organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-6-chloro-2-methyl-4-phenyl­quinolinium perchlorate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 April 2010; accepted 7 April 2010; online 28 April 2010)

In the title mol­ecular salt, C18H15ClNO+·ClO4, the quinolin­ium ring system is approximately planar, with a maximum deviation of 0.027 (1) Å. The dihedral angle formed between the mean planes of the quinolinium ring system and the benzene ring is 78.46 (3)°. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into a three-dimensional network. The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For natural products containing quinolines, see: Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]). For the biological activities of quinolines, see: Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]). For the physiological activities of quinolines, see: Katritzky & Arend (1998[Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989-9991.]); Jiang & Si (2002[Jiang, B. & Si, Y. G. (2002). J. Org. Chem. 67, 9449-9451.]). For related structures, see: Shahani et al. (2010[Shahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374.]); Fun et al. (2009[Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688-o2689.]); Loh et al. (2010[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o91-o92.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15ClNO+·ClO4

  • Mr = 396.21

  • Triclinic, [P \overline 1]

  • a = 7.3862 (1) Å

  • b = 8.8519 (2) Å

  • c = 13.3378 (3) Å

  • α = 92.477 (1)°

  • β = 91.903 (1)°

  • γ = 99.550 (1)°

  • V = 858.44 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.58 × 0.54 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]) Tmin = 0.797, Tmax = 0.898

  • 27967 measured reflections

  • 7482 independent reflections

  • 6933 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.108

  • S = 1.09

  • 7482 reflections

  • 295 parameters

  • All H-atom parameters refined

  • Δρmax = 0.69 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.832 (18) 1.896 (18) 2.7177 (10) 169 (2)
C3—H3A⋯O2ii 0.955 (16) 2.583 (16) 3.3010 (11) 132.2 (12)
C15—H15A⋯O5 0.951 (16) 2.512 (16) 3.3716 (12) 150.4 (13)
C18—H18B⋯O5iii 0.97 (2) 2.53 (2) 3.3266 (13) 139.5 (14)
C12—H12ACg1iv 0.981 (17) 2.694 (17) 3.5810 (10) 150.6 (13)
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y-1, z; (iii) x-1, y, z; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997), and biologically active compounds (Markees et al., 1970 ; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks, due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

In the title compound (Fig. 1), the asymmetric unit consists one perchlorate anion and one 3-acetyl-6-chloro-2-methyl-4-phenlquineline-1-ium cation. The quinolinium ring system (C1/N1/C2–C9) is approximately planar, with a maximum deviation of 0.027 (1) Å at atom C1. The dihedral angle formed between quinolinium ring system and benzene ring (C10–C15) is 78.46 (3)°. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those related structures (Shahani et al., 2010; Fun et al., 2009; Loh et al., 2010).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O3, C3—H3A···O2, C15—H15A···O5 and C18—H18B···O5 hydrogen bonds (Table 1) link the molecules into three-dimensional network. This crystal structure is further consolidated by C—H···π interactions involving C10–C15 benzene ring (centroid Cg1).

Related literature top

For natural products containing quinolines, see: Michael (1997); Morimoto et al. (1991). For the biological activities of quinolines, see: Campbell et al. (1988); Markees et al. (1970). For the physiological activities of quinolines, see: Katritzky & Arend (1998); Jiang & Si (2002). For related structures, see: Shahani et al. (2010); Fun et al. (2009); Loh et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline and a catalytic amount of nickel chloride in acid medium was refluxed for about an hour and resultant compound was recrystallized from 3:1 ethanol water to yield colourless blocks of (I).

Refinement top

All H atoms were located in a difference map and was refined freely. [N—H = 0.829 (19) Å, C—H = 0.76 (2)–1.025 (17) Å].

Structure description top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997), and biologically active compounds (Markees et al., 1970 ; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks, due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

In the title compound (Fig. 1), the asymmetric unit consists one perchlorate anion and one 3-acetyl-6-chloro-2-methyl-4-phenlquineline-1-ium cation. The quinolinium ring system (C1/N1/C2–C9) is approximately planar, with a maximum deviation of 0.027 (1) Å at atom C1. The dihedral angle formed between quinolinium ring system and benzene ring (C10–C15) is 78.46 (3)°. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those related structures (Shahani et al., 2010; Fun et al., 2009; Loh et al., 2010).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O3, C3—H3A···O2, C15—H15A···O5 and C18—H18B···O5 hydrogen bonds (Table 1) link the molecules into three-dimensional network. This crystal structure is further consolidated by C—H···π interactions involving C10–C15 benzene ring (centroid Cg1).

For natural products containing quinolines, see: Michael (1997); Morimoto et al. (1991). For the biological activities of quinolines, see: Campbell et al. (1988); Markees et al. (1970). For the physiological activities of quinolines, see: Katritzky & Arend (1998); Jiang & Si (2002). For related structures, see: Shahani et al. (2010); Fun et al. (2009); Loh et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along a axis. H atoms not involved in intermolecular interactions (dashed lines) are omitted for clarity.
3-Acetyl-6-chloro-2-methyl-4-phenylquinolinium perchlorate top
Crystal data top
C18H15ClNO+·ClO4Z = 2
Mr = 396.21F(000) = 408
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3862 (1) ÅCell parameters from 9929 reflections
b = 8.8519 (2) Åθ = 2.7–35.1°
c = 13.3378 (3) ŵ = 0.41 mm1
α = 92.477 (1)°T = 100 K
β = 91.903 (1)°Block, colourless
γ = 99.550 (1)°0.58 × 0.54 × 0.27 mm
V = 858.44 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
7482 independent reflections
Radiation source: fine-focus sealed tube6933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 35.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.797, Tmax = 0.898k = 1314
27967 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.2949P]
where P = (Fo2 + 2Fc2)/3
7482 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
C18H15ClNO+·ClO4γ = 99.550 (1)°
Mr = 396.21V = 858.44 (3) Å3
Triclinic, P1Z = 2
a = 7.3862 (1) ÅMo Kα radiation
b = 8.8519 (2) ŵ = 0.41 mm1
c = 13.3378 (3) ÅT = 100 K
α = 92.477 (1)°0.58 × 0.54 × 0.27 mm
β = 91.903 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7482 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6933 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.898Rint = 0.019
27967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.108All H-atom parameters refined
S = 1.09Δρmax = 0.69 e Å3
7482 reflectionsΔρmin = 1.00 e Å3
295 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57962 (3)0.15711 (3)0.127788 (19)0.01984 (6)
O10.34868 (10)0.25202 (9)0.18488 (6)0.02125 (14)
N10.06256 (10)0.06546 (8)0.35547 (5)0.01256 (12)
C10.15762 (11)0.04733 (9)0.34086 (6)0.01226 (13)
C20.08539 (11)0.08886 (9)0.30060 (6)0.01178 (13)
C30.17738 (12)0.21217 (10)0.32169 (6)0.01442 (14)
C40.32724 (13)0.23218 (10)0.26722 (7)0.01553 (14)
C50.38693 (12)0.12954 (10)0.19231 (7)0.01427 (14)
C60.29771 (11)0.01015 (9)0.16974 (6)0.01300 (13)
C70.14195 (11)0.01160 (9)0.22419 (6)0.01113 (12)
C80.03934 (11)0.13153 (9)0.20510 (6)0.01083 (12)
C90.10849 (11)0.14720 (9)0.26283 (6)0.01146 (12)
C100.09383 (11)0.23714 (9)0.12361 (6)0.01128 (12)
C110.00355 (12)0.21724 (10)0.03113 (6)0.01471 (14)
C120.05201 (13)0.31380 (11)0.04601 (7)0.01646 (15)
C130.20163 (13)0.43138 (10)0.03026 (7)0.01619 (15)
C140.29697 (13)0.45204 (10)0.06228 (7)0.01649 (15)
C150.24533 (12)0.35437 (10)0.13932 (6)0.01454 (14)
C160.21861 (12)0.27461 (10)0.24424 (6)0.01340 (13)
C170.15358 (17)0.42459 (12)0.30030 (8)0.02276 (18)
C180.31035 (13)0.06418 (11)0.40871 (7)0.01699 (15)
H3A0.137 (2)0.2799 (18)0.3733 (12)0.017 (3)*
H4A0.394 (3)0.310 (2)0.2795 (13)0.029 (4)*
H6A0.343 (2)0.0569 (18)0.1200 (11)0.016 (3)*
H11A0.117 (2)0.1334 (19)0.0189 (12)0.022 (4)*
H12A0.013 (2)0.2955 (19)0.1119 (13)0.023 (4)*
H13A0.239 (2)0.5034 (19)0.0772 (12)0.021 (4)*
H14A0.394 (2)0.5305 (19)0.0737 (12)0.021 (4)*
H15A0.306 (2)0.3656 (18)0.2039 (12)0.020 (4)*
H17A0.033 (3)0.460 (2)0.2780 (14)0.031 (4)*
H17B0.242 (3)0.488 (2)0.2843 (15)0.037 (5)*
H17C0.153 (3)0.418 (3)0.3570 (18)0.045 (6)*
H18A0.281 (3)0.154 (3)0.4486 (16)0.042 (5)*
H18B0.424 (3)0.078 (2)0.3754 (14)0.031 (4)*
H18C0.334 (3)0.026 (2)0.4431 (15)0.037 (5)*
H1N10.089 (3)0.121 (2)0.4034 (14)0.030 (4)*
Cl20.28102 (3)0.33444 (2)0.461521 (15)0.01541 (5)
O20.27428 (10)0.49972 (8)0.45103 (6)0.02070 (14)
O30.10191 (10)0.25407 (9)0.48844 (6)0.01977 (14)
O40.40805 (10)0.32400 (9)0.55505 (5)0.01960 (13)
O50.35420 (12)0.26779 (11)0.37509 (6)0.02648 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01521 (10)0.01761 (10)0.02749 (11)0.00551 (7)0.00402 (7)0.00306 (8)
O10.0153 (3)0.0210 (3)0.0279 (4)0.0044 (2)0.0042 (2)0.0044 (3)
N10.0142 (3)0.0112 (3)0.0124 (3)0.0017 (2)0.0016 (2)0.0031 (2)
C10.0126 (3)0.0116 (3)0.0126 (3)0.0015 (2)0.0012 (2)0.0020 (2)
C20.0132 (3)0.0103 (3)0.0118 (3)0.0020 (2)0.0002 (2)0.0013 (2)
C30.0180 (3)0.0117 (3)0.0140 (3)0.0042 (3)0.0018 (3)0.0020 (2)
C40.0176 (4)0.0132 (3)0.0166 (3)0.0058 (3)0.0025 (3)0.0003 (3)
C50.0129 (3)0.0133 (3)0.0170 (3)0.0039 (2)0.0002 (3)0.0016 (3)
C60.0128 (3)0.0118 (3)0.0146 (3)0.0025 (2)0.0011 (2)0.0005 (2)
C70.0116 (3)0.0100 (3)0.0119 (3)0.0021 (2)0.0001 (2)0.0011 (2)
C80.0113 (3)0.0095 (3)0.0116 (3)0.0012 (2)0.0002 (2)0.0018 (2)
C90.0116 (3)0.0108 (3)0.0122 (3)0.0020 (2)0.0011 (2)0.0024 (2)
C100.0122 (3)0.0104 (3)0.0116 (3)0.0023 (2)0.0016 (2)0.0025 (2)
C110.0155 (3)0.0150 (3)0.0133 (3)0.0014 (3)0.0009 (2)0.0024 (3)
C120.0191 (4)0.0187 (4)0.0126 (3)0.0050 (3)0.0013 (3)0.0038 (3)
C130.0195 (4)0.0149 (3)0.0159 (3)0.0057 (3)0.0063 (3)0.0054 (3)
C140.0170 (4)0.0140 (3)0.0180 (3)0.0002 (3)0.0045 (3)0.0033 (3)
C150.0143 (3)0.0141 (3)0.0144 (3)0.0002 (3)0.0010 (2)0.0022 (2)
C160.0132 (3)0.0136 (3)0.0146 (3)0.0042 (2)0.0033 (2)0.0042 (2)
C170.0308 (5)0.0161 (4)0.0229 (4)0.0101 (3)0.0037 (4)0.0030 (3)
C180.0164 (4)0.0185 (4)0.0171 (3)0.0039 (3)0.0060 (3)0.0045 (3)
Cl20.01584 (9)0.01583 (9)0.01397 (9)0.00038 (6)0.00013 (6)0.00351 (6)
O20.0187 (3)0.0142 (3)0.0297 (4)0.0028 (2)0.0018 (3)0.0094 (2)
O30.0148 (3)0.0220 (3)0.0209 (3)0.0037 (2)0.0018 (2)0.0106 (2)
O40.0200 (3)0.0196 (3)0.0181 (3)0.0001 (2)0.0077 (2)0.0070 (2)
O50.0264 (4)0.0343 (4)0.0192 (3)0.0083 (3)0.0016 (3)0.0065 (3)
Geometric parameters (Å, º) top
Cl1—C51.7332 (9)C10—C151.3976 (12)
O1—C161.2090 (11)C11—C121.3946 (12)
N1—C11.3296 (11)C11—H11A1.025 (17)
N1—C21.3740 (11)C12—C131.3903 (14)
N1—H1N10.829 (19)C12—H12A0.981 (17)
C1—C91.4123 (11)C13—C141.3903 (13)
C1—C181.4919 (12)C13—H13A0.929 (16)
C2—C71.4097 (11)C14—C151.3936 (12)
C2—C31.4115 (12)C14—H14A0.917 (17)
C3—C41.3754 (13)C15—H15A0.952 (16)
C3—H3A0.954 (16)C16—C171.4937 (14)
C4—C51.4117 (13)C17—H17A0.956 (19)
C4—H4A0.926 (19)C17—H17B0.95 (2)
C5—C61.3738 (12)C17—H17C0.76 (2)
C6—C71.4159 (11)C18—H18A0.93 (2)
C6—H6A0.942 (15)C18—H18B0.963 (19)
C7—C81.4295 (11)C18—H18C0.93 (2)
C8—C91.3788 (11)Cl2—O51.4344 (8)
C8—C101.4864 (11)Cl2—O31.4583 (7)
C9—C161.5200 (12)Cl2—O21.4846 (7)
C10—C111.3965 (11)Cl2—O41.5512 (7)
C1—N1—C2123.82 (7)C10—C11—H11A121.2 (9)
C1—N1—H1N1118.1 (13)C13—C12—C11120.12 (8)
C2—N1—H1N1117.9 (13)C13—C12—H12A120.6 (10)
N1—C1—C9118.77 (7)C11—C12—H12A119.3 (10)
N1—C1—C18118.45 (7)C12—C13—C14119.96 (8)
C9—C1—C18122.77 (8)C12—C13—H13A123.8 (10)
N1—C2—C7118.94 (7)C14—C13—H13A116.1 (10)
N1—C2—C3119.61 (7)C13—C14—C15120.52 (8)
C7—C2—C3121.45 (8)C13—C14—H14A120.5 (10)
C4—C3—C2118.80 (8)C15—C14—H14A119.0 (10)
C4—C3—H3A120.4 (10)C14—C15—C10119.40 (8)
C2—C3—H3A120.8 (10)C14—C15—H15A123.0 (10)
C3—C4—C5119.88 (8)C10—C15—H15A117.5 (10)
C3—C4—H4A121.9 (11)O1—C16—C17123.74 (8)
C5—C4—H4A118.2 (11)O1—C16—C9119.76 (8)
C6—C5—C4122.16 (8)C17—C16—C9116.48 (8)
C6—C5—Cl1119.75 (7)C16—C17—H17A106.1 (11)
C4—C5—Cl1118.09 (7)C16—C17—H17B105.6 (12)
C5—C6—C7118.88 (8)H17A—C17—H17B114.6 (16)
C5—C6—H6A119.5 (10)C16—C17—H17C112.6 (17)
C7—C6—H6A121.6 (10)H17A—C17—H17C111 (2)
C2—C7—C6118.79 (7)H17B—C17—H17C107 (2)
C2—C7—C8118.43 (7)C1—C18—H18A110.3 (13)
C6—C7—C8122.77 (7)C1—C18—H18B115.2 (11)
C9—C8—C7119.31 (7)H18A—C18—H18B101.8 (17)
C9—C8—C10121.17 (7)C1—C18—H18C106.8 (13)
C7—C8—C10119.52 (7)H18A—C18—H18C115.6 (17)
C8—C9—C1120.67 (7)H18B—C18—H18C107.4 (16)
C8—C9—C16120.14 (7)O5—Cl2—O3114.23 (5)
C1—C9—C16119.18 (7)O5—Cl2—O2111.92 (5)
C11—C10—C15120.21 (7)O3—Cl2—O2110.06 (5)
C11—C10—C8120.13 (7)O5—Cl2—O4109.31 (5)
C15—C10—C8119.65 (7)O3—Cl2—O4104.17 (4)
C12—C11—C10119.78 (8)O2—Cl2—O4106.60 (4)
C12—C11—H11A119.0 (9)
C2—N1—C1—C91.85 (12)C7—C8—C9—C16179.58 (7)
C2—N1—C1—C18177.33 (8)C10—C8—C9—C160.34 (12)
C1—N1—C2—C70.14 (12)N1—C1—C9—C82.26 (12)
C1—N1—C2—C3179.90 (8)C18—C1—C9—C8176.88 (8)
N1—C2—C3—C4178.83 (8)N1—C1—C9—C16178.84 (7)
C7—C2—C3—C41.12 (13)C18—C1—C9—C162.01 (12)
C2—C3—C4—C50.44 (13)C9—C8—C10—C1178.54 (10)
C3—C4—C5—C61.37 (13)C7—C8—C10—C11101.54 (10)
C3—C4—C5—Cl1178.54 (7)C9—C8—C10—C15102.80 (10)
C4—C5—C6—C70.70 (13)C7—C8—C10—C1577.12 (10)
Cl1—C5—C6—C7179.20 (6)C15—C10—C11—C120.67 (13)
N1—C2—C7—C6178.19 (7)C8—C10—C11—C12177.97 (8)
C3—C2—C7—C61.77 (12)C10—C11—C12—C131.27 (14)
N1—C2—C7—C81.72 (11)C11—C12—C13—C140.51 (14)
C3—C2—C7—C8178.32 (7)C12—C13—C14—C150.86 (14)
C5—C6—C7—C20.84 (12)C13—C14—C15—C101.44 (14)
C5—C6—C7—C8179.25 (8)C11—C10—C15—C140.67 (13)
C2—C7—C8—C91.28 (11)C8—C10—C15—C14179.32 (8)
C6—C7—C8—C9178.63 (7)C8—C9—C16—O189.51 (11)
C2—C7—C8—C10178.80 (7)C1—C9—C16—O191.59 (10)
C6—C7—C8—C101.30 (12)C8—C9—C16—C1788.92 (10)
C7—C8—C9—C10.70 (12)C1—C9—C16—C1789.98 (10)
C10—C8—C9—C1179.22 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.832 (18)1.896 (18)2.7177 (10)169 (2)
C3—H3A···O2ii0.955 (16)2.583 (16)3.3010 (11)132.2 (12)
C15—H15A···O50.951 (16)2.512 (16)3.3716 (12)150.4 (13)
C18—H18B···O5iii0.97 (2)2.53 (2)3.3266 (13)139.5 (14)
C12—H12A···Cg1iv0.981 (17)2.694 (17)3.5810 (10)150.6 (13)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC18H15ClNO+·ClO4
Mr396.21
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3862 (1), 8.8519 (2), 13.3378 (3)
α, β, γ (°)92.477 (1), 91.903 (1), 99.550 (1)
V3)858.44 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.58 × 0.54 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.797, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
27967, 7482, 6933
Rint0.019
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.108, 1.09
No. of reflections7482
No. of parameters295
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.69, 1.00

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.832 (18)1.896 (18)2.7177 (10)169 (2)
C3—H3A···O2ii0.955 (16)2.583 (16)3.3010 (11)132.2 (12)
C15—H15A···O50.951 (16)2.512 (16)3.3716 (12)150.4 (13)
C18—H18B···O5iii0.97 (2)2.53 (2)3.3266 (13)139.5 (14)
C12—H12A···Cg1iv0.981 (17)2.694 (17)3.5810 (10)150.6 (13)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

TSH and HKF thank the Universiti Sains Malaysia (USM) for Research University Golden Goose grant No. 1001/PFIZIK/811012. VV is grateful to the DST, India, for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688–o2689.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, B. & Si, Y. G. (2002). J. Org. Chem. 67, 9449–9451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKatritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989–9991.  Web of Science CrossRef CAS Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o91–o92.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationShahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds