organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetamido-N-benzyl-1,4-imino-1,2,4-tride­­oxy-L-xylitol (N-benzyl-L-XYLNAc)

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bOxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, England, and cDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 13 April 2010; accepted 16 April 2010; online 24 April 2010)

X-ray crystallography defines the relative configuration at the three-stereogenic centres in the title compound N-benzyl-L-XYLNAc, C14H20N2O3. The five-membered pyrrolidine ring adopts an envelope conformation with the N atom lying out of the plane of the other four atoms. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules into chains along [100]. The carbonyl group O atom acts as an acceptor for a bifurcated hydrogen bond. The absolute configuration is determined by the use of L-glucuronolactone as the starting material for the synthesis.

Related literature

For imino­sugars see: Asano et al. (2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]); Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]). For the inhibition of hexosaminidases, see: Liu, Numa et al. (2004[Liu, J., Numa, M. M. D., Huang, S.-J., Sears, P., Shikhman, A. R. & Wong, C.-H. (2004). J. Org. Chem. 69, 6273-6283.]); Reese et al. (2007[Reese, T. A., Liang, H.-E., Tager, A. M., Luster, A. D., van Roojen, N., Voehringer, D. & Locksley, R. M. (2007). Nature (London), 447, 92-96.]); Liu, Iqbal et al. (2004[Liu, F., Iqbal, K., Grundje-Iqbal, I., Hart, G. W. & Gong, C.-X. (2004). Proc. Natl. Acad. Sci. 101, 10804-10809.]); Woynarowska et al. (1992[Woynarowska, B., Wikiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J. & Bernacki, R. J. (1992). Anticancer Res. 12, 161-166.]). For piperidine hexosaminidase inhibitors, see: Tatsuta et al. (1997[Tatsuta, K., Miura, S. & Gunji, H. (1997). Bull. Chem. Soc. Jpn. 70, 427-436.]); Fleet et al. (1986[Fleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett. 15, 1051-1054.], 1987[Fleet, G. W. J., Fellows, L. E. & Smith, P. W. (1987). Tetrahedron, 43, 979-990.]); Steiner et al. (2009[Steiner, A. J., Schitter, G., Stutz, A. E., Wrodnigg, T. M., Tarling, C. A., Withers, S. G., Mahuran, D. J. & Tropak, M. B. (2009). Tetrahedron Asymmetry, 20, 832-835.]); Ho et al. (2010[Ho, C.-W., Popat, S. D., Liu, T. A., Tsai, K.-C., Ho, M. J., Chen, W.-H., Yang, A.-S. & Lin, C.-H. (2010). ACS Chem. Biol. 5, doi:10.1021/cb100011u. ]); For furan­ose hexosaminidase inhibitors, see: Usuki et al. (2009[Usuki, H., Toyo-oka, M., Kanzaki, H., Okuda, T. & Nitoda, T. (2009). Bioorg. Med. Chem. 17, 7248-7253.]); Rountree et al. (2007[Rountree, J. S. S., Butters, T. D., Wormald, M. R., Dwek, R. A., Asano, N., Ikeda, K., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 4287-4291.], 2009[Rountree, J. S. S., Butters, T. D., Wormald, M. R., Boomkamp, S. D., Dwek, R. A., Asano, N., Ikeda, K., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2009). Chem. Med. Chem. 4, 378-392.]); Boomkamp et al. (2010[Boomkamp, S. D., Rountree, J. S. S., Neville, D. C. A., Dwek, R. A., Fleet, G. W. J. & Butters, T. D. (2010). Glycoconj. J. 27, 297-308.]). For strategies for cancer treatment, see: Kato et al. (2010[Kato, K., Takeuchi, H., Kanoh, A., Miyahara, N., Nemoto-Sasaki, Y., Morimoto-Tomita, M., Matsubara, A., Ohashi, Y., Waki, M., Usami, K., Mandel, U., Clausen, H., Higashi, N. & Irimura, T. (2010). Glycoconj. J. 27, 267-276.]); Greco et al. (2009[Greco, M., De Mitri, M., Chiriaco, F., Leo, G., Brienza, E. & Maffia, M. (2009). Cancer Lett. 283, 222-229.]). For the use of glucuronolactone as a starting material for the synthesis of imino­sugars, see: Best, Wang et al. (2010[Best, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311-319.]); Best, Chairatana et al. (2010[Best, D., Chairatana, P., Glawar, A. F. G., Crabtree, E., Butters, T. D., Wilson, F. X., Yu, C.-Y., Wang, W.-B., Jia, Y.-M., Adachi, I., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Lett. 51, 2222-2224.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20N2O3

  • Mr = 264.32

  • Orthorhombic, P 21 21 21

  • a = 4.9731 (1) Å

  • b = 10.0145 (3) Å

  • c = 26.9297 (7) Å

  • V = 1341.18 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.50 × 0.15 × 0.05 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.77, Tmax = 1.00

  • 7494 measured reflections

  • 1788 independent reflections

  • 1471 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.130

  • S = 0.95

  • 1788 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H151⋯O19i 0.85 1.94 2.790 (4) 173
N16—H161⋯O19ii 0.89 2.19 3.041 (4) 159
O1—H11⋯N4ii 0.85 2.29 3.121 (4) 167
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x+1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK and Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Iminosugars in which the oxygen of a sugar ring is replaced by nitrogen comprise a large family of inhibitors of carbohydrate processing enzymes (Asano et al., 2000; Watson et al., 2001). Specific inhibition of individual hexosaminidases may allow the investigation of a number of diseases including osteoarthritis (Liu, Numa et al., 2004), allergy (Reese et al., 2007), Alzheimer's disease (Liu, Iqbal et al., 2004), and cancer (Woynarowska et al., 1992). Inhibition of N-acetylgalactosaminyltransferases (Kato et al., 2010) and protection of macrophage activating factor (Greco et al., 2009) may provide new strategies for the treatment of cancer. There are many piperidine hexosaminidase inhibitors, such as naturally occurring nagstatin (Tatsuta et al., 1997) and DNJNAc (Fleet et al., 1986; Fleet et al., 1987; Steiner et al., 2009), some with picomolar inhibition (Ho et al., 2010). Until very recently, potent furanose analogue inhibitors of hexosaminidases have been unknown. The first pyrrolizidine β-hexosaminidase inhibitor, pochonicine 1 (Fig. 1) [or its enantiomer], has been isolated from a fungal strain (Usuki et al., 2009). A rare example of a pyrrolidine potent hexosaminidase inhibitor is the iminoarabinitol LABNAc 2 (Rountree et al., 2007; Rountree et al., 2009) which has promise for the study of lysosomal storage of oligosaccharide and glycosphingolipid in iminosugar treated cells (Boomkamp et al., 2010).

In a study of the hexosaminidase inhibition of diastereomers of LABNAc 2 (Fig. 1), the L-xylo-epimer L-XYLNAc 4 has been prepared from L-glucuronolactone 6, a common constituent of the chiral pool for the preparation of imino sugars (Best, Wang et al., 2010). The lactone 6 may be efficiently converted to the diol 5 (Best, Chairatana et al., 2010) which has been further transformed to 4 via the N-benzyl L-XYLNAc 3 of L-XYLNAc. This paper reports the crystal structure of 3 which establishes the relative configuration and will allow modelling studies to rationalize enzyme inhibition by the diastereomeric 2-acetamido-pyrrolidine sugar mimics; the absolute configuration is determined by the use of L-glucuronolactone 6 as the starting material.

The pyrrolidine ring of the title compound adopts an envelope conformation with the nitrogen lying out of the plane (Fig. 2). The compound exists as chains of hydrogen-bonded molecules lying parallel to the a-axis (Fig. 3). Each molecule is a donor and acceptor for 3 hydrogen bonds and the hydrogen bond involving O19 is bifurcated. Only classical hydrogen bonding is considered.

Related literature top

For iminosugars see: Asano et al. (2000); Watson et al. (2001). For the inhibition of hexosaminidases, see: Liu, Numa et al. (2004); Reese et al. (2007); Liu, Iqbal et al. (2004); Woynarowska et al. (1992). For piperidine hexosaminidase inhibitors, see: Tatsuta et al. (1997); Fleet et al. (1986, 1987); Steiner et al. (2009); Ho et al. (2010); For furanose hexosaminidase inhibitors, see: Usuki et al. (2009); Rountree et al. (2007, 2009); Boomkamp et al. (2010). For strategies for cancer treatment, see: Kato et al. (2010); Greco et al. (2009). For the use of glucuronolactone as a starting material for the synthesis of iminosugars, see: Best, Wang et al. (2010); Best, Chairatana et al. (2010).

Experimental top

N-Benzyl-L-XYLNAc 3 was crystallized from acetonitrile: m.p. 396-399 K; [α]D25 +39.9 (c, 0.99 in MeOH).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of L-glucuronolactone as the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.29) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Iminosugars in which the oxygen of a sugar ring is replaced by nitrogen comprise a large family of inhibitors of carbohydrate processing enzymes (Asano et al., 2000; Watson et al., 2001). Specific inhibition of individual hexosaminidases may allow the investigation of a number of diseases including osteoarthritis (Liu, Numa et al., 2004), allergy (Reese et al., 2007), Alzheimer's disease (Liu, Iqbal et al., 2004), and cancer (Woynarowska et al., 1992). Inhibition of N-acetylgalactosaminyltransferases (Kato et al., 2010) and protection of macrophage activating factor (Greco et al., 2009) may provide new strategies for the treatment of cancer. There are many piperidine hexosaminidase inhibitors, such as naturally occurring nagstatin (Tatsuta et al., 1997) and DNJNAc (Fleet et al., 1986; Fleet et al., 1987; Steiner et al., 2009), some with picomolar inhibition (Ho et al., 2010). Until very recently, potent furanose analogue inhibitors of hexosaminidases have been unknown. The first pyrrolizidine β-hexosaminidase inhibitor, pochonicine 1 (Fig. 1) [or its enantiomer], has been isolated from a fungal strain (Usuki et al., 2009). A rare example of a pyrrolidine potent hexosaminidase inhibitor is the iminoarabinitol LABNAc 2 (Rountree et al., 2007; Rountree et al., 2009) which has promise for the study of lysosomal storage of oligosaccharide and glycosphingolipid in iminosugar treated cells (Boomkamp et al., 2010).

In a study of the hexosaminidase inhibition of diastereomers of LABNAc 2 (Fig. 1), the L-xylo-epimer L-XYLNAc 4 has been prepared from L-glucuronolactone 6, a common constituent of the chiral pool for the preparation of imino sugars (Best, Wang et al., 2010). The lactone 6 may be efficiently converted to the diol 5 (Best, Chairatana et al., 2010) which has been further transformed to 4 via the N-benzyl L-XYLNAc 3 of L-XYLNAc. This paper reports the crystal structure of 3 which establishes the relative configuration and will allow modelling studies to rationalize enzyme inhibition by the diastereomeric 2-acetamido-pyrrolidine sugar mimics; the absolute configuration is determined by the use of L-glucuronolactone 6 as the starting material.

The pyrrolidine ring of the title compound adopts an envelope conformation with the nitrogen lying out of the plane (Fig. 2). The compound exists as chains of hydrogen-bonded molecules lying parallel to the a-axis (Fig. 3). Each molecule is a donor and acceptor for 3 hydrogen bonds and the hydrogen bond involving O19 is bifurcated. Only classical hydrogen bonding is considered.

For iminosugars see: Asano et al. (2000); Watson et al. (2001). For the inhibition of hexosaminidases, see: Liu, Numa et al. (2004); Reese et al. (2007); Liu, Iqbal et al. (2004); Woynarowska et al. (1992). For piperidine hexosaminidase inhibitors, see: Tatsuta et al. (1997); Fleet et al. (1986, 1987); Steiner et al. (2009); Ho et al. (2010); For furanose hexosaminidase inhibitors, see: Usuki et al. (2009); Rountree et al. (2007, 2009); Boomkamp et al. (2010). For strategies for cancer treatment, see: Kato et al. (2010); Greco et al. (2009). For the use of glucuronolactone as a starting material for the synthesis of iminosugars, see: Best, Wang et al. (2010); Best, Chairatana et al. (2010).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997) and Görbitz (1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic Scheme
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. Packing diagram of the title compound with hydrogen bonds shown by dotted lines.
2-Acetamido-N-benzyl-1,4-imino-1,2,4-trideoxy-L-xylitol top
Crystal data top
C14H20N2O3F(000) = 568
Mr = 264.32Dx = 1.309 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1650 reflections
a = 4.9731 (1) Åθ = 5–27°
b = 10.0145 (3) ŵ = 0.09 mm1
c = 26.9297 (7) ÅT = 150 K
V = 1341.18 (6) Å3Needle, colourless
Z = 40.50 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 66
Tmin = 0.77, Tmax = 1.00k = 1212
7494 measured reflectionsl = 3434
1788 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.130 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.07P)2 + 0.9P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.95(Δ/σ)max = 0.000306
1788 reflectionsΔρmax = 0.33 e Å3
172 parametersΔρmin = 0.46 e Å3
0 restraints
Crystal data top
C14H20N2O3V = 1341.18 (6) Å3
Mr = 264.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9731 (1) ŵ = 0.09 mm1
b = 10.0145 (3) ÅT = 150 K
c = 26.9297 (7) Å0.50 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1788 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1471 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 1.00Rint = 0.040
7494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.95Δρmax = 0.33 e Å3
1788 reflectionsΔρmin = 0.46 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9783 (4)0.43009 (19)0.61171 (7)0.0319
C20.7716 (7)0.4811 (3)0.58063 (10)0.0297
C30.6606 (6)0.6164 (3)0.59663 (10)0.0231
N40.4652 (5)0.6138 (2)0.63782 (8)0.0240
C50.5868 (6)0.5705 (3)0.68516 (10)0.0294
C60.3890 (6)0.5636 (3)0.72762 (9)0.0260
C70.1951 (6)0.4640 (3)0.72916 (10)0.0290
C80.0221 (7)0.4529 (3)0.76921 (11)0.0382
C90.0372 (7)0.5432 (4)0.80805 (11)0.0431
C100.2268 (8)0.6428 (4)0.80709 (11)0.0441
C110.4029 (7)0.6540 (3)0.76700 (11)0.0359
C120.3731 (6)0.7532 (3)0.64027 (10)0.0262
C130.3392 (6)0.7942 (3)0.58540 (9)0.0240
C140.5058 (6)0.6899 (3)0.55652 (9)0.0259
O150.3165 (4)0.6041 (2)0.53220 (7)0.0325
N160.4213 (5)0.9324 (2)0.57677 (8)0.0258
C170.2483 (6)1.0276 (3)0.56297 (10)0.0243
C180.3628 (7)1.1653 (3)0.55702 (12)0.0344
O190.0046 (4)1.0055 (2)0.55648 (7)0.0301
H220.84390.49050.54680.0376*
H210.62580.41710.58010.0378*
H310.81460.67190.60700.0290*
H510.66190.48080.67980.0390*
H520.73230.63300.69490.0386*
H710.18140.40270.70210.0362*
H810.10970.38380.77050.0516*
H910.08520.53710.83550.0554*
H1010.23770.70390.83380.0523*
H1110.53750.72420.76650.0449*
H1220.20570.75960.65870.0343*
H1210.50340.81160.65650.0343*
H1310.14740.78600.57630.0293*
H1410.63490.73230.53240.0339*
H1810.22391.22820.55010.0525*
H1830.49441.16580.53060.0528*
H1820.45371.19240.58650.0527*
H1510.38320.56710.50650.0524*
H1610.59580.95210.57960.0324*
H111.09570.49030.61660.0526*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0291 (11)0.0288 (11)0.0377 (10)0.0048 (10)0.0042 (10)0.0039 (9)
C20.0294 (15)0.0284 (15)0.0313 (13)0.0024 (14)0.0030 (13)0.0026 (12)
C30.0188 (12)0.0250 (13)0.0255 (12)0.0023 (12)0.0046 (11)0.0004 (11)
N40.0245 (12)0.0263 (12)0.0212 (10)0.0009 (11)0.0047 (10)0.0021 (9)
C50.0259 (14)0.0339 (16)0.0285 (13)0.0004 (14)0.0001 (13)0.0041 (12)
C60.0275 (13)0.0278 (15)0.0228 (12)0.0025 (13)0.0014 (12)0.0050 (11)
C70.0293 (15)0.0328 (16)0.0250 (12)0.0011 (13)0.0034 (12)0.0055 (12)
C80.0334 (16)0.050 (2)0.0309 (14)0.0051 (16)0.0010 (14)0.0136 (14)
C90.0385 (17)0.063 (2)0.0279 (14)0.0076 (19)0.0069 (14)0.0106 (15)
C100.058 (2)0.047 (2)0.0277 (14)0.007 (2)0.0017 (17)0.0042 (14)
C110.0422 (18)0.0360 (17)0.0295 (14)0.0026 (15)0.0002 (15)0.0017 (13)
C120.0263 (14)0.0271 (15)0.0251 (12)0.0021 (13)0.0047 (12)0.0014 (11)
C130.0213 (14)0.0231 (14)0.0275 (13)0.0009 (12)0.0012 (12)0.0019 (11)
C140.0265 (14)0.0282 (14)0.0230 (12)0.0031 (13)0.0035 (13)0.0009 (11)
O150.0286 (11)0.0400 (12)0.0288 (9)0.0021 (10)0.0029 (9)0.0099 (9)
N160.0213 (11)0.0238 (12)0.0322 (12)0.0029 (11)0.0003 (10)0.0021 (10)
C170.0248 (13)0.0254 (14)0.0228 (12)0.0001 (12)0.0009 (12)0.0023 (11)
C180.0349 (17)0.0257 (15)0.0427 (16)0.0007 (14)0.0017 (16)0.0013 (13)
O190.0213 (9)0.0343 (11)0.0345 (10)0.0027 (10)0.0024 (9)0.0056 (9)
Geometric parameters (Å, º) top
O1—C21.420 (4)C9—H910.960
O1—H110.850C10—C111.394 (5)
C2—C31.525 (4)C10—H1010.946
C2—H220.984C11—H1110.971
C2—H210.967C12—C131.543 (4)
C3—N41.475 (3)C12—H1220.971
C3—C141.517 (4)C12—H1210.976
C3—H310.987C13—C141.543 (4)
N4—C51.476 (3)C13—N161.462 (3)
N4—C121.471 (4)C13—H1310.988
C5—C61.510 (4)C14—O151.434 (3)
C5—H510.984C14—H1411.007
C5—H520.992O15—H1510.852
C6—C71.388 (4)N16—C171.337 (4)
C6—C111.396 (4)N16—H1610.893
C7—C81.384 (4)C17—C181.500 (4)
C7—H710.954C17—O191.245 (4)
C8—C91.385 (5)C18—H1810.954
C8—H810.954C18—H1830.966
C9—C101.373 (5)C18—H1820.953
C2—O1—H11109.5C11—C10—H101120.1
O1—C2—C3114.5 (2)C6—C11—C10120.3 (3)
O1—C2—H22108.4C6—C11—H111119.5
C3—C2—H22108.0C10—C11—H111120.2
O1—C2—H21108.3N4—C12—C13104.1 (2)
C3—C2—H21108.7N4—C12—H122110.6
H22—C2—H21108.9C13—C12—H122112.3
C2—C3—N4115.8 (2)N4—C12—H121112.4
C2—C3—C14114.5 (2)C13—C12—H121110.0
N4—C3—C14102.1 (2)H122—C12—H121107.5
C2—C3—H31107.5C12—C13—C14104.1 (2)
N4—C3—H31107.9C12—C13—N16111.9 (2)
C14—C3—H31108.8C14—C13—N16114.2 (2)
C3—N4—C5112.6 (2)C12—C13—H131108.7
C3—N4—C12102.8 (2)C14—C13—H131109.7
C5—N4—C12111.6 (2)N16—C13—H131108.0
N4—C5—C6113.6 (2)C13—C14—C3104.0 (2)
N4—C5—H51107.2C13—C14—O15106.5 (2)
C6—C5—H51108.5C3—C14—O15111.5 (2)
N4—C5—H52110.0C13—C14—H141112.5
C6—C5—H52107.7C3—C14—H141109.9
H51—C5—H52109.8O15—C14—H141112.1
C5—C6—C7120.5 (3)C14—O15—H151112.1
C5—C6—C11120.9 (3)C13—N16—C17122.7 (2)
C7—C6—C11118.5 (3)C13—N16—H161117.8
C6—C7—C8120.8 (3)C17—N16—H161119.4
C6—C7—H71119.3N16—C17—C18116.2 (3)
C8—C7—H71119.9N16—C17—O19122.6 (3)
C7—C8—C9120.2 (3)C18—C17—O19121.2 (3)
C7—C8—H81120.9C17—C18—H181110.7
C9—C8—H81119.0C17—C18—H183109.9
C8—C9—C10119.9 (3)H181—C18—H183110.0
C8—C9—H91120.4C17—C18—H182110.7
C10—C9—H91119.7H181—C18—H182108.6
C9—C10—C11120.3 (3)H183—C18—H182106.8
C9—C10—H101119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H51···O10.982.473.111 (4)123
C14—H141···O15i1.012.563.514 (4)159
O15—H151···O19i0.851.942.790 (4)173
N16—H161···O19ii0.892.193.041 (4)159
O1—H11···N4ii0.852.293.121 (4)167
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H20N2O3
Mr264.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)4.9731 (1), 10.0145 (3), 26.9297 (7)
V3)1341.18 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.15 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.77, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
7494, 1788, 1471
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.130, 0.95
No. of reflections1788
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.46

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997) and Görbitz (1999), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H151···O19i0.851.942.790 (4)173
N16—H161···O19ii0.892.193.041 (4)159
O1—H11···N4ii0.852.293.121 (4)167
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBest, D., Chairatana, P., Glawar, A. F. G., Crabtree, E., Butters, T. D., Wilson, F. X., Yu, C.-Y., Wang, W.-B., Jia, Y.-M., Adachi, I., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Lett. 51, 2222–2224.  Web of Science CrossRef CAS Google Scholar
First citationBest, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311–319.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoomkamp, S. D., Rountree, J. S. S., Neville, D. C. A., Dwek, R. A., Fleet, G. W. J. & Butters, T. D. (2010). Glycoconj. J. 27, 297–308.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFleet, G. W. J., Fellows, L. E. & Smith, P. W. (1987). Tetrahedron, 43, 979–990.  CrossRef Web of Science Google Scholar
First citationFleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett. 15, 1051–1054.  CrossRef Web of Science Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGreco, M., De Mitri, M., Chiriaco, F., Leo, G., Brienza, E. & Maffia, M. (2009). Cancer Lett. 283, 222–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHo, C.-W., Popat, S. D., Liu, T. A., Tsai, K.-C., Ho, M. J., Chen, W.-H., Yang, A.-S. & Lin, C.-H. (2010). ACS Chem. Biol. 5, doi:10.1021/cb100011u.  Google Scholar
First citationKato, K., Takeuchi, H., Kanoh, A., Miyahara, N., Nemoto-Sasaki, Y., Morimoto-Tomita, M., Matsubara, A., Ohashi, Y., Waki, M., Usami, K., Mandel, U., Clausen, H., Higashi, N. & Irimura, T. (2010). Glycoconj. J. 27, 267–276.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, F., Iqbal, K., Grundje-Iqbal, I., Hart, G. W. & Gong, C.-X. (2004). Proc. Natl. Acad. Sci. 101, 10804–10809.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, J., Numa, M. M. D., Huang, S.-J., Sears, P., Shikhman, A. R. & Wong, C.-H. (2004). J. Org. Chem. 69, 6273–6283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReese, T. A., Liang, H.-E., Tager, A. M., Luster, A. D., van Roojen, N., Voehringer, D. & Locksley, R. M. (2007). Nature (London), 447, 92–96.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRountree, J. S. S., Butters, T. D., Wormald, M. R., Boomkamp, S. D., Dwek, R. A., Asano, N., Ikeda, K., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2009). Chem. Med. Chem. 4, 378–392.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRountree, J. S. S., Butters, T. D., Wormald, M. R., Dwek, R. A., Asano, N., Ikeda, K., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 4287–4291.  Web of Science CrossRef CAS Google Scholar
First citationSteiner, A. J., Schitter, G., Stutz, A. E., Wrodnigg, T. M., Tarling, C. A., Withers, S. G., Mahuran, D. J. & Tropak, M. B. (2009). Tetrahedron Asymmetry, 20, 832–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTatsuta, K., Miura, S. & Gunji, H. (1997). Bull. Chem. Soc. Jpn. 70, 427–436.  CrossRef CAS Web of Science Google Scholar
First citationUsuki, H., Toyo-oka, M., Kanzaki, H., Okuda, T. & Nitoda, T. (2009). Bioorg. Med. Chem. 17, 7248–7253.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWoynarowska, B., Wikiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J. & Bernacki, R. J. (1992). Anticancer Res. 12, 161–166.  PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds