organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Di­bromo-9,9-di­methyl-9H-fluorene

aTianjin Basechem Technology Co. Ltd, K1-4-404, No. 6 Haitaifazhan 6th Road Huayuan Industry Area, Tianjin New Technology Industry Park, Tianjin 300384, People's Republic of China
*Correspondence e-mail: jialong.yuan@tjbasechem.com

(Received 23 March 2010; accepted 31 March 2010; online 10 April 2010)

The title mol­ecule, C15H15Br2, has crystallographic m2m site symmetry. As a result, all atoms, except for those of the methyl groups, are exactly coplanar. In the crystal structure, there are weak ππ inter­actions with a centroid–centroid distance of 3.8409 (15) Å between symmetry-related mol­ecules, which stack along the c axis.

Related literature

For applications of fluorene derivatives, see: Holder et al. (2005[Holder, E., Langeveld, B. M. W. & Schubert, U. S. (2005). Adv. Mater. 17, 1109-1121.]); Kulkarni et al. (2004[Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556-4573.]); Padmaperuma et al. (2006[Padmaperuma, A. B., Sapochak, L. S. & Burrows, P. E. (2006). Chem. Mater. 18, 2389-2396.]); Seneclauze et al. (2007[Seneclauze, J. B., Retailleau, P. & Ziessel, R. (2007). New J. Chem. 31, 1412-1416.]); Tsuboyama et al. (2003[Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971-12979.]). For the properties of fluorene-based mol­ecules, see: Scherf & List (2002[Scherf, U. & List, E. J. W. (2002). Adv. Mater. 14, 447-487.]). For the synthesis of the title compound, see: Belfield et al. (2000[Belfield, K. D., Schafer, K. J., Mourad, W. & Reinhardt, B. A. (2000). J. Org. Chem. 65, 4475-4481.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Br2

  • Mr = 352.07

  • Orthorhombic, C m c m

  • a = 17.097 (4) Å

  • b = 11.161 (3) Å

  • c = 6.9120 (17) Å

  • V = 1319.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.12 mm−1

  • T = 296 K

  • 0.38 × 0.36 × 0.32 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.083, Tmax = 1.000

  • 3295 measured reflections

  • 662 independent reflections

  • 499 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.05

  • 662 reflections

  • 54 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1998[Bruker (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Because of their good thermal and chemical stability along with high emission efficiency, fluorene derivatives have shown many applications as electronic materials, especially for organic light emitting diodes (OLEDs) (Holder et al., 2005; Kulkarni et al., 2004; Seneclauze et al., 2007; Padmaperuma et al., 2006; Tsuboyama et al., 2003). In this regard, small molecules, oligomers, or polymers with the 9,9-dialkylfluorene subunit possess interesting emissive properties. The quality and efficiency of such OLEDs have been shown to depend crucially on the stacking mode of the fluorene motif. On the other hand, the selected alkyl groups with different lengths or branched alkyl chains have a deep influence on the property and the packing mode of fluorene-based molecules (Scherf & List, 2002). During our study on such OLEDs crystalline materials, the crystal structure of the title compound has been determined in order to elucidate its molecular conformation and packing mode, which may be useful for further understanding its properties.

The molecular structure of the title compound is shown in Fig. 1. The complete molecule is generated two mirror planes which intersect each other [ crystallographic m2m site symmetry]. As a result, all the carbon atoms [except for those of the methyl groups] and the bromide atoms are exactly co-planar. In the crystal structure, weak ππ interactions between symmetry related benzene rings [C1-C6] with a centroid to centroid distance of 3.8409 (15) Å and perpendicular distance of 3.456 (1) Å form a one-dimensional chain along the c axis (see Fig. 2).

Related literature top

For applications of fluorene derivatives, see: Holder et al. (2005); Kulkarni et al. (2004); Padmaperuma et al. (2006); Seneclauze et al. (2007); Tsuboyama et al. (2003). For the properties of fluorene-based molecules, see: Scherf & List (2002). For the synthesis of the title compound, see: Belfield et al. (2000).

Experimental top

The title compound was prepared according to the literature method (Belfield et al., 2000). Single crystals suitable for X-ray diffraction were obtained by recrystallization of a solution of the title compound in a mixture of ethyl acetate and petroleum ether.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for all aromatic H atoms

Structure description top

Because of their good thermal and chemical stability along with high emission efficiency, fluorene derivatives have shown many applications as electronic materials, especially for organic light emitting diodes (OLEDs) (Holder et al., 2005; Kulkarni et al., 2004; Seneclauze et al., 2007; Padmaperuma et al., 2006; Tsuboyama et al., 2003). In this regard, small molecules, oligomers, or polymers with the 9,9-dialkylfluorene subunit possess interesting emissive properties. The quality and efficiency of such OLEDs have been shown to depend crucially on the stacking mode of the fluorene motif. On the other hand, the selected alkyl groups with different lengths or branched alkyl chains have a deep influence on the property and the packing mode of fluorene-based molecules (Scherf & List, 2002). During our study on such OLEDs crystalline materials, the crystal structure of the title compound has been determined in order to elucidate its molecular conformation and packing mode, which may be useful for further understanding its properties.

The molecular structure of the title compound is shown in Fig. 1. The complete molecule is generated two mirror planes which intersect each other [ crystallographic m2m site symmetry]. As a result, all the carbon atoms [except for those of the methyl groups] and the bromide atoms are exactly co-planar. In the crystal structure, weak ππ interactions between symmetry related benzene rings [C1-C6] with a centroid to centroid distance of 3.8409 (15) Å and perpendicular distance of 3.456 (1) Å form a one-dimensional chain along the c axis (see Fig. 2).

For applications of fluorene derivatives, see: Holder et al. (2005); Kulkarni et al. (2004); Padmaperuma et al. (2006); Seneclauze et al. (2007); Tsuboyama et al. (2003). For the properties of fluorene-based molecules, see: Scherf & List (2002). For the synthesis of the title compound, see: Belfield et al. (2000).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom labeling of the asymmetric unit, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with ππ interactions shown as red dashed lines.
2,7-Dibromo-9,9-dimethyl-9H-fluorene top
Crystal data top
C15H12Br2F(000) = 688
Mr = 352.07Dx = 1.773 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 958 reflections
a = 17.097 (4) Åθ = 2.4–24.1°
b = 11.161 (3) ŵ = 6.12 mm1
c = 6.9120 (17) ÅT = 296 K
V = 1319.0 (6) Å3Block, colourless
Z = 40.38 × 0.36 × 0.32 mm
Data collection top
Bruker SMART CCD
diffractometer
662 independent reflections
Radiation source: fine-focus sealed tube499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1820
Tmin = 0.083, Tmax = 1.000k = 1311
3295 measured reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0321P)2 + 2.5078P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
662 reflectionsΔρmax = 0.42 e Å3
54 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0097 (9)
Crystal data top
C15H12Br2V = 1319.0 (6) Å3
Mr = 352.07Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 17.097 (4) ŵ = 6.12 mm1
b = 11.161 (3) ÅT = 296 K
c = 6.9120 (17) Å0.38 × 0.36 × 0.32 mm
Data collection top
Bruker SMART CCD
diffractometer
662 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
499 reflections with I > 2σ(I)
Tmin = 0.083, Tmax = 1.000Rint = 0.047
3295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
662 reflectionsΔρmin = 0.38 e Å3
54 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.19165 (3)0.13056 (5)0.25000.0696 (4)
C10.3008 (3)0.0990 (4)0.25000.0416 (11)
C20.3248 (3)0.0185 (4)0.25000.0407 (12)
H20.28830.08040.25000.049*
C30.4037 (3)0.0430 (4)0.25000.0373 (11)
H30.42100.12200.25000.045*
C40.4574 (3)0.0500 (3)0.25000.0318 (10)
C50.4314 (3)0.1684 (4)0.25000.0332 (10)
C60.3527 (3)0.1946 (4)0.25000.0392 (11)
H60.33500.27340.25000.047*
C70.50000.2560 (5)0.25000.0373 (15)
C80.50000.3344 (4)0.0682 (8)0.0533 (14)
H8A0.50000.28450.04420.080*
H8B0.54810.37850.06130.080*0.50
H8C0.45690.38940.07360.080*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0319 (4)0.0648 (5)0.1121 (6)0.0034 (3)0.0000.000
C10.026 (2)0.048 (3)0.051 (3)0.001 (2)0.0000.000
C20.038 (3)0.039 (3)0.046 (3)0.006 (2)0.0000.000
C30.043 (3)0.026 (2)0.043 (3)0.0029 (19)0.0000.000
C40.034 (2)0.029 (2)0.033 (2)0.0008 (18)0.0000.000
C50.036 (3)0.028 (2)0.036 (2)0.0029 (19)0.0000.000
C60.036 (3)0.031 (2)0.050 (3)0.006 (2)0.0000.000
C70.032 (3)0.027 (3)0.053 (4)0.0000.0000.000
C80.047 (3)0.042 (2)0.071 (4)0.0000.0000.017 (3)
Geometric parameters (Å, º) top
Br1—C11.899 (4)C5—C61.377 (6)
C1—C21.374 (7)C5—C71.528 (6)
C1—C61.388 (7)C6—H60.9300
C2—C31.377 (6)C7—C5i1.528 (6)
C2—H20.9300C7—C8ii1.531 (6)
C3—C41.386 (6)C7—C81.531 (6)
C3—H30.9300C8—H8A0.9561
C4—C51.394 (6)C8—H8B0.9600
C4—C4i1.457 (9)C8—H8C0.9600
C2—C1—C6122.9 (4)C5—C6—C1117.5 (4)
C2—C1—Br1118.1 (4)C5—C6—H6121.2
C6—C1—Br1119.1 (4)C1—C6—H6121.2
C1—C2—C3118.8 (4)C5—C7—C5i100.3 (5)
C1—C2—H2120.6C5—C7—C8ii111.47 (14)
C3—C2—H2120.6C5i—C7—C8ii111.47 (14)
C2—C3—C4120.0 (4)C5—C7—C8111.47 (14)
C2—C3—H3120.0C5i—C7—C8111.47 (14)
C4—C3—H3120.0C8ii—C7—C8110.3 (5)
C3—C4—C5119.9 (4)C7—C8—H8A109.5
C3—C4—C4i131.5 (2)C7—C8—H8B109.5
C5—C4—C4i108.6 (3)H8A—C8—H8B104.9
C6—C5—C4120.9 (4)C7—C8—H8C109.5
C6—C5—C7127.9 (4)H8A—C8—H8C113.8
C4—C5—C7111.2 (4)H8B—C8—H8C109.5
C6—C1—C2—C30.0C7—C5—C6—C1180.0
Br1—C1—C2—C3180.0C2—C1—C6—C50.0
C1—C2—C3—C40.0Br1—C1—C6—C5180.0
C2—C3—C4—C50.0C6—C5—C7—C5i180.0
C2—C3—C4—C4i180.0C4—C5—C7—C5i0.0
C3—C4—C5—C60.0C6—C5—C7—C8ii61.9 (3)
C4i—C4—C5—C6180.0C4—C5—C7—C8ii118.1 (3)
C3—C4—C5—C7180.0C6—C5—C7—C861.9 (3)
C4i—C4—C5—C70.0C4—C5—C7—C8118.1 (3)
C4—C5—C6—C10.0
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12Br2
Mr352.07
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)296
a, b, c (Å)17.097 (4), 11.161 (3), 6.9120 (17)
V3)1319.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)6.12
Crystal size (mm)0.38 × 0.36 × 0.32
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.083, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3295, 662, 499
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.05
No. of reflections662
No. of parameters54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

 

Acknowledgements

The authors acknowledge the Tianjin Binhai Hi-tech Industry Park Management Committee, Huayuan Industrial Park and Haitai Green Industrial Base for support of this work.

References

First citationBelfield, K. D., Schafer, K. J., Mourad, W. & Reinhardt, B. A. (2000). J. Org. Chem. 65, 4475–4481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHolder, E., Langeveld, B. M. W. & Schubert, U. S. (2005). Adv. Mater. 17, 1109–1121.  Web of Science CrossRef CAS Google Scholar
First citationKulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573.  Web of Science CrossRef CAS Google Scholar
First citationPadmaperuma, A. B., Sapochak, L. S. & Burrows, P. E. (2006). Chem. Mater. 18, 2389–2396.  Web of Science CSD CrossRef CAS Google Scholar
First citationScherf, U. & List, E. J. W. (2002). Adv. Mater. 14, 447–487.  Web of Science CrossRef Google Scholar
First citationSeneclauze, J. B., Retailleau, P. & Ziessel, R. (2007). New J. Chem. 31, 1412–1416.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds