organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,3-Di­meth­oxy­benzyl­­idene)-2-hydr­­oxy-3-methyl­benzohydrazide

aDepartment of Chemistry and Life Science, Chuzhou University, Chuzhou, Anhui 239000, People's Republic of China
*Correspondence e-mail: hanyouyue@126.com

(Received 30 March 2010; accepted 30 March 2010; online 2 April 2010)

In the title compound, C17H18N2O4, the dihedral angle between the two benzene rings is 6.0 (2)° and the mol­ecule adopts an E configuration with respect to the C=N bond. There is an intra­molecular O—H⋯O hydrogen bond in the mol­ecule, which generates an S(6) ring. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming C(4) chains running along the c axis.

Related literature

For a related structure and background information, see: Han & Zhao (2010[Han, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1025.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O4

  • Mr = 314.33

  • Orthorhombic, P c c n

  • a = 14.923 (3) Å

  • b = 24.329 (5) Å

  • c = 8.7422 (17) Å

  • V = 3174.0 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.986

  • 17128 measured reflections

  • 3461 independent reflections

  • 1998 reflections with I > 2σ(I)

  • Rint = 0.223

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.175

  • S = 0.92

  • 3461 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.91 2.630 (2) 146
N2—H2A⋯O3i 0.90 2.17 3.030 (2) 158
Symmetry code: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of hydrazones (Han & Zhao, 2010), we now report the structure of the title compound, (I).

In the molecule of the title compound, Fig. 1, the dihedral angle between the two benzene rings is 6.0 (2)°. The molecule adopts an E configuration with respect to the CN bond. There is an intramolecular O–H···O hydrogen bond (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 1) to form chains running along the c axis (Fig. 2).

Related literature top

For a related structure and background information, see: Han & Zhao (2010). For reference structural data, see: Allen et al. (1987).

Experimental top

A mixture of 2,3-dimethoxybenzaldehyde (0.166 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in 50 ml me thanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, colourless blocks of (I) were formed.

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, N–H = 0.90 Å, and Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(methyl C and O).

Structure description top

As part of our ongoing studies of hydrazones (Han & Zhao, 2010), we now report the structure of the title compound, (I).

In the molecule of the title compound, Fig. 1, the dihedral angle between the two benzene rings is 6.0 (2)°. The molecule adopts an E configuration with respect to the CN bond. There is an intramolecular O–H···O hydrogen bond (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 1) to form chains running along the c axis (Fig. 2).

For a related structure and background information, see: Han & Zhao (2010). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids for non-H atoms. Intramolecular O–H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
N'-(2,3-Dimethoxybenzylidene)-2-hydroxy-3-methylbenzohydrazide top
Crystal data top
C17H18N2O4F(000) = 1328
Mr = 314.33Dx = 1.316 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2994 reflections
a = 14.923 (3) Åθ = 2.7–24.9°
b = 24.329 (5) ŵ = 0.10 mm1
c = 8.7422 (17) ÅT = 298 K
V = 3174.0 (11) Å3Block, colorless
Z = 80.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
3461 independent reflections
Radiation source: fine-focus sealed tube1998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.223
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1818
Tmin = 0.984, Tmax = 0.986k = 3031
17128 measured reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0754P)2]
where P = (Fo2 + 2Fc2)/3
3461 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H18N2O4V = 3174.0 (11) Å3
Mr = 314.33Z = 8
Orthorhombic, PccnMo Kα radiation
a = 14.923 (3) ŵ = 0.10 mm1
b = 24.329 (5) ÅT = 298 K
c = 8.7422 (17) Å0.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
3461 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1998 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.986Rint = 0.223
17128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 0.92Δρmax = 0.23 e Å3
3461 reflectionsΔρmin = 0.30 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42606 (9)0.10101 (6)0.37153 (16)0.0482 (4)
O20.28300 (9)0.06224 (8)0.52262 (16)0.0602 (5)
O30.84543 (10)0.11847 (7)0.62612 (16)0.0586 (5)
O41.01095 (9)0.13449 (7)0.53290 (16)0.0601 (5)
H40.97160.12320.59030.072*
N10.67827 (11)0.09279 (7)0.53655 (18)0.0464 (5)
N20.74005 (11)0.11742 (7)0.44045 (19)0.0474 (5)
H2A0.72740.12350.34110.057*
C10.52468 (13)0.06866 (8)0.5673 (2)0.0402 (5)
C20.43791 (13)0.07538 (9)0.5098 (2)0.0396 (5)
C30.36482 (13)0.05310 (9)0.5889 (2)0.0443 (5)
C40.37887 (16)0.02333 (10)0.7208 (2)0.0521 (6)
H4A0.33060.00790.77270.063*
C50.46507 (16)0.01651 (10)0.7758 (2)0.0536 (6)
H50.47430.00360.86490.064*
C60.53705 (15)0.03885 (9)0.7014 (2)0.0473 (5)
H60.59450.03410.74060.057*
C70.38589 (19)0.15360 (11)0.3766 (3)0.0724 (8)
H7A0.33360.15230.44050.109*
H7B0.36900.16460.27510.109*
H7C0.42780.17970.41780.109*
C80.20603 (16)0.04196 (12)0.6008 (3)0.0701 (8)
H8A0.20710.00250.60090.105*
H8B0.15290.05460.55000.105*
H8C0.20630.05510.70430.105*
C90.59903 (13)0.09237 (9)0.4826 (2)0.0445 (5)
H90.58850.10760.38670.053*
C100.82117 (13)0.13106 (9)0.4951 (2)0.0428 (5)
C110.88015 (14)0.16270 (8)0.3910 (2)0.0421 (5)
C120.97309 (14)0.16251 (8)0.4165 (2)0.0456 (5)
C131.03102 (15)0.19180 (10)0.3209 (3)0.0532 (6)
C140.99399 (18)0.22279 (10)0.2061 (3)0.0650 (7)
H141.03180.24300.14290.078*
C150.90212 (19)0.22521 (11)0.1802 (3)0.0671 (7)
H150.87890.24690.10210.081*
C160.84659 (15)0.19497 (9)0.2724 (2)0.0538 (6)
H160.78510.19600.25540.065*
C171.13038 (15)0.18931 (13)0.3465 (3)0.0768 (8)
H17A1.15020.15190.33920.115*
H17B1.14420.20340.44640.115*
H17C1.16030.21110.27050.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0396 (8)0.0589 (10)0.0462 (9)0.0034 (7)0.0010 (6)0.0099 (7)
O20.0318 (8)0.0918 (13)0.0569 (10)0.0080 (8)0.0014 (7)0.0109 (8)
O30.0378 (8)0.0921 (13)0.0459 (9)0.0056 (8)0.0042 (7)0.0152 (8)
O40.0370 (9)0.0835 (12)0.0597 (10)0.0003 (8)0.0035 (7)0.0124 (8)
N10.0348 (10)0.0580 (12)0.0463 (10)0.0030 (8)0.0004 (8)0.0027 (8)
N20.0375 (10)0.0623 (12)0.0422 (10)0.0061 (9)0.0030 (8)0.0055 (8)
C10.0371 (11)0.0444 (12)0.0390 (11)0.0017 (9)0.0027 (9)0.0038 (9)
C20.0373 (11)0.0444 (11)0.0372 (11)0.0011 (9)0.0012 (9)0.0006 (9)
C30.0377 (12)0.0543 (13)0.0409 (11)0.0030 (10)0.0018 (9)0.0034 (10)
C40.0520 (14)0.0595 (15)0.0448 (12)0.0075 (11)0.0059 (11)0.0020 (10)
C50.0616 (15)0.0590 (14)0.0403 (12)0.0016 (12)0.0011 (11)0.0102 (10)
C60.0470 (13)0.0505 (13)0.0445 (12)0.0015 (10)0.0070 (10)0.0015 (10)
C70.0754 (19)0.0632 (18)0.0787 (17)0.0105 (14)0.0018 (15)0.0187 (14)
C80.0411 (14)0.102 (2)0.0677 (16)0.0099 (13)0.0149 (11)0.0004 (14)
C90.0368 (12)0.0531 (13)0.0436 (12)0.0003 (9)0.0030 (9)0.0007 (10)
C100.0348 (11)0.0501 (12)0.0437 (12)0.0008 (10)0.0017 (9)0.0012 (9)
C110.0410 (12)0.0432 (12)0.0422 (11)0.0039 (9)0.0031 (9)0.0042 (9)
C120.0440 (13)0.0456 (12)0.0472 (12)0.0001 (10)0.0006 (10)0.0079 (10)
C130.0461 (13)0.0532 (14)0.0602 (14)0.0050 (11)0.0092 (11)0.0077 (11)
C140.0723 (18)0.0547 (15)0.0680 (16)0.0191 (13)0.0149 (14)0.0024 (12)
C150.0768 (19)0.0569 (16)0.0678 (16)0.0098 (13)0.0064 (14)0.0206 (12)
C160.0519 (13)0.0512 (14)0.0584 (14)0.0029 (11)0.0090 (11)0.0061 (11)
C170.0450 (15)0.087 (2)0.098 (2)0.0091 (14)0.0176 (14)0.0022 (16)
Geometric parameters (Å, º) top
O1—C21.372 (2)C7—H7A0.9600
O1—C71.414 (3)C7—H7B0.9600
O2—C31.370 (2)C7—H7C0.9600
O2—C81.425 (3)C8—H8A0.9600
O3—C101.240 (2)C8—H8B0.9600
O4—C121.349 (2)C8—H8C0.9600
O4—H40.8195C9—H90.9300
N1—C91.273 (3)C10—C111.482 (3)
N1—N21.384 (2)C11—C161.394 (3)
N2—C101.343 (2)C11—C121.405 (3)
N2—H2A0.9005C12—C131.398 (3)
C1—C61.391 (3)C13—C141.372 (3)
C1—C21.398 (3)C13—C171.501 (3)
C1—C91.453 (3)C14—C151.391 (4)
C2—C31.401 (3)C14—H140.9300
C3—C41.378 (3)C15—C161.370 (3)
C4—C51.383 (3)C15—H150.9300
C4—H4A0.9300C16—H160.9300
C5—C61.368 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C2—O1—C7115.99 (16)O2—C8—H8C109.5
C3—O2—C8117.34 (18)H8A—C8—H8C109.5
C12—O4—H4109.3H8B—C8—H8C109.5
C9—N1—N2113.41 (17)N1—C9—C1121.57 (19)
C10—N2—N1119.45 (17)N1—C9—H9119.2
C10—N2—H2A119.4C1—C9—H9119.2
N1—N2—H2A121.1O3—C10—N2122.05 (19)
C6—C1—C2119.12 (18)O3—C10—C11121.49 (18)
C6—C1—C9122.34 (18)N2—C10—C11116.46 (17)
C2—C1—C9118.53 (18)C16—C11—C12118.3 (2)
O1—C2—C1119.28 (17)C16—C11—C10122.42 (19)
O1—C2—C3120.71 (17)C12—C11—C10119.17 (18)
C1—C2—C3119.90 (18)O4—C12—C13116.7 (2)
O2—C3—C4125.12 (18)O4—C12—C11122.34 (19)
O2—C3—C2114.99 (18)C13—C12—C11120.9 (2)
C4—C3—C2119.87 (19)C14—C13—C12117.9 (2)
C3—C4—C5119.7 (2)C14—C13—C17122.0 (2)
C3—C4—H4A120.2C12—C13—C17120.1 (2)
C5—C4—H4A120.2C13—C14—C15122.6 (2)
C6—C5—C4121.1 (2)C13—C14—H14118.7
C6—C5—H5119.4C15—C14—H14118.7
C4—C5—H5119.4C16—C15—C14118.6 (2)
C5—C6—C1120.25 (19)C16—C15—H15120.7
C5—C6—H6119.9C14—C15—H15120.7
C1—C6—H6119.9C15—C16—C11121.5 (2)
O1—C7—H7A109.5C15—C16—H16119.2
O1—C7—H7B109.5C11—C16—H16119.2
H7A—C7—H7B109.5C13—C17—H17A109.5
O1—C7—H7C109.5C13—C17—H17B109.5
H7A—C7—H7C109.5H17A—C17—H17B109.5
H7B—C7—H7C109.5C13—C17—H17C109.5
O2—C8—H8A109.5H17A—C17—H17C109.5
O2—C8—H8B109.5H17B—C17—H17C109.5
H8A—C8—H8B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.912.630 (2)146
N2—H2A···O3i0.902.173.030 (2)158
Symmetry code: (i) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O4
Mr314.33
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)14.923 (3), 24.329 (5), 8.7422 (17)
V3)3174.0 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.984, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
17128, 3461, 1998
Rint0.223
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.175, 0.92
No. of reflections3461
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.30

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.912.630 (2)146
N2—H2A···O3i0.902.173.030 (2)158
Symmetry code: (i) x+3/2, y, z1/2.
 

Acknowledgements

This work was supported by the Applied Chemistry Key Subject of Anhui Province (No. 200802187 C). The authors thank Mr Yuan-Guang Zhang of Anqing Normal University for his help with growing the crystals.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds