organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-[phen­yl(pyrazol-1-yl)meth­yl]propane­dioate

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France, cCentre National pour la Recherche Scientifique et Technique, Division UATRS, Rabat, Morocco, and dLaboratoire de Chimie des Matériaux, Université Med. 1ier, Oujda, Morocco
*Correspondence e-mail: zouihri@cnrst.ma

(Received 6 March 2010; accepted 29 March 2010; online 2 April 2010)

There are two independent mol­ecules in the asymmetric unit of the title compound, C17H20N2O4, which differ slightly in the orientation of the phenyl ring and carbonyl groups with respect to the pyrazole unit. In the first mol­ecule, the dihedral angle between the phenyl and pyrazole rings is 68.99 (13)° while the two carbonyl groups make a dihedral angle of 72.1 (4)°. The corresponding values in the second mol­ecule are 68.54 (14) and 71.5 (4)°, respectively.

Related literature

For related compounds displaying biological activity, see: Dayam et al. (2007[Dayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6155-6159.]); Patil et al. (2007[Patil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem. 15, 1212-1228.]); Ramkumar et al. (2008[Ramkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem. 16, 8988-8998.]); Sechi et al. (2009a[Sechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessı`, A., Al-Safi, R. I. & Neamati, N. (2009a). Antivir. Res. 81, 267-276.],b[Sechi, M., Rizzi, G., Bacchi, A., Carcelli, M., Rogolino, D., Pala, N., Sanchez, T. W., Taheri, L., Dayam, R. & Neamati, N. (2009b). Bioorg. Med. Chem. 17, 2925-2935.]); Zeng et al. (2008a[Zeng, L. F., Zhang, H.-S., Wang, Y. H., Sanchez, T., Zheng, Y. T., Neamati, N. & Long, Y. Q. (2008a). Bioorg. Med. Chem. Lett. 18, 4521-4524.],b[Zeng, L. F., Jiang, X. H., Sanchez, T., Zhang, H. S., Dayam, R., Neamati, N. & Long, Y. Q. (2008b). Bioorg. Med. Chem. 16, 7777-7787.]). For a related structures, see: Akkurt et al. (2007[Akkurt, M., Yıldırım, S. Ö., Benjelloun, O. T., Larbi, N. B., Hadda, T. B. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1656-o1657.]). For the synthetic procedure, see: Pommier & Neamati (2006[Pommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem. 14, 3785-3792.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O4

  • Mr = 316.36

  • Monoclinic, P 21 /c

  • a = 19.6279 (8) Å

  • b = 8.1538 (3) Å

  • c = 21.6002 (9) Å

  • β = 104.675 (2)°

  • V = 3344.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.35 × 0.22 × 0.17 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 34259 measured reflections

  • 6348 independent reflections

  • 4175 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.06

  • 6346 reflections

  • 419 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The rational design of new HIV-1 Integrase (H-I) inhibitors, one validated target for chemotherapeutic intervention (Dayam et al., 2007), is fundamentally based on intermolecular coordination between H-I / chemical inhibitor / metals (Mg+2 and Mn+2, co-factors of the enzyme), leading to the formation of bimetallic complexes (Zeng et al., 2008a; Sechi et al., 2009a). Therefore several bimetallic metal complexes, in many cases exploring the well-known polydentate ligands, appear in this scenario as the most promising concept to employ in either enzyme / drug interaction or electron transfer process, in the last case involving biological oxygen transfer (Sechi et al., 2009b; Ramkumar et al., 2008). Another exciting example of the application of such polydentate ligands involves the synergic water activation, that occurs via the so-called remote metallic atoms. Such organometallic compounds are expected to promote or block the H-I activity [Zeng et al. (2008b)]. The examples given above clearly demonstrate that polydentate ligands are of special interest in the field of bioorganometallic chemistry [Patil et al. (2007)].

The structure of the title compound was established by 1H and 13C NMR and confirmed by its elemental analyses and single-crystal X-ray structure. Crystals of the title compound contain two molecules in the asymmetric unit. The difference between the molecules lies in the orientation of the phenyl and pyrazol rings and carbonyl planes in each molecule as shown in the fitting drawing (Fig. 2). Thus in the first molecule (C11 to C143) the dihedral angles between the phenyl and pyrazol rings is 68.99 (13)° and between the two carbonyl groups is 72.1 (4)°. Whereas in the second molecule (C21 to C243), equivalent angles have as values 68.54 (14)° and 71.5 (4)°, respectively. The conformational difference between the independent molecules, as shown in Fig. 2, can also be described by torsion angles: N11—C11···C131—C132 = 79.71 (15), C11—C12···O11O12 = 46.54 (9) and C11—C12···O13—O14 = 47.02 (9) in the first molecule. In the second molecule, the corresponding values are 54.31 (14), 41.77 (9) and 47.44 (9), respectively. The bond lengths and angles in the title compound (Fig. 1) are found to have normal values [Allen et al., 1987].

Related literature top

For related compounds displaying biological activity, see: Dayam et al. (2007); Patil et al. (2007); Ramkumar et al. (2008); Sechi et al. (2009a,b); Zeng et al. (2008a,b). For a related structures, see: Akkurt et al. (2007). For the synthetic procedure, see: Pommier & Neamati (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of diethyl benzylpropanedioate (5 mmol) in water (25 ml) was added 1H-pyrazol (6 mmol) in the presence of acetic acid (0.1% mol). The mixture was stirred continuously at room temperature until the starting material was completely consumed. After removing the solvent, the crude products were dissolved in diethyl ether (2 x 40 ml) and washed with water until the pH became neutral. The organic solvent was dried with sodium sulphate and then evaporated. The residue was purified by recrystallization from a mixture ether/hexane (1:1) to give a white solid in 74% yield. Rf = 0.45 (ether/hexane: 1/1). Elemental analysis for C17H20N2O4: Calcd (Found): C 67.82 (67.79), H 5.89 (5.87), N (2.73 (2.72). The purity of the compound was checked by determining its melting point (87-89°C). Suitable single crystal of the title compound were obtained by recrystallization from ethanol.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.99 Å (methylene), 0.98 Å (methyl) and 1.00 Å (methine) with Uiso(H) = 1.2Ueq (aromatic, methine, methylene) and Uiso(H) = 1.5Ueq (methyl).

Structure description top

The rational design of new HIV-1 Integrase (H-I) inhibitors, one validated target for chemotherapeutic intervention (Dayam et al., 2007), is fundamentally based on intermolecular coordination between H-I / chemical inhibitor / metals (Mg+2 and Mn+2, co-factors of the enzyme), leading to the formation of bimetallic complexes (Zeng et al., 2008a; Sechi et al., 2009a). Therefore several bimetallic metal complexes, in many cases exploring the well-known polydentate ligands, appear in this scenario as the most promising concept to employ in either enzyme / drug interaction or electron transfer process, in the last case involving biological oxygen transfer (Sechi et al., 2009b; Ramkumar et al., 2008). Another exciting example of the application of such polydentate ligands involves the synergic water activation, that occurs via the so-called remote metallic atoms. Such organometallic compounds are expected to promote or block the H-I activity [Zeng et al. (2008b)]. The examples given above clearly demonstrate that polydentate ligands are of special interest in the field of bioorganometallic chemistry [Patil et al. (2007)].

The structure of the title compound was established by 1H and 13C NMR and confirmed by its elemental analyses and single-crystal X-ray structure. Crystals of the title compound contain two molecules in the asymmetric unit. The difference between the molecules lies in the orientation of the phenyl and pyrazol rings and carbonyl planes in each molecule as shown in the fitting drawing (Fig. 2). Thus in the first molecule (C11 to C143) the dihedral angles between the phenyl and pyrazol rings is 68.99 (13)° and between the two carbonyl groups is 72.1 (4)°. Whereas in the second molecule (C21 to C243), equivalent angles have as values 68.54 (14)° and 71.5 (4)°, respectively. The conformational difference between the independent molecules, as shown in Fig. 2, can also be described by torsion angles: N11—C11···C131—C132 = 79.71 (15), C11—C12···O11O12 = 46.54 (9) and C11—C12···O13—O14 = 47.02 (9) in the first molecule. In the second molecule, the corresponding values are 54.31 (14), 41.77 (9) and 47.44 (9), respectively. The bond lengths and angles in the title compound (Fig. 1) are found to have normal values [Allen et al., 1987].

For related compounds displaying biological activity, see: Dayam et al. (2007); Patil et al. (2007); Ramkumar et al. (2008); Sechi et al. (2009a,b); Zeng et al. (2008a,b). For a related structures, see: Akkurt et al. (2007). For the synthetic procedure, see: Pommier & Neamati (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View showing the fitting between the molecule 1 and the inverted molecule 2 from the asymmetric unit [PLATON (Spek, 2009)].
Diethyl 2-[phenyl(pyrazol-1-yl)methyl]propanedioate top
Crystal data top
C17H20N2O4F(000) = 1344
Mr = 316.36Dx = 1.257 Mg m3
Monoclinic, P21/cMelting point: 360 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 19.6279 (8) ÅCell parameters from 3174 reflections
b = 8.1538 (3) Åθ = 2.1–25.2°
c = 21.6002 (9) ŵ = 0.09 mm1
β = 104.675 (2)°T = 173 K
V = 3344.2 (2) Å3Block, colourless
Z = 80.35 × 0.22 × 0.17 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
4175 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.7°, θmin = 1.1°
φ and ω scansh = 2323
34259 measured reflectionsk = 99
6348 independent reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7393P]
where P = (Fo2 + 2Fc2)/3
6346 reflections(Δ/σ)max = 0.001
419 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H20N2O4V = 3344.2 (2) Å3
Mr = 316.36Z = 8
Monoclinic, P21/cMo Kα radiation
a = 19.6279 (8) ŵ = 0.09 mm1
b = 8.1538 (3) ÅT = 173 K
c = 21.6002 (9) Å0.35 × 0.22 × 0.17 mm
β = 104.675 (2)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
4175 reflections with I > 2σ(I)
34259 measured reflectionsRint = 0.048
6348 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
6346 reflectionsΔρmin = 0.25 e Å3
419 parameters
Special details top

Experimental. The crystal structure was confirmed by elemental analysis and 1H and 13 C-NMR.

IR (KBr) ν cm-1 : 2896/2985 (CH), 1748 (CO), 1514/1595 (C=C), 1292/1308 (C—O), 1175, 1139, 1013, 866, 753, 440.

1H-NMR (250 MHz, CDCl3) d (ppm): 7.30-7.46 (m, 4H, aromat, 3J = 8.35 Hz), 6.20 (t, 1H, C4Pz, 3J = 2 Hz), 7.5 (d, 2H, C3'H and C5HPz, 3J = 14.4 Hz), 5.85 (d, 1H, PhC3H, 3J = 11.36 Hz), 4.80 (d, 1H, C2H(CO2Et)2, 3J = 11.11 Hz), 3.95 (dq, 2 HAB, OCH2CH3,JAB= 14.30 Hz, 3J = 7.11 Hz), 4,12 (dq, 2HAB, CH2OCH3, JAB= 14.30 Hz, 3J = 7.11 Hz), 1.15 (t, 3H, OCH2CH3 , 3J = 7.13 Hz), 1.01 (t, 3H, OCH2CH3, 3J = 7.13 Hz).

13C-NMR (250 MHz, CDCl3) δ (ppm): 166.37 (C=O), 166.61 (CO), 137.15 (Cquat, Ph), 128,62 (Ctert, 2Cmeta/arm, Ph), 129.76 (Ctert, 2Cortho/ arm, Ph), 139.56 (Ctert,' C5''Pz), 128.67 (Ctert, 'C3''Pz), 105.71 (Ctert, C4H, Pz), 61.87/ 61.76 (Csec, 2CH2, ester), 64.22 (Ctert, C3HPh), 57.33 (Ctert, C2H(CO2Et)2), 13.87 (C, OCH2CH3, ester), 13.69 (C, OCH2CH3, ester).

MS (IE) Calcd for [M]+ C17H20N2O4: 316.35, [M+H]+. = 317, [M - CH(CO2Et)2]+. = 157 (100%).

Elemental analysis for C17H20N2O4 Calcd (Found): C 64.54 (64.37), H 6.37 (6.34), N 8.86 (8.84).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.97782 (9)0.4587 (2)0.14742 (9)0.0288 (4)
H110.97660.43130.19220.035*
C120.94763 (9)0.3117 (2)0.10526 (9)0.0285 (4)
H120.94740.33570.05980.034*
C1361.08085 (10)0.4753 (2)0.09490 (10)0.0355 (5)
H1361.05110.43530.05610.043*
C1311.05405 (9)0.4968 (2)0.14811 (9)0.0293 (4)
C1321.09818 (10)0.5576 (3)0.20416 (10)0.0377 (5)
H1321.08050.57400.24080.045*
C1331.16781 (11)0.5945 (3)0.20699 (11)0.0462 (6)
H1331.19750.63700.24540.055*
C1351.15052 (11)0.5120 (3)0.09818 (11)0.0432 (5)
H1351.16830.49720.06160.052*
C1341.19419 (11)0.5697 (3)0.15430 (11)0.0478 (6)
H1341.24230.59240.15670.057*
C180.99255 (9)0.1608 (2)0.12819 (9)0.0302 (4)
C150.87274 (9)0.2760 (2)0.10988 (9)0.0301 (4)
C160.75841 (10)0.2018 (3)0.05069 (10)0.0478 (6)
H16A0.73850.29260.07100.057*
H16B0.75400.09890.07370.057*
C191.04535 (12)0.0718 (3)0.09243 (11)0.0462 (6)
H19A1.02080.16680.06810.055*
H19B1.05610.09820.13860.055*
C201.11176 (11)0.0376 (3)0.07335 (11)0.0484 (6)
H20A1.10070.01130.02760.073*
H20B1.14220.13460.08180.073*
H20C1.13610.05550.09810.073*
C170.72063 (12)0.1870 (5)0.01707 (12)0.0850 (11)
H17A0.72470.29010.03920.127*
H17B0.67080.16350.02050.127*
H17C0.74120.09760.03670.127*
O131.01617 (7)0.12639 (17)0.18357 (7)0.0448 (4)
O141.00073 (7)0.07390 (16)0.07883 (6)0.0390 (3)
O120.83217 (6)0.23431 (18)0.05337 (6)0.0388 (3)
O110.85427 (7)0.28256 (18)0.15869 (6)0.0420 (4)
N110.93182 (8)0.60116 (18)0.12721 (7)0.0295 (4)
C210.47116 (9)0.8377 (2)0.40329 (9)0.0294 (4)
H210.47280.87600.44760.035*
C220.43696 (9)0.9732 (2)0.35641 (9)0.0282 (4)
H220.43620.93880.31180.034*
C2360.56098 (10)0.7580 (2)0.34270 (9)0.0357 (5)
H2360.52360.73900.30580.043*
C2310.54615 (9)0.8070 (2)0.39927 (8)0.0286 (4)
C2350.62987 (11)0.7365 (3)0.33975 (10)0.0422 (5)
H2350.63970.70290.30080.051*
C2320.60142 (10)0.8345 (3)0.45220 (10)0.0435 (5)
H2320.59200.86830.49130.052*
C2330.67022 (11)0.8134 (3)0.44898 (12)0.0556 (6)
H2330.70770.83350.48570.067*
C2340.68458 (11)0.7637 (3)0.39325 (11)0.0504 (6)
H2340.73190.74800.39130.060*
O220.32221 (6)1.05521 (18)0.30375 (6)0.0379 (3)
O230.50629 (7)1.17430 (17)0.42706 (6)0.0383 (3)
O240.48859 (7)1.20201 (17)0.32046 (6)0.0374 (3)
O210.34248 (7)1.00089 (19)0.40842 (6)0.0428 (4)
C250.36234 (10)1.0097 (2)0.36044 (9)0.0303 (4)
C260.24856 (10)1.0901 (3)0.30130 (10)0.0483 (6)
H26A0.24501.19020.32620.058*
H26B0.22740.99750.31950.058*
C270.21148 (12)1.1144 (4)0.23293 (11)0.0702 (8)
H27A0.23001.21240.21660.105*
H27B0.16091.12820.22890.105*
H27C0.21901.01840.20810.105*
C280.48128 (9)1.1279 (2)0.37332 (9)0.0285 (4)
C290.53627 (11)1.3421 (3)0.32954 (10)0.0439 (5)
H29A0.53841.39490.37130.053*
H29B0.51901.42390.29530.053*
C300.60821 (11)1.2832 (3)0.32758 (11)0.0526 (6)
H30A0.62451.20050.36100.079*
H30B0.64101.37600.33490.079*
H30C0.60601.23480.28560.079*
N210.42781 (8)0.68893 (19)0.39088 (7)0.0323 (4)
N120.90130 (9)0.6301 (2)0.06472 (8)0.0402 (4)
N220.39520 (10)0.6437 (2)0.33069 (8)0.0469 (5)
C1410.91609 (10)0.7177 (2)0.16551 (10)0.0350 (5)
H1410.93230.72240.21080.042*
C2410.41790 (11)0.5804 (3)0.43464 (11)0.0412 (5)
H2410.43640.58690.47970.049*
C1420.87256 (10)0.8278 (3)0.12717 (10)0.0394 (5)
H1420.85200.92360.13980.047*
C1430.86510 (10)0.7683 (3)0.06560 (11)0.0431 (5)
H1430.83740.82020.02830.052*
C2420.37550 (11)0.4572 (3)0.40125 (12)0.0480 (6)
H2420.35860.36250.41830.058*
C2430.36321 (12)0.5025 (3)0.33775 (12)0.0487 (6)
H2430.33540.44070.30320.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0257 (10)0.0313 (10)0.0280 (10)0.0028 (8)0.0042 (8)0.0022 (8)
C120.0242 (10)0.0341 (11)0.0268 (10)0.0018 (8)0.0056 (7)0.0009 (8)
C1360.0305 (11)0.0385 (12)0.0368 (12)0.0014 (9)0.0072 (9)0.0019 (9)
C1310.0255 (10)0.0282 (10)0.0334 (11)0.0029 (8)0.0059 (8)0.0019 (8)
C1320.0334 (11)0.0435 (12)0.0346 (12)0.0013 (9)0.0054 (9)0.0015 (9)
C1330.0326 (12)0.0541 (14)0.0464 (14)0.0053 (10)0.0004 (10)0.0046 (11)
C1350.0360 (12)0.0500 (13)0.0466 (14)0.0007 (10)0.0158 (10)0.0005 (11)
C1340.0284 (11)0.0575 (14)0.0563 (15)0.0015 (11)0.0085 (10)0.0011 (12)
C180.0222 (10)0.0327 (11)0.0344 (12)0.0039 (8)0.0046 (8)0.0005 (9)
C150.0270 (10)0.0297 (10)0.0323 (11)0.0049 (8)0.0049 (8)0.0015 (8)
C160.0221 (10)0.0735 (16)0.0472 (14)0.0042 (11)0.0076 (9)0.0031 (12)
C190.0516 (14)0.0332 (12)0.0600 (15)0.0111 (10)0.0252 (11)0.0019 (10)
C200.0404 (13)0.0569 (15)0.0483 (14)0.0113 (11)0.0121 (10)0.0028 (11)
C170.0348 (14)0.166 (3)0.0485 (16)0.0270 (17)0.0003 (11)0.0012 (18)
O130.0481 (9)0.0433 (9)0.0355 (9)0.0110 (7)0.0031 (7)0.0010 (7)
O140.0448 (8)0.0343 (8)0.0409 (8)0.0087 (7)0.0165 (7)0.0012 (6)
O120.0229 (7)0.0566 (9)0.0352 (8)0.0039 (6)0.0041 (6)0.0065 (7)
O110.0327 (8)0.0603 (10)0.0335 (8)0.0014 (7)0.0094 (6)0.0001 (7)
N110.0252 (8)0.0317 (9)0.0299 (9)0.0017 (7)0.0039 (7)0.0021 (7)
C210.0289 (10)0.0337 (10)0.0245 (10)0.0001 (8)0.0049 (8)0.0016 (8)
C220.0268 (10)0.0341 (11)0.0236 (10)0.0003 (8)0.0059 (8)0.0000 (8)
C2360.0344 (11)0.0405 (11)0.0310 (11)0.0016 (9)0.0062 (8)0.0013 (9)
C2310.0288 (10)0.0288 (10)0.0272 (10)0.0001 (8)0.0054 (8)0.0012 (8)
C2350.0415 (12)0.0468 (13)0.0411 (13)0.0005 (10)0.0158 (10)0.0022 (10)
C2320.0346 (12)0.0580 (14)0.0346 (12)0.0077 (10)0.0026 (9)0.0046 (10)
C2330.0344 (13)0.0740 (17)0.0524 (15)0.0060 (12)0.0000 (10)0.0078 (13)
C2340.0344 (12)0.0590 (15)0.0581 (16)0.0001 (11)0.0122 (11)0.0034 (12)
O220.0224 (7)0.0570 (9)0.0334 (8)0.0031 (6)0.0054 (6)0.0090 (7)
O230.0419 (8)0.0419 (8)0.0287 (8)0.0041 (7)0.0043 (6)0.0038 (6)
O240.0402 (8)0.0416 (8)0.0302 (8)0.0081 (6)0.0082 (6)0.0030 (6)
O210.0324 (8)0.0674 (10)0.0299 (8)0.0005 (7)0.0104 (6)0.0010 (7)
C250.0277 (10)0.0327 (11)0.0285 (11)0.0040 (8)0.0037 (8)0.0022 (8)
C260.0202 (10)0.0755 (17)0.0489 (14)0.0020 (11)0.0081 (9)0.0093 (12)
C270.0298 (12)0.125 (3)0.0508 (15)0.0155 (15)0.0017 (11)0.0139 (16)
C280.0241 (10)0.0337 (11)0.0272 (11)0.0053 (8)0.0055 (8)0.0006 (8)
C290.0505 (13)0.0409 (12)0.0404 (13)0.0152 (11)0.0116 (10)0.0010 (10)
C300.0447 (14)0.0648 (16)0.0469 (14)0.0156 (12)0.0088 (10)0.0025 (12)
N210.0313 (9)0.0345 (9)0.0312 (9)0.0002 (7)0.0080 (7)0.0012 (7)
N120.0418 (10)0.0415 (10)0.0327 (10)0.0035 (8)0.0011 (8)0.0037 (8)
N220.0532 (12)0.0470 (11)0.0371 (11)0.0123 (9)0.0054 (8)0.0015 (8)
C1410.0332 (11)0.0358 (11)0.0373 (12)0.0013 (9)0.0111 (9)0.0025 (9)
C2410.0372 (12)0.0429 (13)0.0463 (13)0.0082 (10)0.0157 (10)0.0133 (10)
C1420.0320 (11)0.0353 (11)0.0520 (14)0.0042 (9)0.0127 (9)0.0025 (10)
C1430.0322 (11)0.0430 (13)0.0483 (14)0.0029 (10)0.0005 (9)0.0134 (10)
C2420.0415 (13)0.0367 (13)0.0712 (17)0.0041 (10)0.0245 (12)0.0092 (11)
C2430.0461 (13)0.0410 (13)0.0569 (16)0.0096 (11)0.0090 (11)0.0048 (11)
Geometric parameters (Å, º) top
C11—N111.468 (2)C22—H221.0000
C11—C1311.525 (2)C236—C2351.381 (3)
C11—C121.531 (3)C236—C2311.385 (3)
C11—H111.0000C236—H2360.9500
C12—C181.522 (3)C231—C2321.381 (3)
C12—C151.526 (2)C235—C2341.382 (3)
C12—H121.0000C235—H2350.9500
C136—C1351.384 (3)C232—C2331.380 (3)
C136—C1311.391 (3)C232—H2320.9500
C136—H1360.9500C233—C2341.365 (3)
C131—C1321.390 (3)C233—H2330.9500
C132—C1331.386 (3)C234—H2340.9500
C132—H1320.9500O22—C251.330 (2)
C133—C1341.379 (3)O22—C261.461 (2)
C133—H1330.9500O23—C281.201 (2)
C135—C1341.378 (3)O24—C281.331 (2)
C135—H1350.9500O24—C291.458 (2)
C134—H1340.9500O21—C251.198 (2)
C18—O131.202 (2)C26—C271.485 (3)
C18—O141.323 (2)C26—H26A0.9900
C15—O111.200 (2)C26—H26B0.9900
C15—O121.322 (2)C27—H27A0.9800
C16—O121.459 (2)C27—H27B0.9800
C16—C171.469 (3)C27—H27C0.9800
C16—H16A0.9900C29—C301.502 (3)
C16—H16B0.9900C29—H29A0.9900
C19—O141.461 (2)C29—H29B0.9900
C19—C201.489 (3)C30—H30A0.9800
C19—H19A0.9900C30—H30B0.9800
C19—H19B0.9900C30—H30C0.9800
C20—H20A0.9800N21—C2411.345 (2)
C20—H20B0.9800N21—N221.347 (2)
C20—H20C0.9800N12—C1431.335 (3)
C17—H17A0.9800N22—C2431.339 (3)
C17—H17B0.9800C141—C1421.365 (3)
C17—H17C0.9800C141—H1410.9500
N11—C1411.346 (2)C241—C2421.385 (3)
N11—N121.352 (2)C241—H2410.9500
C21—N211.467 (2)C142—C1431.388 (3)
C21—C2311.517 (2)C142—H1420.9500
C21—C221.534 (2)C143—H1430.9500
C21—H211.0000C242—C2431.382 (3)
C22—C251.519 (2)C242—H2420.9500
C22—C281.524 (3)C243—H2430.9500
N11—C11—C131111.71 (15)C28—C22—H22109.4
N11—C11—C12109.05 (14)C21—C22—H22109.4
C131—C11—C12113.35 (15)C235—C236—C231120.30 (18)
N11—C11—H11107.5C235—C236—H236119.9
C131—C11—H11107.5C231—C236—H236119.9
C12—C11—H11107.5C232—C231—C236118.74 (18)
C18—C12—C15108.20 (15)C232—C231—C21119.74 (17)
C18—C12—C11109.54 (14)C236—C231—C21121.46 (16)
C15—C12—C11110.16 (15)C236—C235—C234120.2 (2)
C18—C12—H12109.6C236—C235—H235119.9
C15—C12—H12109.6C234—C235—H235119.9
C11—C12—H12109.6C233—C232—C231120.8 (2)
C135—C136—C131120.42 (19)C233—C232—H232119.6
C135—C136—H136119.8C231—C232—H232119.6
C131—C136—H136119.8C234—C233—C232120.3 (2)
C132—C131—C136118.83 (17)C234—C233—H233119.9
C132—C131—C11118.35 (17)C232—C233—H233119.9
C136—C131—C11122.82 (17)C233—C234—C235119.6 (2)
C133—C132—C131120.40 (19)C233—C234—H234120.2
C133—C132—H132119.8C235—C234—H234120.2
C131—C132—H132119.8C25—O22—C26115.94 (14)
C134—C133—C132120.3 (2)C28—O24—C29116.43 (15)
C134—C133—H133119.9O21—C25—O22124.50 (17)
C132—C133—H133119.9O21—C25—C22124.60 (17)
C134—C135—C136120.3 (2)O22—C25—C22110.90 (15)
C134—C135—H135119.8O22—C26—C27107.04 (16)
C136—C135—H135119.8O22—C26—H26A110.3
C135—C134—C133119.7 (2)C27—C26—H26A110.3
C135—C134—H134120.1O22—C26—H26B110.3
C133—C134—H134120.1C27—C26—H26B110.3
O13—C18—O14125.59 (18)H26A—C26—H26B108.6
O13—C18—C12123.95 (17)C26—C27—H27A109.5
O14—C18—C12110.45 (16)C26—C27—H27B109.5
O11—C15—O12125.28 (18)H27A—C27—H27B109.5
O11—C15—C12124.01 (17)C26—C27—H27C109.5
O12—C15—C12110.70 (16)H27A—C27—H27C109.5
O12—C16—C17107.46 (17)H27B—C27—H27C109.5
O12—C16—H16A110.2O23—C28—O24125.42 (18)
C17—C16—H16A110.2O23—C28—C22124.14 (17)
O12—C16—H16B110.2O24—C28—C22110.44 (15)
C17—C16—H16B110.2O24—C29—C30108.77 (18)
H16A—C16—H16B108.5O24—C29—H29A109.9
O14—C19—C20108.32 (17)C30—C29—H29A109.9
O14—C19—H19A110.0O24—C29—H29B109.9
C20—C19—H19A110.0C30—C29—H29B109.9
O14—C19—H19B110.0H29A—C29—H29B108.3
C20—C19—H19B110.0C29—C30—H30A109.5
H19A—C19—H19B108.4C29—C30—H30B109.5
C19—C20—H20A109.5H30A—C30—H30B109.5
C19—C20—H20B109.5C29—C30—H30C109.5
H20A—C20—H20B109.5H30A—C30—H30C109.5
C19—C20—H20C109.5H30B—C30—H30C109.5
H20A—C20—H20C109.5C241—N21—N22112.35 (17)
H20B—C20—H20C109.5C241—N21—C21126.61 (17)
C16—C17—H17A109.5N22—N21—C21120.98 (15)
C16—C17—H17B109.5C143—N12—N11103.65 (16)
H17A—C17—H17B109.5C243—N22—N21104.33 (17)
C16—C17—H17C109.5N11—C141—C142107.29 (18)
H17A—C17—H17C109.5N11—C141—H141126.4
H17B—C17—H17C109.5C142—C141—H141126.4
C18—O14—C19117.54 (16)N21—C241—C242106.64 (19)
C15—O12—C16116.30 (15)N21—C241—H241126.7
C141—N11—N12112.20 (16)C242—C241—H241126.7
C141—N11—C11126.54 (16)C141—C142—C143104.45 (18)
N12—N11—C11121.24 (15)C141—C142—H142127.8
N21—C21—C231112.30 (15)C143—C142—H142127.8
N21—C21—C22109.77 (14)N12—C143—C142112.41 (18)
C231—C21—C22110.48 (15)N12—C143—H143123.8
N21—C21—H21108.1C142—C143—H143123.8
C231—C21—H21108.1C243—C242—C241104.70 (19)
C22—C21—H21108.1C243—C242—H242127.7
C25—C22—C28108.93 (15)C241—C242—H242127.7
C25—C22—C21111.74 (15)N22—C243—C242112.0 (2)
C28—C22—C21108.08 (15)N22—C243—H243124.0
C25—C22—H22109.4C242—C243—H243124.0

Experimental details

Crystal data
Chemical formulaC17H20N2O4
Mr316.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)19.6279 (8), 8.1538 (3), 21.6002 (9)
β (°) 104.675 (2)
V3)3344.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.22 × 0.17
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34259, 6348, 4175
Rint0.048
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.06
No. of reflections6346
No. of parameters419
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by grants from Project PGR-UMP-BH-2005, the Centre National de Recherche Scientifique, CNRS (France) and the Centre National pour la Recherche Scientifique et Technique, CNRST (Morocco).

References

First citationAkkurt, M., Yıldırım, S. Ö., Benjelloun, O. T., Larbi, N. B., Hadda, T. B. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1656–o1657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6155–6159.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem. 15, 1212–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem. 14, 3785–3792.  Web of Science PubMed Google Scholar
First citationRamkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem. 16, 8988–8998.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessı`, A., Al-Safi, R. I. & Neamati, N. (2009a). Antivir. Res. 81, 267–276.  Google Scholar
First citationSechi, M., Rizzi, G., Bacchi, A., Carcelli, M., Rogolino, D., Pala, N., Sanchez, T. W., Taheri, L., Dayam, R. & Neamati, N. (2009b). Bioorg. Med. Chem. 17, 2925–2935.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZeng, L. F., Jiang, X. H., Sanchez, T., Zhang, H. S., Dayam, R., Neamati, N. & Long, Y. Q. (2008b). Bioorg. Med. Chem. 16, 7777–7787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, L. F., Zhang, H.-S., Wang, Y. H., Sanchez, T., Zheng, Y. T., Neamati, N. & Long, Y. Q. (2008a). Bioorg. Med. Chem. Lett. 18, 4521–4524.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds