β-octa­molybdate(VI) anion clusters and protonated [H2L]2+ cations. The octa­molybdate anion is located around an inversion center. N—H⋯O hydrogen bonds between the cations and anions ensure the cohesion of the structure and result in a three-dimensional network.

Related literature

For applications of polyoxometallates (POMs) in catalyst chemistry, see: Pope (1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. New York: Springer-Verlag.]). For applications of POMs in materials science, see: Muller et al. (1998[Muller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239-241.]). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu et al. (2001[Bu, W.-M., Ye, L., Yang, G.-Y., Gao, J.-S., Fan, Y.-G., Shao, M.-C. & Xu, J.-Q. (2001). Inorg. Chem. Commun. 4, 1-4.]); Wu et al. (2002[Wu, C.-D., Lu, C.-Z., Lin, X., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 664-666.]). For the anti­viral and anti­tumour activities of POMs, see: Hasenknopf (2005[Hasenknopf, B. (2005). Front. Biosci. 10, 275-287.]); Gerth et al. (2005[Gerth, H. U. V., Rompel, A., Krebs, B., Boos, J. & Lanvers-Kaminsky, C. (2005). Anticancer Drugs, 16, 101-106.]). For related literature, see: Zebiri et al. (2008[Zebiri, I., Bencharif, L., Direm, A., Bencharif, M. & Benali-Cherif, N. (2008). Acta Cryst. E64, m474-m475.]); Li & Tan (2008[Li, S.-L. & Tan, K. (2008). Acta Cryst. E64, m1487.]). For hydrogen-bonding discussion, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H28N2)2[Mo8O26]

  • Mr = 1608.26

  • Orthorhombic, P b c a

  • a = 23.975 (5) Å

  • b = 13.935 (4) Å

  • c = 13.647 (9) Å

  • V = 4559 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 298 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.556, Tmax = 0.642

  • 5810 measured reflections

  • 4960 independent reflections

  • 3996 reflections with I > 2σ(I)

  • Rint = 0.034

  • 2 standard reflections every 120 min intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.08

  • 4960 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O5 0.90 2.42 3.312 (6) 172
N2—H2B⋯O10i 0.90 2.01 2.886 (5) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Les polyoxométallates (POMs) constituent une large famille de clusters d'oxydes métalliques contenant des métaux de transition (principalement V, Mo et W) en leurs degrés d'oxydation les plus élevés (Pope, 1983). La diversité des structures des POMs leur procure une large polyvalence en termes de forme, de polarité, de potentiels redox, de surface, de distribution de charge et d'acidité, ainsi, beaucoup d'applications leur sont possibles dans divers domaines, parmi lesquels, la catalyse, la science des matériaux et chimie des polymères (Pope, 1983; Muller et al., 1998; Bu et al., 2001; Wu et al., 2002). Par ailleurs de récentes études ont montré qu'une gamme de POMs présente des activités antivirales et anti-tumorales (Hasenknopf, 2005; Gerth et al., 2005). Durant notre étude sur ce type de matériaux nous avons isolé une nouvelle phase dont les cristaux sont de qualité et de taille convenables pour une étude par diffraction des rayons X sur monocristal.

L'unité asymétrique du composé (I) consiste en un cation diprotoné 4,4'-triméthylènedipépiridinium et la moitié d'un cluster β-octamolybdate [Mo8O26]4-, chaque cluster étant organisé autour d'un centre d'inversion (Fig. 1). Une liaison hydrogène faible relie un atome d'hydrogène du cation et un atome d'oxygène externe du cluster β-octamolybdate(VI) (Fig. 1).

Des liaisons hydrogène de type N—H···O, satisfaisant la condition NHO supérieur ou égal à 150°, s'établissent entre les cations organiques et les atomes d'oxygène externes des clusters β-octamolybdate(VI), renforçant ainsi la cohésion de la structure générant ainsi une charpente tridimensionnelle (Fig. 2). Ces liaisons sont considérées comme faibles (N···O: 2,885 (6) et 3,312 (7) (Å)), d'après le critère de Brown portant sur les distances et les angles (Brown, 1976; Blessing, 1986). Le composé étudié est comparable à d'autres composés similaires de la littérature, par exemple NH4(C8H20N)3[Mo8O26] (Zebiri et al., 2008) et (C12H20N4)2[Mo8O26] (Li & Tan, 2008). En effet ces deux composés sont constitués de clusters β-octamolybdate discrets et de cations organiques reliés par des liaisons hydrogène de type NH···O. Dans le deuxième exemple cité, bien qu'il n y ait pas partage d'arêtes ni de sommets entre les clusters, l'existence de liaisons hydrogène entre les cations organiques et les clusters confère à la structure le caractère unidimensionnel.

Related literature top

For the application of polyoxometallates (POMs) in catalyst chemistry, see: Pope (1983). For the application of POMs in materials science, see: Muller et al. (1998). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu et al. (2001); Wu et al. (2002). For the antiviral and antitumour activities of POMs, see: Hasenknopf (2005); Gerth et al. (2005). For related literature, see: Zebiri et al. (2008); Li & Tan (2008). For hydrogen-bonding discussion, see: Blessing (1986); Brown (1976).

Experimental top

La synthèse a été réalisée par voie hydrothermale avec comme réactifs Na2MoO4.2H2O (0,24 g, 1 mmol) et 4,4'-triméthylènedipépiridine (0,1 g, 1 mmol). Le pH de la solution est ajusté à 4 à l'aide de HCl (6 M). La solution préparée est transvasée dans un récipient en Téflon qui est introduit dans une autoclave en acier. L'ensemble est maintenu sous pression à une température voisine de 150°C pendant deux jours. Le refroidissement jusqu'à température ambiante a été réalisé par paliers de 30° par jour. Des cristaux de forme parallélépipédique, de couleur brune, de taille suffisante et de qualité convenable pour une étude structurale sont obtenus.

Refinement top

All H atoms have been positioned geometrically using AFIX23 and AFIX13 instructions of SHELXL97 (Sheldrick, 2008) with the constraint Uiso(H) = 1.2Ueq(C).

Structure description top

Les polyoxométallates (POMs) constituent une large famille de clusters d'oxydes métalliques contenant des métaux de transition (principalement V, Mo et W) en leurs degrés d'oxydation les plus élevés (Pope, 1983). La diversité des structures des POMs leur procure une large polyvalence en termes de forme, de polarité, de potentiels redox, de surface, de distribution de charge et d'acidité, ainsi, beaucoup d'applications leur sont possibles dans divers domaines, parmi lesquels, la catalyse, la science des matériaux et chimie des polymères (Pope, 1983; Muller et al., 1998; Bu et al., 2001; Wu et al., 2002). Par ailleurs de récentes études ont montré qu'une gamme de POMs présente des activités antivirales et anti-tumorales (Hasenknopf, 2005; Gerth et al., 2005). Durant notre étude sur ce type de matériaux nous avons isolé une nouvelle phase dont les cristaux sont de qualité et de taille convenables pour une étude par diffraction des rayons X sur monocristal.

L'unité asymétrique du composé (I) consiste en un cation diprotoné 4,4'-triméthylènedipépiridinium et la moitié d'un cluster β-octamolybdate [Mo8O26]4-, chaque cluster étant organisé autour d'un centre d'inversion (Fig. 1). Une liaison hydrogène faible relie un atome d'hydrogène du cation et un atome d'oxygène externe du cluster β-octamolybdate(VI) (Fig. 1).

Des liaisons hydrogène de type N—H···O, satisfaisant la condition NHO supérieur ou égal à 150°, s'établissent entre les cations organiques et les atomes d'oxygène externes des clusters β-octamolybdate(VI), renforçant ainsi la cohésion de la structure générant ainsi une charpente tridimensionnelle (Fig. 2). Ces liaisons sont considérées comme faibles (N···O: 2,885 (6) et 3,312 (7) (Å)), d'après le critère de Brown portant sur les distances et les angles (Brown, 1976; Blessing, 1986). Le composé étudié est comparable à d'autres composés similaires de la littérature, par exemple NH4(C8H20N)3[Mo8O26] (Zebiri et al., 2008) et (C12H20N4)2[Mo8O26] (Li & Tan, 2008). En effet ces deux composés sont constitués de clusters β-octamolybdate discrets et de cations organiques reliés par des liaisons hydrogène de type NH···O. Dans le deuxième exemple cité, bien qu'il n y ait pas partage d'arêtes ni de sommets entre les clusters, l'existence de liaisons hydrogène entre les cations organiques et les clusters confère à la structure le caractère unidimensionnel.

For the application of polyoxometallates (POMs) in catalyst chemistry, see: Pope (1983). For the application of POMs in materials science, see: Muller et al. (1998). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu et al. (2001); Wu et al. (2002). For the antiviral and antitumour activities of POMs, see: Hasenknopf (2005); Gerth et al. (2005). For related literature, see: Zebiri et al. (2008); Li & Tan (2008). For hydrogen-bonding discussion, see: Blessing (1986); Brown (1976).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Représentation du polyanion [Mo8O26]4- et d'un cation diprotoné (C13H28N2)2+. Les ellipsoïdes d'agitation thermique ont 30% de probabilité de présence. Les atomes H sont représentés comme des sphères de rayon arbitraire et la liaison H est représentée en trait pointillé. [Code de symétrie: (i) -x + 1, -y + 1, -z]
[Figure 2] Fig. 2. Projection de la structure du composé (C13H28N2)2[Mo8O26] selon c.
bis[4,4'-(propane-1,3-diyl)dipiperidinium] β-octamolybdate(VI) top
Crystal data top
(C13H28N2)2[Mo8O26]F(000) = 3136
Mr = 1608.26Dx = 2.343 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 23.975 (5) Åθ = 12–15°
b = 13.935 (4) ŵ = 2.22 mm1
c = 13.647 (9) ÅT = 298 K
V = 4559 (3) Å3Prism, brown
Z = 40.4 × 0.3 × 0.2 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3996 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
ω/2θ scansh = 300
Absorption correction: ψ scan
(North et al., 1968)
k = 117
Tmin = 0.556, Tmax = 0.642l = 117
5810 measured reflections2 standard reflections every 120 min
4960 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.050P)2 + 9.1911P]
where P = (Fo2 + 2Fc2)/3
4960 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
(C13H28N2)2[Mo8O26]V = 4559 (3) Å3
Mr = 1608.26Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 23.975 (5) ŵ = 2.22 mm1
b = 13.935 (4) ÅT = 298 K
c = 13.647 (9) Å0.4 × 0.3 × 0.2 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3996 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.556, Tmax = 0.6422 standard reflections every 120 min
5810 measured reflections intensity decay: 4%
4960 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.08Δρmax = 1.05 e Å3
4960 reflectionsΔρmin = 1.27 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4488 (2)0.3151 (4)0.3293 (4)0.0540 (15)
H1A0.44630.25750.35900.065*
H1B0.47080.30810.27640.065*
N20.15957 (16)0.2275 (3)0.8306 (3)0.0294 (9)
H2A0.14680.18130.87080.035*
H2B0.13000.25470.80080.035*
C10.3795 (2)0.4370 (4)0.4548 (4)0.0312 (11)
H10.38540.49590.41700.037*
C20.3548 (3)0.3633 (5)0.3856 (4)0.0449 (15)
H200.31870.38570.36310.054*
H210.34900.30360.42080.054*
C30.3924 (3)0.3444 (5)0.2965 (4)0.0463 (15)
H310.37620.29410.25640.056*
H320.39500.40210.25710.056*
C40.4753 (3)0.3838 (5)0.3975 (4)0.0504 (16)
H410.48190.44420.36410.060*
H420.51090.35870.41920.060*
C50.4370 (2)0.4003 (5)0.4866 (4)0.0401 (13)
H510.43270.34060.52230.048*
H520.45420.44680.53020.048*
C60.3415 (2)0.4628 (4)0.5419 (4)0.0352 (12)
H610.36150.50750.58350.042*
H620.30910.49610.51650.042*
C70.3214 (2)0.3803 (4)0.6050 (4)0.0340 (12)
H710.35320.34980.63590.041*
H720.30320.33300.56380.041*
C80.2805 (2)0.4140 (4)0.6843 (4)0.0295 (10)
H810.25010.44790.65260.035*
H820.29970.45960.72620.035*
C90.25557 (19)0.3348 (3)0.7494 (3)0.0261 (9)
H90.28600.30380.78530.031*
C100.2149 (2)0.3782 (3)0.8239 (3)0.0274 (10)
H1010.23450.42510.86370.033*
H1020.18530.41120.78930.033*
C110.1898 (2)0.3022 (4)0.8900 (4)0.0338 (11)
H1110.21910.27180.92790.041*
H1120.16390.33210.93540.041*
C120.1969 (2)0.1832 (4)0.7545 (4)0.0365 (12)
H1210.17510.14050.71350.044*
H1220.22540.14530.78680.044*
C130.22476 (19)0.2581 (4)0.6904 (4)0.0299 (10)
H1310.19660.28890.65010.036*
H1320.25100.22650.64700.036*
Mo10.484896 (16)0.38831 (3)0.05948 (3)0.02043 (11)
Mo20.555686 (16)0.54337 (3)0.18157 (3)0.02254 (11)
Mo30.422788 (16)0.61244 (3)0.11200 (3)0.02489 (11)
Mo40.650139 (17)0.54832 (3)0.00726 (3)0.02559 (11)
O10.47977 (13)0.4851 (2)0.1631 (2)0.0225 (6)
O20.55436 (13)0.4788 (2)0.0253 (2)0.0211 (6)
O30.49781 (13)0.3539 (2)0.0778 (2)0.0230 (6)
O40.41461 (13)0.3525 (3)0.0625 (2)0.0273 (7)
O50.51905 (15)0.3005 (3)0.1209 (3)0.0347 (8)
O60.36637 (13)0.5174 (3)0.1144 (2)0.0279 (7)
O70.39269 (15)0.7001 (3)0.0433 (3)0.0387 (9)
O80.54174 (16)0.6221 (3)0.2737 (3)0.0353 (8)
O90.61609 (14)0.6091 (3)0.1208 (2)0.0295 (8)
O100.42016 (15)0.6529 (3)0.2296 (3)0.0420 (10)
O110.58676 (15)0.4471 (3)0.2357 (3)0.0336 (8)
O120.70309 (16)0.6243 (3)0.0214 (3)0.0415 (10)
O130.68141 (15)0.4542 (3)0.0665 (3)0.0366 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.089 (4)0.040 (3)0.033 (3)0.024 (3)0.017 (3)0.007 (2)
N20.0215 (18)0.028 (2)0.038 (2)0.0026 (17)0.0008 (17)0.0090 (18)
C10.040 (3)0.027 (3)0.027 (2)0.005 (2)0.004 (2)0.003 (2)
C20.055 (4)0.051 (3)0.029 (3)0.020 (3)0.004 (2)0.003 (3)
C30.066 (4)0.047 (3)0.026 (3)0.020 (3)0.005 (3)0.003 (3)
C40.045 (3)0.071 (5)0.035 (3)0.007 (3)0.006 (3)0.004 (3)
C50.038 (3)0.050 (3)0.033 (3)0.000 (3)0.003 (2)0.003 (3)
C60.041 (3)0.031 (3)0.034 (3)0.000 (2)0.009 (2)0.006 (2)
C70.035 (3)0.032 (3)0.034 (3)0.003 (2)0.010 (2)0.002 (2)
C80.032 (3)0.027 (2)0.029 (2)0.000 (2)0.005 (2)0.001 (2)
C90.023 (2)0.027 (2)0.028 (2)0.0002 (19)0.0011 (18)0.002 (2)
C100.030 (2)0.025 (2)0.028 (2)0.0036 (19)0.0047 (19)0.0025 (19)
C110.034 (3)0.042 (3)0.026 (2)0.004 (2)0.005 (2)0.001 (2)
C120.033 (3)0.026 (2)0.051 (3)0.002 (2)0.005 (2)0.007 (2)
C130.023 (2)0.030 (2)0.036 (2)0.0020 (19)0.005 (2)0.004 (2)
Mo10.0216 (2)0.0201 (2)0.01959 (19)0.00003 (14)0.00049 (14)0.00314 (15)
Mo20.0213 (2)0.0275 (2)0.01882 (19)0.00030 (15)0.00195 (14)0.00103 (15)
Mo30.0206 (2)0.0281 (2)0.0260 (2)0.00483 (16)0.00207 (15)0.00384 (16)
Mo40.0195 (2)0.0321 (2)0.0252 (2)0.00429 (16)0.00038 (15)0.00520 (17)
O10.0205 (15)0.0300 (17)0.0170 (14)0.0002 (13)0.0031 (12)0.0006 (13)
O20.0197 (15)0.0237 (16)0.0198 (15)0.0001 (12)0.0010 (12)0.0010 (12)
O30.0209 (15)0.0241 (16)0.0240 (15)0.0016 (13)0.0005 (13)0.0003 (13)
O40.0245 (16)0.0300 (18)0.0272 (17)0.0058 (14)0.0000 (13)0.0027 (14)
O50.037 (2)0.0296 (19)0.0371 (19)0.0021 (16)0.0061 (16)0.0099 (16)
O60.0201 (16)0.0387 (19)0.0249 (16)0.0002 (14)0.0026 (13)0.0009 (15)
O70.0318 (19)0.037 (2)0.048 (2)0.0123 (17)0.0005 (17)0.0045 (18)
O80.036 (2)0.042 (2)0.0280 (17)0.0018 (17)0.0007 (15)0.0062 (15)
O90.0248 (17)0.037 (2)0.0266 (16)0.0101 (14)0.0020 (14)0.0012 (15)
O100.0317 (19)0.059 (3)0.035 (2)0.0075 (19)0.0045 (16)0.0158 (19)
O110.0270 (18)0.039 (2)0.0353 (19)0.0033 (16)0.0050 (15)0.0038 (16)
O120.0287 (19)0.053 (2)0.043 (2)0.0137 (18)0.0003 (17)0.0127 (19)
O130.0295 (19)0.044 (2)0.036 (2)0.0029 (17)0.0057 (16)0.0088 (17)
Geometric parameters (Å, º) top
N1—C41.478 (9)C10—H1010.9700
N1—C31.482 (9)C10—H1020.9700
N1—H1A0.9000C11—H1110.9700
N1—H1B0.9000C11—H1120.9700
N2—C121.503 (6)C12—C131.517 (7)
N2—C111.506 (6)C12—H1210.9700
N2—H2A0.9000C12—H1220.9700
N2—H2B0.9000C13—H1310.9700
C1—C21.516 (8)C13—H1320.9700
C1—C51.534 (8)Mo1—O51.695 (3)
C1—C61.540 (7)Mo1—O41.758 (3)
C1—H10.9800Mo1—O11.958 (3)
C2—C31.536 (8)Mo1—O31.958 (3)
C2—H200.9700Mo1—O22.140 (3)
C2—H210.9700Mo1—O2i2.378 (3)
C3—H310.9700Mo1—Mo23.213 (2)
C3—H320.9700Mo2—O81.702 (4)
C4—C51.540 (8)Mo2—O111.703 (4)
C4—H410.9700Mo2—O91.903 (3)
C4—H420.9700Mo2—O12.009 (3)
C5—H510.9700Mo2—O22.316 (3)
C5—H520.9700Mo2—O3i2.387 (3)
C6—C71.514 (7)Mo3—O71.700 (4)
C6—H610.9700Mo3—O101.703 (4)
C6—H620.9700Mo3—O61.894 (3)
C7—C81.534 (7)Mo3—O3i2.015 (3)
C7—H710.9700Mo3—O2i2.329 (3)
C7—H720.9700Mo3—O12.346 (3)
C8—C91.538 (7)Mo4—O121.699 (4)
C8—H810.9700Mo4—O131.713 (4)
C8—H820.9700Mo4—O6i1.937 (3)
C9—C131.528 (7)Mo4—O91.945 (4)
C9—C101.533 (6)Mo4—O4i2.286 (3)
C9—H90.9800Mo4—O22.505 (3)
C10—C111.516 (7)
C4—N1—C3113.8 (5)O5—Mo1—O199.82 (16)
C4—N1—H1A108.8O4—Mo1—O196.81 (15)
C3—N1—H1A108.8O5—Mo1—O3102.72 (16)
C4—N1—H1B108.8O4—Mo1—O395.99 (14)
C3—N1—H1B108.8O1—Mo1—O3150.38 (13)
H1A—N1—H1B107.7O5—Mo1—O299.06 (15)
C12—N2—C11111.7 (4)O4—Mo1—O2156.65 (14)
C12—N2—H2A109.3O1—Mo1—O278.50 (12)
C11—N2—H2A109.3O3—Mo1—O279.18 (12)
C12—N2—H2B109.3O5—Mo1—O2i174.01 (15)
C11—N2—H2B109.3O4—Mo1—O2i81.53 (13)
H2A—N2—H2B107.9O1—Mo1—O2i77.87 (12)
C2—C1—C5107.6 (5)O3—Mo1—O2i77.75 (12)
C2—C1—C6114.0 (5)O2—Mo1—O2i75.12 (12)
C5—C1—C6113.0 (4)O5—Mo1—Mo288.51 (13)
C2—C1—H1107.3O4—Mo1—Mo2133.24 (11)
C5—C1—H1107.3O1—Mo1—Mo236.43 (9)
C6—C1—H1107.3O3—Mo1—Mo2125.24 (9)
C1—C2—C3112.3 (5)O2—Mo1—Mo246.06 (8)
C1—C2—H20109.1O2i—Mo1—Mo286.41 (8)
C3—C2—H20109.1O8—Mo2—O11105.86 (18)
C1—C2—H21109.1O8—Mo2—O999.28 (17)
C3—C2—H21109.1O11—Mo2—O9103.59 (17)
H20—C2—H21107.9O8—Mo2—O1100.10 (16)
N1—C3—C2110.1 (5)O11—Mo2—O197.61 (15)
N1—C3—H31109.6O9—Mo2—O1145.99 (13)
C2—C3—H31109.6O8—Mo2—O2158.21 (15)
N1—C3—H32109.6O11—Mo2—O295.70 (15)
C2—C3—H32109.6O9—Mo2—O278.23 (13)
H31—C3—H32108.2O1—Mo2—O273.42 (12)
N1—C4—C5109.8 (5)O8—Mo2—O3i86.92 (15)
N1—C4—H41109.7O11—Mo2—O3i164.71 (15)
C5—C4—H41109.7O9—Mo2—O3i82.07 (13)
N1—C4—H42109.7O1—Mo2—O3i71.40 (12)
C5—C4—H42109.7O2—Mo2—O3i71.29 (11)
H41—C4—H42108.2O8—Mo2—Mo1135.47 (13)
C1—C5—C4111.2 (5)O11—Mo2—Mo185.78 (13)
C1—C5—H51109.4O9—Mo2—Mo1119.95 (11)
C4—C5—H51109.4O1—Mo2—Mo135.37 (9)
C1—C5—H52109.4O2—Mo2—Mo141.72 (8)
C4—C5—H52109.4O3i—Mo2—Mo179.14 (8)
H51—C5—H52108.0O7—Mo3—O10105.4 (2)
C7—C6—C1116.8 (4)O7—Mo3—O6102.07 (17)
C7—C6—H61108.1O10—Mo3—O6100.89 (18)
C1—C6—H61108.1O7—Mo3—O3i96.11 (16)
C7—C6—H62108.1O10—Mo3—O3i100.15 (16)
C1—C6—H62108.1O6—Mo3—O3i147.28 (14)
H61—C6—H62107.3O7—Mo3—O2i92.78 (16)
C6—C7—C8111.9 (4)O10—Mo3—O2i161.40 (16)
C6—C7—H71109.2O6—Mo3—O2i78.48 (13)
C8—C7—H71109.2O3i—Mo3—O2i73.64 (12)
C6—C7—H72109.2O7—Mo3—O1162.66 (15)
C8—C7—H72109.2O10—Mo3—O189.54 (16)
H71—C7—H72107.9O6—Mo3—O183.19 (13)
C7—C8—C9115.9 (4)O3i—Mo3—O172.21 (12)
C7—C8—H81108.3O2i—Mo3—O171.90 (11)
C9—C8—H81108.3O12—Mo4—O13104.98 (19)
C7—C8—H82108.3O12—Mo4—O6i104.46 (17)
C9—C8—H82108.3O13—Mo4—O6i97.60 (17)
H81—C8—H82107.4O12—Mo4—O9103.06 (18)
C13—C9—C10108.6 (4)O13—Mo4—O998.10 (17)
C13—C9—C8112.7 (4)O6i—Mo4—O9143.39 (14)
C10—C9—C8110.3 (4)O12—Mo4—O4i92.01 (16)
C13—C9—H9108.4O13—Mo4—O4i163.01 (15)
C10—C9—H9108.4O6i—Mo4—O4i77.87 (14)
C8—C9—H9108.4O9—Mo4—O4i77.50 (14)
C11—C10—C9111.8 (4)O12—Mo4—O2161.62 (16)
C11—C10—H101109.2O13—Mo4—O293.37 (15)
C9—C10—H101109.2O6i—Mo4—O273.37 (12)
C11—C10—H102109.2O9—Mo4—O272.87 (12)
C9—C10—H102109.2O4i—Mo4—O269.64 (11)
H101—C10—H102107.9Mo1—O1—Mo2108.20 (14)
N2—C11—C10110.7 (4)Mo1—O1—Mo3110.06 (14)
N2—C11—H111109.5Mo2—O1—Mo3105.02 (14)
C10—C11—H111109.5Mo1—O2—Mo292.22 (11)
N2—C11—H112109.5Mo1—O2—Mo3i92.13 (12)
C10—C11—H112109.5Mo2—O2—Mo3i161.78 (15)
H111—C11—H112108.1Mo1—O2—Mo1i104.88 (12)
N2—C12—C13112.2 (4)Mo2—O2—Mo1i98.66 (12)
N2—C12—H121109.2Mo3i—O2—Mo1i97.29 (12)
C13—C12—H121109.2Mo1—O2—Mo4164.32 (15)
N2—C12—H122109.2Mo2—O2—Mo485.83 (10)
C13—C12—H122109.2Mo3i—O2—Mo485.22 (10)
H121—C12—H122107.9Mo1i—O2—Mo490.78 (11)
C12—C13—C9112.9 (4)Mo1—O3—Mo3i108.30 (14)
C12—C13—H131109.0Mo1—O3—Mo2i109.63 (14)
C9—C13—H131109.0Mo3i—O3—Mo2i103.34 (13)
C12—C13—H132109.0Mo1—O4—Mo4i118.04 (17)
C9—C13—H132109.0Mo3—O6—Mo4i117.50 (17)
H131—C13—H132107.8Mo2—O9—Mo4117.21 (17)
O5—Mo1—O4104.29 (17)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O50.902.423.312 (6)172
N2—H2B···O10ii0.902.012.886 (5)163
Symmetry code: (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula(C13H28N2)2[Mo8O26]
Mr1608.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)23.975 (5), 13.935 (4), 13.647 (9)
V3)4559 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.556, 0.642
No. of measured, independent and
observed [I > 2σ(I)] reflections
5810, 4960, 3996
Rint0.034
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.08
No. of reflections4960
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 1.27

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O50.902.423.312 (6)171.7
N2—H2B···O10i0.902.012.886 (5)163.3
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

References

First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBu, W.-M., Ye, L., Yang, G.-Y., Gao, J.-S., Fan, Y.-G., Shao, M.-C. & Xu, J.-Q. (2001). Inorg. Chem. Commun. 4, 1–4.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGerth, H. U. V., Rompel, A., Krebs, B., Boos, J. & Lanvers-Kaminsky, C. (2005). Anticancer Drugs, 16, 101–106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHasenknopf, B. (2005). Front. Biosci. 10, 275–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, S.-L. & Tan, K. (2008). Acta Cryst. E64, m1487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMuller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239–241.  Web of Science CrossRef PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C.-D., Lu, C.-Z., Lin, X., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 664–666.  Web of Science CSD CrossRef CAS Google Scholar
First citationZebiri, I., Bencharif, L., Direm, A., Bencharif, M. & Benali-Cherif, N. (2008). Acta Cryst. E64, m474–m475.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds