metal-organic compounds
fac-Aqua(2-carboxyethyl-κ2C,O)trichloridotin(IV)–1,4,7,10,13-pentaoxacyclopentadecane–water (1/1/2)
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com
In the title compound, [Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2O, the SnIV atom is octahedrally coordinated within a fac-CO2Cl3 donor set, arising from the C,O-bidentate carboxyethyl ligand, a water molecule and three chloride ligands. In the crystal, supramolecular chains linked by O—H⋯O hydrogen bonds propagate along the c axis These chains are connected into layers in the ac plane via C—H⋯O interactions.
Related literature
For original industrial interest in functionally substituted alkyl–tin compounds, see: Lanigen & Weinberg (1976). For studies concerning the coordination chemistry of functionally substituted alkyl–tin compounds, see: Harrison et al. (1979); Howie et al. (1986); Balasubramanian et al. (1997); Tian et al. (2005); de Lima et al. (2009). For related structures of functionally substituted alkyl–tin compounds, see: Buchanan et al. (1996); Howie & Wardell (2001, 2002). For a review on tin–crown ether compounds, see: Cusack & Smith (1990). For related structures of organotin(IV) and tin(IV) halide complexes with see: Barnes & Weakley (1976); Cusack et al. (1984); Amini et al. (1984, 2002); Russo et al. (1984); Valle et al. (1984, 1985); Rivarola et al. (1986); Hough et al. (1986); Bott et al. (1987); Mitra et al. (1993); Yap et al. (1996); Wolff et al. (2009); Wardell et al. (2010). For a related tin compound with a 2-carboxyethyl ligand, see: Somphon et al. (2006). For the synthesis of MeO2CCH2CH2CO2SnCl3, see: Hutton & Oakes (1976).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810011633/hb5380sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810011633/hb5380Isup2.hkl
The title compound was obtained from a solution of MeO2CCH2CH2CO2SnCl3 (0.360 g, 1 mmol), obtained from SnCl2, H2C=CHCO2Me and HCl (Hutton & Oakes, 1976), and 15-crown-5 (0.220 g, 1 mmol) in MeOH (20 ml). The solution was gently heated for 30 minutes and maintained at room temperature and colourless blades of (I) were harvested after 4 days. m.pt. 423-426 K. IR: ν 1654 (C=O) cm-1.
The C-bound H atoms were geometrically placed (C–H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The O—H atoms were refined with the distance restraint 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(parent atom).
The so-called, estertin chlorides, RO2CCH2CH2SnCl3, as well as the diestertin dichlorides (RO2CCH2CH2)2SnCl2 (R = Me, Et, etc.), were initially made in the 1970's (Hutton & Oakes, 1976) as precursors of organotin mercaptide PVC stabilizers by AZKO Chemie (Lanigen & Weinberg, 1976). This intention has never (yet) been fulfilled industrially. However, interest in the coordination chemistry of such compounds has been maintained until today, with particular interest centering on the coordinating mode of the RO2CCH2CH2 ligand, i.e. whether mono-or bi-dentate (Tian et al., 2005; Balasubramanian et al., 1997; Harrison et al., 1979; de Lima et al., 2009; Buchanan et al., 1996; Howie & Wardell, 2001; Howie & Wardell, 2002; Howie et al., 1986). We now wish to report the structure of fac-aqua(2-carboxyethyl-κ2C,O)trichloridotin(IV) 1,4,7,10,13-pentaoxacyclopentadecane dihydrate, (I). Crown ether complexes of tin and organotin halides have been variously reported (Barnes & Weakley, 1976; Cusack et al., 1984; Amini et al. 1984; Amini et al. 2002; Russo et al., 1984; Valle et al., 1984, 1985; Rivarola et al. 1986; Hough et al., 1986; Bott et al., 1987; Cusack & Smith, 1990; Mitra et al., 1993); Yap et al., 1996; Wolff et al., 2009; Wardell et al., 2010).
The
of (I) comprises an organotin molecule, a 15-crown-5 molecule and two solvent water molecules of crystallisation, Fig. 1. The tin atom exists within a fac-CCl3O2 donor set defined by three Cl atoms, chelating C- and O- atoms from the 2-carboxyethyl ligand, and a coordinated water molecule. The C3–O1 [1.233 (4) Å] and C3–O2 [1.289 (4) Å] bond distances, and the pattern on intermolecular hydrogen bonds (see below) indicate the coordination of the carbonyl-O1 atom. The four non-hydrogen atoms of the chelating ligand are planar with the C1–C2–C3–O1 torsion angle being 0.5 (5) °. However, the five-membered chelate ring is not planar as the tin atom lies above the plane through the chelating ligand as indicated in the values of the Sn–C1–C2–C3 and Sn–O1–C3–C2 torsion angles of 9.1 (4) and -9.3 (4) °, respectively. There is only one other tin structure containing a 2-carboxyethyl ligand available in the literature and this adopts the same mode of coordination (Somphon et al., 2006). The Sn–Cl bond distances span a large range, Table 1, with the shorter Sn—Cl3 bond having the Cl3 atom trans to the C atom of the organic ligand. The longer Sn—Cl1 bond has the Cl1 atom trans to the aqua ligand which forms a shorter Sn–O1w bond distance than the dative Sn–O1 bond, Table 1.There are a large number of O–H···O hydrogen bonding interactions in the
of (I), Table 2. One of the H atoms of the aqua ligand forms a hydrogen bond with a lattice water (O3w) molecule and the other H atom is connected to an ether-O atom. Each of the H atoms of the O3w water molecule is connected to an ether-O atom. As a result, a nine-membered {···HOH···OH···OC2O} synthon is formed, Fig. 2. The hydroxyl group forms a hydrogen bond to the second lattice water molecule which, like the O3w water molecule, forms two donor interactions to ether-O atoms so that each ether-O atom participates in the hydrogen bonding scheme. The hydrogen bonds lead to the formation of supramolecular chains along the c axis, Fig. 2. Chains are linked into layers in the ac plane via C–H···O interactions, Table 2 and Fig. 3.For original industrial interest in functionally substituted alkyl–tin compounds, see: Lanigen & Weinberg (1976). For studies concerning the coordination chemistry of functionally substituted alkyl–tin compounds, see: Harrison et al. (1979); Howie et al. (1986); Balasubramanian et al. (1997); Tian et al. (2005); de Lima et al. (2009). For related structures of functionally substituted alkyl–tin compounds, see: Buchanan et al. (1996); Howie & Wardell (2001, 2002). For a review on tin–crown ether compounds, see: Cusack & Smith (1990). For related structures of organotin(IV) and tin(IV) halide complexes with
see: Barnes & Weakley, (1976); Cusack et al. (1984); Amini et al. (1984, 2002); Russo et al. (1984); Valle et al. (1984, 1985); Rivarola et al. (1986); Hough et al. (1986) ; Bott et al. (1987); Mitra et al. (1993); Yap et al. (1996); Wolff et al. (2009); Wardell et al. (2010). For a related tin compound with a 2-carboxyethyl ligand, see: Somphon et al. (2006). For the synthesis of MeO2CCH2CH2CO2SnCl3, see: Hutton & Oakes (1976).Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structures of (I) showing displacement ellipsoids at the 50% probability level. | |
Fig. 2. A view of the supramolecular chain aligned along the c axis in the crystal structure of (I) formed through the agency of O–H···O hydrogen bonding interactions (orange dashed lines). | |
Fig. 3. A view of the unit cell contents in (I) shown in projection down the c axis and highlighting the C–H···O interactions (blue dashed lines) formed between the chains to form two-dimensional arrays that stack along the b axis; O–H···O hydrogen bonds are shown as orange dashed lines. |
[Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2O | F(000) = 1160 |
Mr = 572.42 | Dx = 1.711 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 15234 reflections |
a = 7.2193 (2) Å | θ = 2.9–27.5° |
b = 29.6516 (13) Å | µ = 1.56 mm−1 |
c = 10.3871 (5) Å | T = 120 K |
β = 91.857 (2)° | Blade, colourless |
V = 2222.33 (16) Å3 | 0.42 × 0.20 × 0.07 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 3721 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 3241 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.037 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −35→35 |
Tmin = 0.621, Tmax = 0.746 | l = −12→12 |
12758 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1546P] where P = (Fo2 + 2Fc2)/3 |
3721 reflections | (Δ/σ)max = 0.001 |
265 parameters | Δρmax = 0.70 e Å−3 |
10 restraints | Δρmin = −0.74 e Å−3 |
[Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2O | V = 2222.33 (16) Å3 |
Mr = 572.42 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2193 (2) Å | µ = 1.56 mm−1 |
b = 29.6516 (13) Å | T = 120 K |
c = 10.3871 (5) Å | 0.42 × 0.20 × 0.07 mm |
β = 91.857 (2)° |
Nonius KappaCCD diffractometer | 3721 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 3241 reflections with I > 2σ(I) |
Tmin = 0.621, Tmax = 0.746 | Rint = 0.037 |
12758 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 10 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.19 | Δρmax = 0.70 e Å−3 |
3721 reflections | Δρmin = −0.74 e Å−3 |
265 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.22564 (3) | 0.175614 (7) | 0.29201 (2) | 0.01417 (11) | |
Cl1 | 0.34019 (12) | 0.21445 (3) | 0.10473 (9) | 0.0209 (2) | |
Cl2 | 0.43021 (12) | 0.21340 (3) | 0.44366 (9) | 0.0211 (2) | |
Cl3 | 0.42241 (11) | 0.11255 (3) | 0.26495 (9) | 0.0186 (2) | |
O1 | 0.0296 (3) | 0.13662 (7) | 0.1555 (2) | 0.0178 (5) | |
O2 | −0.2328 (3) | 0.14512 (9) | 0.0433 (2) | 0.0225 (6) | |
H1O | −0.195 (5) | 0.1229 (8) | 0.001 (3) | 0.034* | |
O3 | −0.2678 (3) | 0.08134 (8) | 0.6564 (2) | 0.0199 (6) | |
O4 | −0.0320 (3) | 0.15697 (8) | 0.6706 (2) | 0.0187 (6) | |
O5 | 0.3096 (3) | 0.12348 (8) | 0.7855 (2) | 0.0196 (6) | |
O6 | 0.1948 (3) | 0.03774 (8) | 0.8827 (2) | 0.0198 (6) | |
O7 | −0.0411 (3) | 0.00568 (8) | 0.6891 (2) | 0.0194 (6) | |
O1W | 0.1114 (3) | 0.13208 (8) | 0.4460 (2) | 0.0204 (6) | |
H1W | 0.168 (4) | 0.1089 (7) | 0.473 (3) | 0.031* | |
H2W | 0.056 (4) | 0.1448 (10) | 0.506 (2) | 0.031* | |
O2W | −0.1475 (3) | 0.07709 (8) | −0.0930 (2) | 0.0183 (5) | |
H3W | −0.194 (4) | 0.0799 (13) | −0.1676 (11) | 0.027* | |
H4W | −0.0378 (18) | 0.0677 (12) | −0.094 (3) | 0.027* | |
O3W | 0.2298 (3) | 0.06380 (9) | 0.5896 (2) | 0.0228 (6) | |
H5W | 0.137 (3) | 0.0475 (10) | 0.603 (3) | 0.034* | |
H6W | 0.256 (4) | 0.0798 (11) | 0.654 (2) | 0.034* | |
C1 | −0.0237 (5) | 0.21467 (12) | 0.3046 (4) | 0.0225 (9) | |
H1A | −0.0752 | 0.2109 | 0.3911 | 0.027* | |
H1B | 0.0051 | 0.2470 | 0.2924 | 0.027* | |
C2 | −0.1649 (5) | 0.19982 (13) | 0.2036 (4) | 0.0255 (9) | |
H2A | −0.1831 | 0.2245 | 0.1404 | 0.031* | |
H2B | −0.2845 | 0.1949 | 0.2454 | 0.031* | |
C3 | −0.1152 (5) | 0.15757 (12) | 0.1323 (3) | 0.0163 (8) | |
C4 | −0.3106 (5) | 0.12264 (12) | 0.5911 (4) | 0.0195 (8) | |
H4A | −0.4466 | 0.1262 | 0.5800 | 0.023* | |
H4B | −0.2561 | 0.1227 | 0.5048 | 0.023* | |
C5 | −0.2309 (4) | 0.16057 (12) | 0.6714 (4) | 0.0201 (8) | |
H5A | −0.2713 | 0.1900 | 0.6351 | 0.024* | |
H5B | −0.2740 | 0.1584 | 0.7607 | 0.024* | |
C6 | 0.0615 (5) | 0.18000 (11) | 0.7739 (4) | 0.0198 (8) | |
H6A | 0.0135 | 0.1697 | 0.8571 | 0.024* | |
H6B | 0.0398 | 0.2129 | 0.7661 | 0.024* | |
C7 | 0.2661 (5) | 0.17016 (12) | 0.7691 (4) | 0.0205 (8) | |
H7A | 0.3118 | 0.1804 | 0.6851 | 0.025* | |
H7B | 0.3322 | 0.1877 | 0.8374 | 0.025* | |
C8 | 0.3375 (5) | 0.10950 (12) | 0.9175 (4) | 0.0197 (8) | |
H8A | 0.2278 | 0.1173 | 0.9678 | 0.024* | |
H8B | 0.4471 | 0.1249 | 0.9568 | 0.024* | |
C9 | 0.3668 (4) | 0.05926 (12) | 0.9177 (4) | 0.0216 (8) | |
H9A | 0.4623 | 0.0511 | 0.8554 | 0.026* | |
H9B | 0.4101 | 0.0491 | 1.0044 | 0.026* | |
C10 | 0.2127 (5) | −0.00743 (12) | 0.8347 (4) | 0.0236 (9) | |
H10A | 0.2632 | −0.0275 | 0.9034 | 0.028* | |
H10B | 0.2982 | −0.0079 | 0.7620 | 0.028* | |
C11 | 0.0241 (5) | −0.02314 (12) | 0.7904 (4) | 0.0219 (8) | |
H11A | 0.0305 | −0.0546 | 0.7593 | 0.026* | |
H11B | −0.0617 | −0.0221 | 0.8628 | 0.026* | |
C12 | −0.2365 (4) | 0.00224 (12) | 0.6619 (4) | 0.0201 (8) | |
H12A | −0.3045 | 0.0023 | 0.7431 | 0.024* | |
H12B | −0.2649 | −0.0262 | 0.6153 | 0.024* | |
C13 | −0.2938 (5) | 0.04203 (12) | 0.5804 (4) | 0.0192 (8) | |
H13A | −0.2174 | 0.0437 | 0.5031 | 0.023* | |
H13B | −0.4255 | 0.0392 | 0.5520 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.01453 (16) | 0.01367 (15) | 0.01420 (17) | 0.00086 (9) | −0.00119 (11) | −0.00125 (10) |
Cl1 | 0.0302 (5) | 0.0175 (4) | 0.0149 (5) | −0.0001 (4) | −0.0009 (4) | 0.0030 (4) |
Cl2 | 0.0254 (5) | 0.0216 (5) | 0.0161 (5) | −0.0061 (4) | −0.0053 (4) | 0.0014 (4) |
Cl3 | 0.0191 (4) | 0.0172 (4) | 0.0195 (5) | 0.0051 (3) | 0.0019 (4) | 0.0019 (4) |
O1 | 0.0169 (13) | 0.0175 (12) | 0.0188 (14) | 0.0026 (10) | −0.0062 (10) | −0.0055 (11) |
O2 | 0.0168 (13) | 0.0307 (15) | 0.0196 (15) | 0.0026 (11) | −0.0035 (11) | −0.0100 (13) |
O3 | 0.0264 (14) | 0.0175 (13) | 0.0155 (14) | 0.0019 (10) | −0.0053 (11) | −0.0021 (11) |
O4 | 0.0169 (13) | 0.0208 (13) | 0.0184 (15) | −0.0001 (10) | 0.0010 (11) | −0.0043 (12) |
O5 | 0.0248 (13) | 0.0202 (13) | 0.0138 (15) | −0.0001 (10) | 0.0028 (11) | −0.0006 (11) |
O6 | 0.0137 (12) | 0.0207 (13) | 0.0248 (15) | 0.0007 (10) | −0.0010 (11) | −0.0024 (11) |
O7 | 0.0178 (13) | 0.0166 (12) | 0.0240 (15) | −0.0002 (10) | 0.0019 (11) | 0.0037 (11) |
O1W | 0.0256 (14) | 0.0191 (13) | 0.0169 (14) | 0.0009 (11) | 0.0074 (11) | −0.0007 (12) |
O2W | 0.0178 (13) | 0.0218 (13) | 0.0149 (14) | 0.0031 (11) | −0.0034 (10) | −0.0008 (12) |
O3W | 0.0274 (15) | 0.0230 (14) | 0.0183 (15) | −0.0063 (11) | 0.0049 (12) | −0.0037 (12) |
C1 | 0.0188 (19) | 0.023 (2) | 0.026 (2) | 0.0051 (15) | −0.0010 (16) | −0.0038 (17) |
C2 | 0.0254 (19) | 0.026 (2) | 0.025 (2) | 0.0078 (17) | −0.0026 (17) | −0.0091 (18) |
C3 | 0.0143 (18) | 0.0206 (19) | 0.014 (2) | −0.0030 (15) | 0.0047 (15) | 0.0044 (17) |
C4 | 0.0179 (18) | 0.024 (2) | 0.017 (2) | 0.0047 (15) | −0.0023 (15) | 0.0053 (17) |
C5 | 0.0195 (19) | 0.0186 (18) | 0.022 (2) | 0.0033 (14) | 0.0034 (16) | 0.0022 (17) |
C6 | 0.028 (2) | 0.0159 (18) | 0.015 (2) | −0.0033 (15) | 0.0020 (16) | −0.0063 (15) |
C7 | 0.025 (2) | 0.0186 (19) | 0.018 (2) | −0.0076 (15) | 0.0036 (16) | 0.0002 (16) |
C8 | 0.0129 (18) | 0.029 (2) | 0.017 (2) | −0.0008 (15) | −0.0035 (15) | −0.0019 (17) |
C9 | 0.0153 (18) | 0.029 (2) | 0.020 (2) | 0.0014 (16) | −0.0012 (15) | 0.0031 (18) |
C10 | 0.027 (2) | 0.0179 (19) | 0.026 (2) | 0.0065 (15) | 0.0012 (17) | 0.0086 (18) |
C11 | 0.028 (2) | 0.0155 (18) | 0.023 (2) | −0.0010 (15) | 0.0019 (16) | 0.0061 (17) |
C12 | 0.0172 (19) | 0.0192 (19) | 0.024 (2) | −0.0057 (14) | 0.0019 (16) | −0.0086 (17) |
C13 | 0.0199 (18) | 0.0215 (19) | 0.016 (2) | −0.0014 (15) | −0.0048 (15) | −0.0078 (16) |
Sn—C1 | 2.148 (3) | C2—C3 | 1.505 (5) |
Sn—O1 | 2.284 (2) | C2—H2A | 0.9900 |
Sn—O1w | 2.234 (2) | C2—H2B | 0.9900 |
Sn—Cl1 | 2.4287 (9) | C4—C5 | 1.504 (5) |
Sn—Cl2 | 2.4014 (9) | C4—H4A | 0.9900 |
Sn—Cl3 | 2.3706 (8) | C4—H4B | 0.9900 |
O1—C3 | 1.233 (4) | C5—H5A | 0.9900 |
O2—C3 | 1.289 (4) | C5—H5B | 0.9900 |
O2—H1O | 0.84 (3) | C6—C7 | 1.508 (5) |
O3—C13 | 1.417 (4) | C6—H6A | 0.9900 |
O3—C4 | 1.429 (4) | C6—H6B | 0.9900 |
O4—C6 | 1.423 (4) | C7—H7A | 0.9900 |
O4—C5 | 1.440 (4) | C7—H7B | 0.9900 |
O5—C7 | 1.428 (4) | C8—C9 | 1.505 (5) |
O5—C8 | 1.441 (4) | C8—H8A | 0.9900 |
O6—C9 | 1.433 (4) | C8—H8B | 0.9900 |
O6—C10 | 1.436 (4) | C9—H9A | 0.9900 |
O7—C11 | 1.424 (4) | C9—H9B | 0.9900 |
O7—C12 | 1.433 (4) | C10—C11 | 1.497 (5) |
O1W—H1W | 0.84 (2) | C10—H10A | 0.9900 |
O1W—H2W | 0.84 (3) | C10—H10B | 0.9900 |
O2W—H3W | 0.839 (16) | C11—H11A | 0.9900 |
O2W—H4W | 0.840 (17) | C11—H11B | 0.9900 |
O3W—H5W | 0.84 (2) | C12—C13 | 1.502 (5) |
O3W—H6W | 0.84 (3) | C12—H12A | 0.9900 |
C1—C2 | 1.504 (5) | C12—H12B | 0.9900 |
C1—H1A | 0.9900 | C13—H13A | 0.9900 |
C1—H1B | 0.9900 | C13—H13B | 0.9900 |
C1—Sn—O1W | 86.48 (12) | O4—C5—H5B | 110.2 |
C1—Sn—O1 | 78.88 (11) | C4—C5—H5B | 110.2 |
O1W—Sn—O1 | 85.19 (9) | H5A—C5—H5B | 108.5 |
C1—Sn—Cl3 | 159.90 (10) | O4—C6—C7 | 108.9 (3) |
O1W—Sn—Cl3 | 82.27 (6) | O4—C6—H6A | 109.9 |
O1—Sn—Cl3 | 83.61 (6) | C7—C6—H6A | 109.9 |
C1—Sn—Cl2 | 101.97 (10) | O4—C6—H6B | 109.9 |
O1W—Sn—Cl2 | 91.92 (7) | C7—C6—H6B | 109.9 |
O1—Sn—Cl2 | 176.94 (6) | H6A—C6—H6B | 108.3 |
Cl3—Sn—Cl2 | 95.03 (3) | O5—C7—C6 | 113.3 (3) |
C1—Sn—Cl1 | 95.78 (11) | O5—C7—H7A | 108.9 |
O1W—Sn—Cl1 | 172.17 (7) | C6—C7—H7A | 108.9 |
O1—Sn—Cl1 | 87.89 (6) | O5—C7—H7B | 108.9 |
Cl3—Sn—Cl1 | 93.33 (3) | C6—C7—H7B | 108.9 |
Cl2—Sn—Cl1 | 94.94 (3) | H7A—C7—H7B | 107.7 |
C3—O1—Sn | 111.8 (2) | O5—C8—C9 | 107.5 (3) |
C3—O2—H1O | 112 (3) | O5—C8—H8A | 110.2 |
C13—O3—C4 | 114.7 (3) | C9—C8—H8A | 110.2 |
C6—O4—C5 | 114.1 (3) | O5—C8—H8B | 110.2 |
C7—O5—C8 | 114.6 (3) | C9—C8—H8B | 110.2 |
C9—O6—C10 | 114.6 (2) | H8A—C8—H8B | 108.5 |
C11—O7—C12 | 113.7 (3) | O6—C9—C8 | 108.7 (3) |
Sn—O1W—H1W | 121 (2) | O6—C9—H9A | 110.0 |
Sn—O1W—H2W | 118 (2) | C8—C9—H9A | 110.0 |
H1W—O1W—H2W | 111 (3) | O6—C9—H9B | 110.0 |
H3W—O2W—H4W | 112 (3) | C8—C9—H9B | 110.0 |
H5W—O3W—H6W | 111 (3) | H9A—C9—H9B | 108.3 |
C2—C1—Sn | 110.5 (2) | O6—C10—C11 | 107.8 (3) |
C2—C1—H1A | 109.6 | O6—C10—H10A | 110.1 |
Sn—C1—H1A | 109.6 | C11—C10—H10A | 110.1 |
C2—C1—H1B | 109.6 | O6—C10—H10B | 110.1 |
Sn—C1—H1B | 109.6 | C11—C10—H10B | 110.1 |
H1A—C1—H1B | 108.1 | H10A—C10—H10B | 108.5 |
C1—C2—C3 | 114.8 (3) | O7—C11—C10 | 108.4 (3) |
C1—C2—H2A | 108.6 | O7—C11—H11A | 110.0 |
C3—C2—H2A | 108.6 | C10—C11—H11A | 110.0 |
C1—C2—H2B | 108.6 | O7—C11—H11B | 110.0 |
C3—C2—H2B | 108.6 | C10—C11—H11B | 110.0 |
H2A—C2—H2B | 107.5 | H11A—C11—H11B | 108.4 |
O1—C3—O2 | 122.1 (3) | O7—C12—C13 | 107.9 (3) |
O1—C3—C2 | 122.5 (3) | O7—C12—H12A | 110.1 |
O2—C3—C2 | 115.4 (3) | C13—C12—H12A | 110.1 |
O3—C4—C5 | 107.7 (3) | O7—C12—H12B | 110.1 |
O3—C4—H4A | 110.2 | C13—C12—H12B | 110.1 |
C5—C4—H4A | 110.2 | H12A—C12—H12B | 108.4 |
O3—C4—H4B | 110.2 | O3—C13—C12 | 107.7 (3) |
C5—C4—H4B | 110.2 | O3—C13—H13A | 110.2 |
H4A—C4—H4B | 108.5 | C12—C13—H13A | 110.2 |
O4—C5—C4 | 107.8 (3) | O3—C13—H13B | 110.2 |
O4—C5—H5A | 110.2 | C12—C13—H13B | 110.2 |
C4—C5—H5A | 110.2 | H13A—C13—H13B | 108.5 |
C1—Sn—O1—C3 | 10.9 (2) | C13—O3—C4—C5 | −165.7 (3) |
O1W—Sn—O1—C3 | 98.2 (2) | C6—O4—C5—C4 | −159.8 (3) |
Cl3—Sn—O1—C3 | −179.1 (2) | O3—C4—C5—O4 | 67.1 (3) |
Cl2—Sn—O1—C3 | 117.3 (11) | C5—O4—C6—C7 | 174.9 (3) |
Cl1—Sn—O1—C3 | −85.5 (2) | C8—O5—C7—C6 | −87.7 (4) |
O1W—Sn—C1—C2 | −95.8 (3) | O4—C6—C7—O5 | −62.2 (4) |
O1—Sn—C1—C2 | −10.0 (3) | C7—O5—C8—C9 | 175.7 (3) |
Cl3—Sn—C1—C2 | −39.8 (5) | C10—O6—C9—C8 | 158.9 (3) |
Cl2—Sn—C1—C2 | 173.0 (2) | O5—C8—C9—O6 | −70.4 (3) |
Cl1—Sn—C1—C2 | 76.7 (3) | C9—O6—C10—C11 | −174.4 (3) |
Sn—C1—C2—C3 | 9.1 (4) | C12—O7—C11—C10 | −164.0 (3) |
Sn—O1—C3—O2 | 169.4 (3) | O6—C10—C11—O7 | 61.5 (4) |
Sn—O1—C3—C2 | −9.3 (4) | C11—O7—C12—C13 | 165.3 (3) |
C1—C2—C3—O1 | 0.5 (5) | C4—O3—C13—C12 | 178.0 (3) |
C1—C2—C3—O2 | −178.3 (3) | O7—C12—C13—O3 | −65.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1o···O2w | 0.84 (3) | 1.71 (3) | 2.551 (3) | 172 (4) |
O1w—H1w···O3w | 0.84 (2) | 1.85 (3) | 2.640 (3) | 156 (3) |
O1w—H2w···O4 | 0.84 (3) | 1.88 (2) | 2.686 (3) | 161 (3) |
O2w—H3w···O3i | 0.84 (2) | 1.89 (1) | 2.720 (3) | 172 (3) |
O2w—H4w···O6i | 0.84 (2) | 1.92 (2) | 2.752 (3) | 169 (3) |
O3w—H5w···O7 | 0.84 (2) | 2.02 (3) | 2.827 (3) | 162 (3) |
O3w—H6w···O5 | 0.84 (3) | 1.91 (3) | 2.744 (3) | 172 (3) |
C8—H8b···O2ii | 0.99 | 2.52 | 3.491 (4) | 165 |
C12—H12b···O3wiii | 0.99 | 2.42 | 3.266 (5) | 143 |
Symmetry codes: (i) x, y, z−1; (ii) x+1, y, z+1; (iii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Sn(C3H5O2)Cl3(H2O)]·C10H20O5·2H2O |
Mr | 572.42 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 7.2193 (2), 29.6516 (13), 10.3871 (5) |
β (°) | 91.857 (2) |
V (Å3) | 2222.33 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.56 |
Crystal size (mm) | 0.42 × 0.20 × 0.07 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.621, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12758, 3721, 3241 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.088, 1.19 |
No. of reflections | 3721 |
No. of parameters | 265 |
No. of restraints | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.70, −0.74 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Sn—C1 | 2.148 (3) | Sn—Cl1 | 2.4287 (9) |
Sn—O1 | 2.284 (2) | Sn—Cl2 | 2.4014 (9) |
Sn—O1w | 2.234 (2) | Sn—Cl3 | 2.3706 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1o···O2w | 0.84 (3) | 1.71 (3) | 2.551 (3) | 172 (4) |
O1w—H1w···O3w | 0.84 (2) | 1.85 (3) | 2.640 (3) | 156 (3) |
O1w—H2w···O4 | 0.84 (3) | 1.88 (2) | 2.686 (3) | 161 (3) |
O2w—H3w···O3i | 0.839 (16) | 1.888 (14) | 2.720 (3) | 172 (3) |
O2w—H4w···O6i | 0.840 (17) | 1.92 (2) | 2.752 (3) | 169 (3) |
O3w—H5w···O7 | 0.84 (2) | 2.02 (3) | 2.827 (3) | 162 (3) |
O3w—H6w···O5 | 0.84 (3) | 1.91 (3) | 2.744 (3) | 172 (3) |
C8—H8b···O2ii | 0.99 | 2.52 | 3.491 (4) | 165 |
C12—H12b···O3wiii | 0.99 | 2.42 | 3.266 (5) | 143 |
Symmetry codes: (i) x, y, z−1; (ii) x+1, y, z+1; (iii) −x, −y, −z+1. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
JLW acknowledges support from CAPES and FAPEMIG (Brazil).
References
Amini, M. M., Foladi, S., Aghabozorg, H. & Ng, S. W. (2002). Main Group Met. Chem. 25, 643–645. CrossRef CAS Google Scholar
Amini, M. M., Rheingold, A. L., Taylor, R. W. & Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289–7291. CSD CrossRef CAS Web of Science Google Scholar
Balasubramanian, R., Chohan, Z. H., Doidge-Harrison, S. M. S. V., Howie, R. A. & Wardell, J. L. (1997). Polyhedron, 16, 4283–4295. CSD CrossRef CAS Web of Science Google Scholar
Barnes, J. C. & Weakley, T. J. R. (1976). J. Chem. Soc. Dalton Trans. pp. 1786–1791. CSD CrossRef Web of Science Google Scholar
Bott, S. G., Prinz, H., Alvanipour, A. & Atwood, J. L. (1987). J. Coord. Chem. 16, 303–309. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Buchanan, H., Howie, R. A., Khan, A., Spencer, G. M., Wardell, J. L. & Aupers, J. H. (1996). J. Chem. Soc. Dalton Trans. pp. 541–548. CSD CrossRef Web of Science Google Scholar
Cusack, P. A., Patel, B. N., Smith, P. J., Allen, D. W. & Nowell, I. W. (1984). J. Chem. Soc. Dalton Trans. pp. 1239–1243. CSD CrossRef Web of Science Google Scholar
Cusack, P. A. & Smith, P. J. (1990). Appl. Organomet. Chem. 4, 311–317. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harrison, P. G., King, T. J. & Healey, M. A. (1979). J. Organomet. Chem. 182, 17–36. CSD CrossRef CAS Web of Science Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hough, E., Nicholson, D. G. & Vasudevan, A. K. (1986). J. Chem. Soc. Dalton Trans. pp. 2335–2337. CSD CrossRef Web of Science Google Scholar
Howie, R. A., Paterson, E. S., Wardell, J. L. & Burley, J. W. (1986). J. Organomet. Chem. 304, 301–308. CSD CrossRef CAS Web of Science Google Scholar
Howie, R. A. & Wardell, J. L. (2001). Acta Cryst. C57, 1041–1043. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Howie, R. A. & Wardell, S. M. S. V. (2002). Acta Cryst. E58, m220–m222. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123–133. CrossRef CAS Google Scholar
Lanigen, D. & Weinberg, E. L. (1976). Adv. Chem. Ser. 157, 134–142. Google Scholar
Lima, G. M. de, Milne, B. F., Pereira, R. P., Rocco, A. M., Skakle, J. M., Travis, A. J., Wardell, J. L. & Wardell, S. M. S. V. (2009). J. Mol. Struct. 921, 244–250. Google Scholar
Mitra, A., Knobler, C. B. & Johnson, S. E. (1993). Inorg. Chem. 32, 1076–1077. CSD CrossRef CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rivarola, E., Saiano, F., Fontana, A. & Russo, U. (1986). J. Organomet. Chem. 317, 285–289. CrossRef CAS Web of Science Google Scholar
Russo, U., Cassol, A. & Silvestri, A. (1984). J. Organomet. Chem. 260, 69–72. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Somphon, W., Haller, K. J., Rae, A. D. & Ng, S. W. (2006). Acta Cryst. B62, 255–261. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Tian, L. J., Zhang, L. P., Liu, X. C. & Zhou, Z. Y. (2005). Appl. Organomet. Chem. 19, 198–199. Web of Science CSD CrossRef CAS Google Scholar
Valle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81–84. CSD CrossRef CAS Web of Science Google Scholar
Valle, G., Ruisi, G. & Russo, U. (1985). Inorg. Chim. Acta, 99, L21–L23. CSD CrossRef CAS Web of Science Google Scholar
Wardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312–m313. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Wolff, M., Harmening, T., Pöttgen, R. & Feldmann, C. (2009). Inorg. Chem. 48, 3153–3156. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yap, G. P. A., Amini, M. M., Ng, S. W., Counterman, A. E. & Rheingold, A. L. (1996). Main Group Chem. 1, 359–363. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The so-called, estertin chlorides, RO2CCH2CH2SnCl3, as well as the diestertin dichlorides (RO2CCH2CH2)2SnCl2 (R = Me, Et, etc.), were initially made in the 1970's (Hutton & Oakes, 1976) as precursors of organotin mercaptide PVC stabilizers by AZKO Chemie (Lanigen & Weinberg, 1976). This intention has never (yet) been fulfilled industrially. However, interest in the coordination chemistry of such compounds has been maintained until today, with particular interest centering on the coordinating mode of the RO2CCH2CH2 ligand, i.e. whether mono-or bi-dentate (Tian et al., 2005; Balasubramanian et al., 1997; Harrison et al., 1979; de Lima et al., 2009; Buchanan et al., 1996; Howie & Wardell, 2001; Howie & Wardell, 2002; Howie et al., 1986). We now wish to report the structure of fac-aqua(2-carboxyethyl-κ2C,O)trichloridotin(IV) 1,4,7,10,13-pentaoxacyclopentadecane dihydrate, (I). Crown ether complexes of tin and organotin halides have been variously reported (Barnes & Weakley, 1976; Cusack et al., 1984; Amini et al. 1984; Amini et al. 2002; Russo et al., 1984; Valle et al., 1984, 1985; Rivarola et al. 1986; Hough et al., 1986; Bott et al., 1987; Cusack & Smith, 1990; Mitra et al., 1993); Yap et al., 1996; Wolff et al., 2009; Wardell et al., 2010).
The asymmetric unit of (I) comprises an organotin molecule, a 15-crown-5 molecule and two solvent water molecules of crystallisation, Fig. 1. The tin atom exists within a fac-CCl3O2 donor set defined by three Cl atoms, chelating C- and O- atoms from the 2-carboxyethyl ligand, and a coordinated water molecule. The C3–O1 [1.233 (4) Å] and C3–O2 [1.289 (4) Å] bond distances, and the pattern on intermolecular hydrogen bonds (see below) indicate the coordination of the carbonyl-O1 atom. The four non-hydrogen atoms of the chelating ligand are planar with the C1–C2–C3–O1 torsion angle being 0.5 (5) °. However, the five-membered chelate ring is not planar as the tin atom lies above the plane through the chelating ligand as indicated in the values of the Sn–C1–C2–C3 and Sn–O1–C3–C2 torsion angles of 9.1 (4) and -9.3 (4) °, respectively. There is only one other tin structure containing a 2-carboxyethyl ligand available in the literature and this adopts the same mode of coordination (Somphon et al., 2006). The Sn–Cl bond distances span a large range, Table 1, with the shorter Sn—Cl3 bond having the Cl3 atom trans to the C atom of the organic ligand. The longer Sn—Cl1 bond has the Cl1 atom trans to the aqua ligand which forms a shorter Sn–O1w bond distance than the dative Sn–O1 bond, Table 1.
There are a large number of O–H···O hydrogen bonding interactions in the crystal structure of (I), Table 2. One of the H atoms of the aqua ligand forms a hydrogen bond with a lattice water (O3w) molecule and the other H atom is connected to an ether-O atom. Each of the H atoms of the O3w water molecule is connected to an ether-O atom. As a result, a nine-membered {···HOH···OH···OC2O} synthon is formed, Fig. 2. The hydroxyl group forms a hydrogen bond to the second lattice water molecule which, like the O3w water molecule, forms two donor interactions to ether-O atoms so that each ether-O atom participates in the hydrogen bonding scheme. The hydrogen bonds lead to the formation of supramolecular chains along the c axis, Fig. 2. Chains are linked into layers in the ac plane via C–H···O interactions, Table 2 and Fig. 3.