inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Scheelite-type NaEr(MoO4)2

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China, and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 6 March 2010; accepted 5 April 2010; online 10 April 2010)

Explorations of the A1+RE3+–Mo6+–O2− (A1+ is an alkali metal cation, RE3+ is a rare-earth metal cation) quaternary systems prepared by the high-temperature solution growth method led to the title structure, sodium erbium bis­(molyb­date), NaEr(MoO4)2. It is isostructural to the scheelite structure (CaWO4) and is composed of [MoO4]2− tetra­hedra with [\overline{4}] symmetry and [(Na/Er)O8]14− polyhedra. The [(Na/Er)O8]14− polyhedron is a distorted tetra­gonal anti­prism, also with [\overline{4}] symmetry, with statistically mixed Na/Er atoms at its centre. There are two sets of Na/Er—O bond lengths [2.420 (4) and 2.435 (3) Å], but just one set of Mo—O bond lengths [1.774 (4) Å].

Related literature

For the structures, properties and applications of the alkali rare-earth tungstates and molybdates with the general formula A1+RE3+(M6+O4)2 (A1+ is an alkali metal cation, RE3+ is a rare-earth metal cation, M6+ is Mo6+ or W6+), see: Huang et al. (2006[Huang, X. Y., Lin, Z. B., Zhang, L. Z., Chen, J. T. & Wang, G. F. (2006). Cryst. Growth Des. 6, 2271-2274.]); Klevtsova (1975[Klevtsova, R. F. (1975). Kristallografiya, 20, 746-750.]); Klevtsova et al. (1972[Klevtsova, R. F., Vinokurov, V. A. & Klevtsov, P. V. (1972). Kristallografiya, 17, 284-288.]); Kolitsch (2001[Kolitsch, U. (2001). Z. Kristallogr. 216, 449-454.]); Kuzmicheva et al. (2005[Kuzmicheva, G. M., Lis, D. A., Subbotin, K. A., Rybakov, V. B. & Zharikov, E. V. (2005). J. Cryst. Growth, 275, e1835-e1842.]); Li et al. (2006[Li, X. Z., Lin, Z. B., Zhang, L. Z. & Wang, G. F. (2006). J. Cryst. Growth, 293, 157-161.]); Morozov et al. (2006[Morozov, V. A., Arakcheeva, A. V., Chapuis, G., Guiblin, N., Rossell, M. D. & Van Tendeloo, G. (2006). Chem. Mater. 18, 4075-4082.]); Stevens et al. (1991[Stevens, S. B., Morrison, C. A., Allik, T. H., Rheingold, A. L. & Haggerty, B. S. (1991). Phys. Rev. B Condens. Matter. 43, 7386-7394.]); Zhao et al. (2010[Zhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i2.]). For the scheelite (CaWO4) structure, see: Sillen & Nylander (1943[Sillen, L. G. & Nylander, A. L. (1943). Ark. Kemi Mineral. Geol. 17, 1-27.]).

Experimental

Crystal data
  • NaEr(MoO4)2

  • Mr = 510.13

  • Tetragonal, I 41 /a

  • a = 5.1816 (8) Å

  • c = 11.288 (3) Å

  • V = 303.07 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 17.87 mm−1

  • T = 173 K

  • 0.08 × 0.04 × 0.04 mm

Data collection
  • Rigaku Saturn70 CCD diffractometer

  • Absorption correction: multi-scan (rescaled SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.263, Tmax = 0.489

  • 520 measured reflections

  • 172 independent reflections

  • 106 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 0.84

  • 172 reflections

  • 15 parameters

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.15 e Å−3

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Alkali rare-earth bis(molybdates) with the general formula A1+RE3+(MO4)2 (AI is an alkali-metal cation, RE3+ is a rare-earth metal cation, M is Mo6+ or W6+) have been the subject of interest for many decades, mainly due to their applications as suitable host materials for fluorescence (Kuzmicheva et al., 2005; Morozov et al., 2006; Li et al., 2006). Some of these crystals are isostructural to scheelite (CaWO4, I41/a; Sillen & Nylander, 1943), such as NaLa(MoO4)2 (Stevens et al., 1991), LiNd(MoO4)2 (Kolitsch, 2001), LiNd(WO4)2 (Huang et al., 2006) and LiDy(WO4)2 (Zhao et al., 2010).

In difference to CaWO4 with one cation species only, the cations A1+ and RE3+ are statistically disordered. Within alkali rare-earth bis(molybdates), different structures from the scheelite type have also been reported, such as LiLa(MoO4)2 (Pbca; Klevtsova, 1975) and CsDy(MoO4)2 (Pccm; Klevtsova et al. 1972).

The X-ray diffraction analysis has shown that the title compound NaEr(MoO4)2 is isostructural with the scheelite. In the title structure, Na and Er atoms are disordered over the same 4a site while Mo atoms reside on 4b site. The structure of NaEr(MoO4)2 may be regarded as composed of [MoO4]2- tetrahedra and of [(Na/Er)O8]14- polyhedra (each in the form of a distorted tetragonal antiprism) that share the oxygens (Fig. 2). Each oxygen of the [MoO4]2- tetrahedron is shared by the different Na/Er polyhedron and each oxygen of the [(Na/Er)O8]14- polyhedron is shared by the different [MoO4]2- tetrahedron.

Related literature top

For the structures, properties and applications of the alkali rare-earth tungstates and molybdates with the general formula A1+RE3+(M6+O4)2 (A1+ is an alkali metal cation, RE3+ is a rare-earth metal cation, M6+ is Mo6+ or W6+), see: Huang et al. (2006); Klevtsova (1975); Klevtsova et al. (1972); Kolitsch (2001); Kuzmicheva et al. (2005); Li et al. (2006); Morozov et al. (2006); Stevens et al. (1991); Zhao et al. (2010). For the scheelite (CaWO4) structure, see: Sillen & Nylander (1943).

Experimental top

Single crystals of NaEr(MoO4)2 have been prepared by the high temperature solution growth (HTSG) method in air. A powder mixture of Na2CO3 (0.4418 g), Er2O3 (0.2657 g) and MoO3 (2.000 g) at the molar ratio of Na:Er:Mo = 6:1:10 was first ground in an agate mortar and then transferred to a platinum crucible. The sample was gradually heated in air at 1173 K for 24 h. In this stage, the reagents were completely melted. After that, the intermediate product was slowly cooled to 673 K at the rate of 2 Kh-1. It was kept at 673 for another 10 h and then quenched to room temperature. The obtained crystals were light-red and of the prismatical shape. The dimensions of the used sample were typical for the grown crystals in this batch.

Refinement top

The Na and Er atoms are in substitutional disorder in the crystal structure. The tentative refinement that included the corresponding occupancy factors for the disordered Na/Er yielded Na1 : Er1 = 0.501 (2) : 0.499 (2). (The atomic positional and anisotropic displacement parameters of Na1 and Er1 atoms were constrained to be identical by using EADP and EXYZ constraint instructions (SHELXL-97; Sheldrick, 2008).) Therefore the ratio of Na and Er was fixed to 1:1 in the final model with the constrained positional and the displacement parameters of na and Er as given above. The highest peak in the difference electron density map equals to 1.12 e/Å3 at the distance of 0.83 Å from Na1/Er1 site while the deepest hole equals to -1.15 e/Å3 at the distance of 1.39 Å from Na1/Er1 site, too.

Structure description top

Alkali rare-earth bis(molybdates) with the general formula A1+RE3+(MO4)2 (AI is an alkali-metal cation, RE3+ is a rare-earth metal cation, M is Mo6+ or W6+) have been the subject of interest for many decades, mainly due to their applications as suitable host materials for fluorescence (Kuzmicheva et al., 2005; Morozov et al., 2006; Li et al., 2006). Some of these crystals are isostructural to scheelite (CaWO4, I41/a; Sillen & Nylander, 1943), such as NaLa(MoO4)2 (Stevens et al., 1991), LiNd(MoO4)2 (Kolitsch, 2001), LiNd(WO4)2 (Huang et al., 2006) and LiDy(WO4)2 (Zhao et al., 2010).

In difference to CaWO4 with one cation species only, the cations A1+ and RE3+ are statistically disordered. Within alkali rare-earth bis(molybdates), different structures from the scheelite type have also been reported, such as LiLa(MoO4)2 (Pbca; Klevtsova, 1975) and CsDy(MoO4)2 (Pccm; Klevtsova et al. 1972).

The X-ray diffraction analysis has shown that the title compound NaEr(MoO4)2 is isostructural with the scheelite. In the title structure, Na and Er atoms are disordered over the same 4a site while Mo atoms reside on 4b site. The structure of NaEr(MoO4)2 may be regarded as composed of [MoO4]2- tetrahedra and of [(Na/Er)O8]14- polyhedra (each in the form of a distorted tetragonal antiprism) that share the oxygens (Fig. 2). Each oxygen of the [MoO4]2- tetrahedron is shared by the different Na/Er polyhedron and each oxygen of the [(Na/Er)O8]14- polyhedron is shared by the different [MoO4]2- tetrahedron.

For the structures, properties and applications of the alkali rare-earth tungstates and molybdates with the general formula A1+RE3+(M6+O4)2 (A1+ is an alkali metal cation, RE3+ is a rare-earth metal cation, M6+ is Mo6+ or W6+), see: Huang et al. (2006); Klevtsova (1975); Klevtsova et al. (1972); Kolitsch (2001); Kuzmicheva et al. (2005); Li et al. (2006); Morozov et al. (2006); Stevens et al. (1991); Zhao et al. (2010). For the scheelite (CaWO4) structure, see: Sillen & Nylander (1943).

Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Section of the structure of NaEr(MoO4)2 with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the crystal structure of NaEr(MoO4)2. The [MoO4]2- tetrahedra are shown in green.
Sodium erbium bis(molybdate) top
Crystal data top
NaEr(MoO4)2Dx = 5.590 Mg m3
Mr = 510.13Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 365 reflections
Hall symbol: -I 4adθ = 4.3–27.3°
a = 5.1816 (8) ŵ = 17.87 mm1
c = 11.288 (3) ÅT = 173 K
V = 303.07 (11) Å3Prism, red
Z = 20.08 × 0.04 × 0.04 mm
F(000) = 454
Data collection top
Rigaku Saturn70 CCD
diffractometer
172 independent reflections
Radiation source: fine-focus sealed tube106 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.026
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 4.3°
ω scansh = 26
Absorption correction: multi-scan
(rescaled SADABS; Sheldrick, 1997)
k = 56
Tmin = 0.263, Tmax = 0.489l = 1414
520 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ^2^(Fo^2^) + (0.0639P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 0.84Δρmax = 1.12 e Å3
172 reflectionsΔρmin = 1.15 e Å3
15 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.055 (5)
9 constraints
Crystal data top
NaEr(MoO4)2Z = 2
Mr = 510.13Mo Kα radiation
Tetragonal, I41/aµ = 17.87 mm1
a = 5.1816 (8) ÅT = 173 K
c = 11.288 (3) Å0.08 × 0.04 × 0.04 mm
V = 303.07 (11) Å3
Data collection top
Rigaku Saturn70 CCD
diffractometer
172 independent reflections
Absorption correction: multi-scan
(rescaled SADABS; Sheldrick, 1997)
106 reflections with I > 2σ(I)
Tmin = 0.263, Tmax = 0.489Rint = 0.026
520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03215 parameters
wR(F2) = 0.0890 restraints
S = 0.84Δρmax = 1.12 e Å3
172 reflectionsΔρmin = 1.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.00000.25000.12500.0081 (5)0.50
Na10.00000.25000.12500.0081 (5)0.50
Mo10.50000.75000.12500.0086 (5)
O10.2568 (6)0.5968 (6)0.0397 (3)0.0204 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.0070 (6)0.0070 (6)0.0102 (8)0.0000.0000.000
Na10.0070 (6)0.0070 (6)0.0102 (8)0.0000.0000.000
Mo10.0067 (6)0.0067 (6)0.0124 (8)0.0000.0000.000
O10.025 (2)0.017 (2)0.019 (2)0.0012 (15)0.0045 (14)0.0007 (17)
Geometric parameters (Å, º) top
Er1—O1i2.420 (4)Er1—O1vii2.435 (3)
Er1—O1ii2.420 (4)Mo1—O1viii1.774 (4)
Er1—O1iii2.420 (4)Mo1—O1ix1.774 (4)
Er1—O1iv2.420 (4)Mo1—O11.774 (4)
Er1—O1v2.435 (3)Mo1—O1x1.774 (4)
Er1—O1vi2.435 (3)O1—Na1iii2.420 (4)
Er1—O12.435 (3)O1—Er1iii2.420 (4)
O1i—Er1—O1ii79.63 (16)O1v—Er1—O1vii99.01 (7)
O1i—Er1—O1iii126.16 (10)O1vi—Er1—O1vii99.01 (7)
O1ii—Er1—O1iii126.16 (10)O1—Er1—O1vii133.38 (18)
O1i—Er1—O1iv126.16 (10)O1i—Er1—Er1xi38.03 (7)
O1ii—Er1—O1iv126.16 (10)O1ii—Er1—Er1xi69.88 (9)
O1iii—Er1—O1iv79.62 (16)O1iii—Er1—Er1xi159.67 (8)
O1i—Er1—O1v75.78 (12)O1iv—Er1—Er1xi101.19 (8)
O1ii—Er1—O1v68.76 (7)O1v—Er1—Er1xi37.75 (8)
O1iii—Er1—O1v152.76 (16)O1vi—Er1—Er1xi101.99 (9)
O1iv—Er1—O1v73.67 (7)O1—Er1—Er1xi85.52 (9)
O1i—Er1—O1vi68.76 (7)O1vii—Er1—Er1xi131.38 (8)
O1ii—Er1—O1vi75.78 (12)O1i—Er1—Na1xi38.03 (7)
O1iii—Er1—O1vi73.67 (7)O1ii—Er1—Na1xi69.88 (9)
O1iv—Er1—O1vi152.76 (16)O1iii—Er1—Na1xi159.67 (8)
O1v—Er1—O1vi133.38 (18)O1iv—Er1—Na1xi101.19 (8)
O1i—Er1—O173.67 (7)O1v—Er1—Na1xi37.75 (8)
O1ii—Er1—O1152.76 (16)O1vi—Er1—Na1xi101.99 (9)
O1iii—Er1—O175.78 (12)O1—Er1—Na1xi85.52 (9)
O1iv—Er1—O168.76 (7)O1vii—Er1—Na1xi131.38 (8)
O1v—Er1—O199.01 (7)O1viii—Mo1—O1ix114.2 (2)
O1vi—Er1—O199.01 (7)O1viii—Mo1—O1107.15 (11)
O1i—Er1—O1vii152.76 (16)O1ix—Mo1—O1107.15 (11)
O1ii—Er1—O1vii73.67 (7)O1viii—Mo1—O1x107.15 (11)
O1iii—Er1—O1vii68.76 (7)O1ix—Mo1—O1x107.15 (11)
O1iv—Er1—O1vii75.78 (12)O1—Mo1—O1x114.2 (2)
Symmetry codes: (i) y+3/4, x+1/4, z+1/4; (ii) y3/4, x+1/4, z+1/4; (iii) x, y+1, z; (iv) x, y1/2, z; (v) y1/4, x+1/4, z+1/4; (vi) y+1/4, x+1/4, z+1/4; (vii) x, y+1/2, z; (viii) y1/4, x+5/4, z+1/4; (ix) y+5/4, x+1/4, z+1/4; (x) x+1, y+3/2, z; (xi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaNaEr(MoO4)2
Mr510.13
Crystal system, space groupTetragonal, I41/a
Temperature (K)173
a, c (Å)5.1816 (8), 11.288 (3)
V3)303.07 (11)
Z2
Radiation typeMo Kα
µ (mm1)17.87
Crystal size (mm)0.08 × 0.04 × 0.04
Data collection
DiffractometerRigaku Saturn70 CCD
diffractometer
Absorption correctionMulti-scan
(rescaled SADABS; Sheldrick, 1997)
Tmin, Tmax0.263, 0.489
No. of measured, independent and
observed [I > 2σ(I)] reflections
520, 172, 106
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 0.84
No. of reflections172
No. of parameters15
Δρmax, Δρmin (e Å3)1.12, 1.15

Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

 

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHuang, X. Y., Lin, Z. B., Zhang, L. Z., Chen, J. T. & Wang, G. F. (2006). Cryst. Growth Des. 6, 2271–2274.  Web of Science CrossRef CAS Google Scholar
First citationKlevtsova, R. F. (1975). Kristallografiya, 20, 746–750.  CAS Google Scholar
First citationKlevtsova, R. F., Vinokurov, V. A. & Klevtsov, P. V. (1972). Kristallografiya, 17, 284–288.  CAS Google Scholar
First citationKolitsch, U. (2001). Z. Kristallogr. 216, 449–454.  Web of Science CrossRef CAS Google Scholar
First citationKuzmicheva, G. M., Lis, D. A., Subbotin, K. A., Rybakov, V. B. & Zharikov, E. V. (2005). J. Cryst. Growth, 275, e1835–e1842.  Web of Science CrossRef CAS Google Scholar
First citationLi, X. Z., Lin, Z. B., Zhang, L. Z. & Wang, G. F. (2006). J. Cryst. Growth, 293, 157–161.  Web of Science CrossRef CAS Google Scholar
First citationMorozov, V. A., Arakcheeva, A. V., Chapuis, G., Guiblin, N., Rossell, M. D. & Van Tendeloo, G. (2006). Chem. Mater. 18, 4075–4082.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSillen, L. G. & Nylander, A. L. (1943). Ark. Kemi Mineral. Geol. 17, 1–27.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevens, S. B., Morrison, C. A., Allik, T. H., Rheingold, A. L. & Haggerty, B. S. (1991). Phys. Rev. B Condens. Matter. 43, 7386–7394.  CrossRef CAS PubMed Google Scholar
First citationZhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i2.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds