organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Nitro­benzaldehyde oxime

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Forensic Medicine & Toxicology, National University of Sciences & Technology, Islamabad, Pakistan, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: profazmi@hotmail.com

(Received 12 April 2010; accepted 15 April 2010; online 21 April 2010)

In the title compound, C7H6N2O3, the planes containing the CNO and ONO atoms subtend dihedral angles of 5.47 (5) and 8.31 (5)°, respectively, with the benzene ring. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers with an R22(6) graph-set motif.

Related literature

For oximes as therapeutic agents in organophospho­rus poisoning, see: Jokanovic et al. (2009[Jokanovic, M. & Prostran, M. (2009). Curr. Med. Chem. 16, 2177-2188.]); Marrs et al. (2006[Marrs, T. C., Rice, P. & Vale, J. A. (2006). Toxicol. Rev. 25, 297-323.]). For their use as protecting groups in organic synthesis, see: Greene et al. (1999[Greene, T. W. & Wuts, P. G. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: Wiley.]); Shinada et al. (1995[Shinada, T. & Yoshihara, K. (1995). Tetrahedron Lett. 36-37, 6701-6704.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond lengths in similar structures, see: Xing, Ding et al. (2007[Xing, Z.-T., Ding, W.-L., Wang, H.-B., Yin, J. & Han, F. (2007). Acta Cryst. E63, o1019-o1020.]); Xing, Wang et al. (2007[Xing, Z.-T., Wang, H.-B., Yin, J., Wu, W.-Y. & Han, F. (2007). Acta Cryst. E63, o2236-o2237.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N2O3

  • Mr = 166.14

  • Monoclinic, P 21 /n

  • a = 3.7737 (2) Å

  • b = 7.0363 (3) Å

  • c = 28.6651 (14) Å

  • β = 91.237 (3)°

  • V = 760.96 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.49 × 0.41 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gö ttingen, Germany.]) Tmin = 0.945, Tmax = 0.982

  • 7222 measured reflections

  • 1869 independent reflections

  • 1340 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.175

  • S = 1.09

  • 1869 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2i 0.82 2.12 2.841 (3) 146
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Thousands of deaths are caused by acute organophosphorus pesticide poisoning each year. Oximes are accepted therapeutic agents in organophosphorus poisoning (Jokanovic et al., 2009, Marrs et al., 2006). Oximes can act as useful protecting groups (Greene et al., 1999) and have served for the protection of carbonyl groups in the syntheses of erythromycin derivatives and perhydrohistrionicotoxin (Shinada et al., 1995). Oximes are also used for the purification and characterization of carbonyl compounds. As part of our interest in the study of oxime derivatives, we report here the crystal structure of the title compound (I). A depiction of the molecule is given in Fig. 1. In the crystal structure of the title compound, molecules are connected via intermolecular O—H···N hydrogen bonds (see Table 1 and Fig. 2) to form two-dimensional dimers. The oxime group has an E configuration [C3—C7—N2—O3 = 179.1 (2)°] and the planes containing the CNO and ONO atoms subtend dihedral angles of 5.47 (5)° and 8.31 (5)° with the phenyl C(1–6) ring. which is less than that reported for similar structures (Xing & Ding et al., 2007; Xing & Wang et al., 2007). Each molecule is connected to a symmetry-related molecule through an inversion center by O—H···N hydrogen bonds, building an R22(6) graph-set motif in Fig. 2 (Etter et al., 1990; Bernstein et al., 1995; ).

Related literature top

For oximes as therapeutic agents in organophosphorus

poisoning, see: Jokanovic et al. (2009); Marrs et al. (2006). For their use as protecting groups in organic synthesis, see: Greene et al. (1999); Shinada et al. (1995). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995). For bond lengths in similar structures, see: Xing, Ding et al. (2007); Xing, Wang et al. (2007).

Experimental top

To a warm solution of 4-nitrobenzaldehyde (0.907 g , 0.005 mol) in 25 ml e thanol, hydroxylamine hydrochloride (0.417 g, 0.006 mol) and sodium acetate trihydrate (2.04 g, 0.015 mol) were added and the mixture was heated under reflux until completion of the reaction. The concentrated reaction mixture was cooled down and water was added. The precipitated oxime was separated by filtration, washed with excess of water and dried. The crude product was recrystallized from ethanol to get the title compound (I).

Refinement top

All H atoms were placed in calculated position and treated as riding on their parent atoms with C—H = 0.93Å or O—H = 0.82Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O) for the hydroxyl H atom.

Structure description top

Thousands of deaths are caused by acute organophosphorus pesticide poisoning each year. Oximes are accepted therapeutic agents in organophosphorus poisoning (Jokanovic et al., 2009, Marrs et al., 2006). Oximes can act as useful protecting groups (Greene et al., 1999) and have served for the protection of carbonyl groups in the syntheses of erythromycin derivatives and perhydrohistrionicotoxin (Shinada et al., 1995). Oximes are also used for the purification and characterization of carbonyl compounds. As part of our interest in the study of oxime derivatives, we report here the crystal structure of the title compound (I). A depiction of the molecule is given in Fig. 1. In the crystal structure of the title compound, molecules are connected via intermolecular O—H···N hydrogen bonds (see Table 1 and Fig. 2) to form two-dimensional dimers. The oxime group has an E configuration [C3—C7—N2—O3 = 179.1 (2)°] and the planes containing the CNO and ONO atoms subtend dihedral angles of 5.47 (5)° and 8.31 (5)° with the phenyl C(1–6) ring. which is less than that reported for similar structures (Xing & Ding et al., 2007; Xing & Wang et al., 2007). Each molecule is connected to a symmetry-related molecule through an inversion center by O—H···N hydrogen bonds, building an R22(6) graph-set motif in Fig. 2 (Etter et al., 1990; Bernstein et al., 1995; ).

For oximes as therapeutic agents in organophosphorus

poisoning, see: Jokanovic et al. (2009); Marrs et al. (2006). For their use as protecting groups in organic synthesis, see: Greene et al. (1999); Shinada et al. (1995). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995). For bond lengths in similar structures, see: Xing, Ding et al. (2007); Xing, Wang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonds shown as dashed lines, forming dimers through R22(6) graph set motif.
(E)-4-Nitrobenzaldehyde oxime top
Crystal data top
C7H6N2O3F(000) = 344
Mr = 166.14Dx = 1.450 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1727 reflections
a = 3.7737 (2) Åθ = 2.8–25.1°
b = 7.0363 (3) ŵ = 0.12 mm1
c = 28.6651 (14) ÅT = 296 K
β = 91.237 (3)°Block, colorless
V = 760.96 (6) Å30.49 × 0.41 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1869 independent reflections
Radiation source: fine-focus sealed tube1340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 28.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 54
Tmin = 0.945, Tmax = 0.982k = 99
7222 measured reflectionsl = 3837
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.060P)2 + 0.435P]
where P = (Fo2 + 2Fc2)/3
1869 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C7H6N2O3V = 760.96 (6) Å3
Mr = 166.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.7737 (2) ŵ = 0.12 mm1
b = 7.0363 (3) ÅT = 296 K
c = 28.6651 (14) Å0.49 × 0.41 × 0.16 mm
β = 91.237 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1869 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1340 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.982Rint = 0.031
7222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.09Δρmax = 0.20 e Å3
1869 reflectionsΔρmin = 0.20 e Å3
110 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.9103 (8)0.7939 (3)0.02398 (6)0.0848 (8)
H30.96730.89500.03590.127*
O20.2494 (7)0.1865 (3)0.14956 (8)0.0857 (8)
N10.3651 (6)0.3009 (3)0.17705 (8)0.0575 (6)
N20.8746 (6)0.8191 (3)0.02418 (7)0.0562 (6)
C10.5229 (6)0.4774 (3)0.15885 (8)0.0425 (5)
C20.5707 (6)0.4913 (3)0.11163 (8)0.0426 (5)
H20.50920.39120.09190.051*
C30.7126 (6)0.6576 (3)0.09400 (8)0.0415 (5)
C70.7669 (7)0.6696 (3)0.04381 (9)0.0529 (6)
H70.72050.56290.02550.063*
C60.6116 (7)0.6200 (3)0.18954 (8)0.0509 (6)
H60.57880.60590.22140.061*
C50.7516 (7)0.7856 (3)0.17149 (9)0.0549 (6)
H50.81350.88500.19140.066*
C40.7997 (6)0.8040 (3)0.12444 (8)0.0474 (6)
H40.89220.91650.11280.057*
O10.3545 (8)0.2798 (4)0.21888 (8)0.1044 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.143 (2)0.0654 (13)0.0469 (11)0.0300 (13)0.0171 (12)0.0024 (9)
O20.1130 (19)0.0472 (11)0.0966 (17)0.0354 (12)0.0037 (13)0.0100 (10)
N10.0583 (13)0.0447 (11)0.0694 (15)0.0043 (10)0.0033 (11)0.0160 (10)
N20.0732 (15)0.0490 (11)0.0467 (11)0.0115 (10)0.0070 (10)0.0029 (9)
C10.0405 (11)0.0353 (10)0.0518 (13)0.0014 (9)0.0023 (9)0.0071 (9)
C20.0467 (12)0.0318 (10)0.0491 (12)0.0054 (9)0.0020 (9)0.0028 (9)
C30.0432 (12)0.0335 (10)0.0478 (12)0.0031 (9)0.0004 (9)0.0015 (9)
C70.0677 (16)0.0416 (12)0.0496 (14)0.0128 (11)0.0028 (11)0.0025 (10)
C60.0586 (15)0.0501 (13)0.0442 (12)0.0019 (11)0.0022 (10)0.0012 (10)
C50.0706 (17)0.0410 (12)0.0528 (14)0.0082 (11)0.0034 (12)0.0077 (10)
C40.0543 (14)0.0332 (10)0.0544 (14)0.0095 (9)0.0020 (10)0.0008 (9)
O10.155 (3)0.0918 (17)0.0674 (15)0.0365 (17)0.0135 (14)0.0309 (12)
Geometric parameters (Å, º) top
O3—N21.401 (3)C2—H20.9300
O3—H30.8200C3—C41.385 (3)
O2—N11.202 (3)C3—C71.460 (3)
N1—O11.210 (3)C7—H70.9300
N1—C11.477 (3)C6—C51.385 (3)
N2—C71.264 (3)C6—H60.9300
C1—C61.371 (3)C5—C41.371 (3)
C1—C21.373 (3)C5—H50.9300
C2—C31.387 (3)C4—H40.9300
N2—O3—H3109.5C2—C3—C7118.11 (19)
O2—N1—O1123.2 (2)N2—C7—C3122.7 (2)
O2—N1—C1118.4 (2)N2—C7—H7118.7
O1—N1—C1118.4 (2)C3—C7—H7118.7
C7—N2—O3111.8 (2)C1—C6—C5117.8 (2)
C6—C1—C2123.0 (2)C1—C6—H6121.1
C6—C1—N1118.9 (2)C5—C6—H6121.1
C2—C1—N1118.1 (2)C4—C5—C6120.4 (2)
C1—C2—C3118.63 (19)C4—C5—H5119.8
C1—C2—H2120.7C6—C5—H5119.8
C3—C2—H2120.7C5—C4—C3121.0 (2)
C4—C3—C2119.1 (2)C5—C4—H4119.5
C4—C3—C7122.78 (19)C3—C4—H4119.5
O2—N1—C1—C6171.2 (2)C4—C3—C7—N25.0 (4)
O1—N1—C1—C67.8 (4)C2—C3—C7—N2175.6 (3)
O2—N1—C1—C28.2 (3)C2—C1—C6—C50.8 (4)
O1—N1—C1—C2172.8 (3)N1—C1—C6—C5178.6 (2)
C6—C1—C2—C30.5 (3)C1—C6—C5—C40.2 (4)
N1—C1—C2—C3178.8 (2)C6—C5—C4—C30.5 (4)
C1—C2—C3—C40.3 (3)C2—C3—C4—C50.8 (4)
C1—C2—C3—C7179.1 (2)C7—C3—C4—C5178.6 (2)
O3—N2—C7—C3179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.822.122.841 (3)146
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC7H6N2O3
Mr166.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)3.7737 (2), 7.0363 (3), 28.6651 (14)
β (°) 91.237 (3)
V3)760.96 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.49 × 0.41 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7222, 1869, 1340
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.175, 1.09
No. of reflections1869
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.822.122.841 (3)146.2
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

AA is grateful to the HEC-Pakistan for financial support for his PhD program under scholarship No. [IIC–0317109].

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGreene, T. W. & Wuts, P. G. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: Wiley.  Google Scholar
First citationJokanovic, M. & Prostran, M. (2009). Curr. Med. Chem. 16, 2177–2188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarrs, T. C., Rice, P. & Vale, J. A. (2006). Toxicol. Rev. 25, 297–323.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gö ttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinada, T. & Yoshihara, K. (1995). Tetrahedron Lett. 36–37, 6701–6704.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationXing, Z.-T., Ding, W.-L., Wang, H.-B., Yin, J. & Han, F. (2007). Acta Cryst. E63, o1019–o1020.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, Z.-T., Wang, H.-B., Yin, J., Wu, W.-Y. & Han, F. (2007). Acta Cryst. E63, o2236–o2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds