organic compounds
2-Azido-2-deoxy-3,4-O-isopropylidene-2-C-methyl-D-talono-1,5-lactone
aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk
The relative stereochemistry of the title compound, C10H15N3O5, was confirmed by the determination. The was determined from the use of D-lyxonolactone as the starting material. The six-membered ring adopts a boat conformation with the larger azide group, rather than the methyl group, in the bowsprit position. In the a bifurcated intermolecular O—H⋯O/O—H⋯N hydrogen bond links molecules into chains running parallel to the b axis.
Related literature
For ); Fechter et al. (1999); Fleet (1989). For branched sugars and their use as chirons, see: Rao et al. (2008); Jones et al. (2008); Booth et al. (2008); Hotchkiss, Kato et al. (2007); da Cruz et al. (2008); Soengas et al. (2005). For the structures of similar sugars, see: Chesterton et al. (2006); Booth et al. (2007); Hotchkiss, Jenkinson et al. (2007); Baird et al. (1987); Bruce et al. (1990); Punzo et al. (2005). For the extinction correction, see: Larson (1970).
as chirons, see: Lichtenthaler & Peters (2004Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001).; cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S160053681001500X/lh5031sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681001500X/lh5031Isup2.hkl
The title compound was recrystallised by slow evaporation from a mixture of diethyl ether and cyclohexane: m.p. 397-403 K, [α]D25 +112.4 (c, 1.145 in CHCl3).
In the absence of significant
Friedel pairs were merged and the was assigned from the use of D-lyonolactone as the starting material.The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Carbohydrates are a diverse set of chirons for the synthesis of complex amino acids and iminosugars (Lichtenthaler & Peters, 2004; Fechter et al., 1999; Fleet, 1989). 2-C-Methyl branched sugars constitute a class of rare sugars with chemotherapeutic potential (Rao et al., 2008; Jones et al., 2008; Booth et al., 2008) and can be used as building blocks in the synthesis of biologically active compounds (da Cruz et al., 2008; Hotchkiss, Kato et al., 2007; Soengas et al., 2005).
The azidolactone 3 (Fig. 1) would be a key intermediate for the synethsis of branched pyrrolidines, piperidines and prolines derived from D-lyxonolactone. Nucleophilic displacement of a triflate
at the tertiary centre by azide was confirmed by X-ray crystallography to have proceeded with overall inversion of configuration (Booth et al. 2007; Hotchkiss, Jenkinson et al. 2007). The 6-membered lactone ring adopts a boat conformation, as is common with 3,4-O-isopropylidene-1,5-lactones (Baird et al., 1987; Bruce et al., 1990; Punzo et al., 2005), with the larger azide group, rather than the methyl, in the bowsprit position (Fig. 2). The was determined from the use of D-lyxonolactone as the starting material. As is common with these materials the azide is non linear [N7 - N8 - N9 = 172.4 (3) °] (Chesterton et al., 2006), with the anisotropic atomic displacement parameter of the central atom lowered with respect to its neighbours. The compound exists as hydrogen bonded chains of molecules running parallel to the b-axis (Fig. 3). The hydrogen bond is bifurcated. Only classical hydrogen bonding is considered.For
as chirons, see: Lichtenthaler & Peters (2004); Fechter et al. (1999); Fleet (1989). For branched sugars and their use as chirons, see: Rao et al. (2008); Jones et al. (2008); Booth et al. (2008); Hotchkiss, Kato et al. (2007); da Cruz et al. (2008); Soengas et al. (2005). For the structures of similar sugars, see: Chesterton et al. (2006); Booth et al. (2007); Hotchkiss, Jenkinson et al. (2007); Baird et al. (1987); Bruce et al. (1990); Punzo et al. (2005). For the extinction correction, see: Larson (1970).Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C10H15N3O5 | F(000) = 544 |
Mr = 257.25 | Dx = 1.377 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1637 reflections |
a = 5.9481 (3) Å | θ = 5–27° |
b = 13.3427 (7) Å | µ = 0.11 mm−1 |
c = 15.6351 (9) Å | T = 150 K |
V = 1240.86 (12) Å3 | Plate, colourless |
Z = 4 | 0.20 × 0.15 × 0.05 mm |
Nonius KappaCCD diffractometer | 1170 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −7→7 |
Tmin = 0.89, Tmax = 0.99 | k = −17→17 |
10775 measured reflections | l = −20→20 |
1647 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.038 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.16P], where P = [max(Fo2,0) + 2Fc2]/3 |
wR(F2) = 0.087 | (Δ/σ)max = 0.000278 |
S = 0.88 | Δρmax = 0.53 e Å−3 |
1647 reflections | Δρmin = −0.45 e Å−3 |
164 parameters | Extinction correction: Larson (1970), Equation 22 |
0 restraints | Extinction coefficient: 460 (60) |
Primary atom site location: structure-invariant direct methods |
C10H15N3O5 | V = 1240.86 (12) Å3 |
Mr = 257.25 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.9481 (3) Å | µ = 0.11 mm−1 |
b = 13.3427 (7) Å | T = 150 K |
c = 15.6351 (9) Å | 0.20 × 0.15 × 0.05 mm |
Nonius KappaCCD diffractometer | 1647 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 1170 reflections with I > 2σ(I) |
Tmin = 0.89, Tmax = 0.99 | Rint = 0.077 |
10775 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 0.88 | Δρmax = 0.53 e Å−3 |
1647 reflections | Δρmin = −0.45 e Å−3 |
164 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4977 (3) | 0.87439 (12) | 0.79200 (10) | 0.0276 | |
C2 | 0.5736 (5) | 0.85325 (19) | 0.87769 (16) | 0.0297 | |
O3 | 0.7326 (3) | 0.77432 (13) | 0.86551 (10) | 0.0334 | |
C4 | 0.8307 (4) | 0.78267 (17) | 0.78210 (15) | 0.0258 | |
C5 | 0.6901 (4) | 0.86484 (17) | 0.73767 (14) | 0.0250 | |
C6 | 0.6110 (4) | 0.83522 (18) | 0.64929 (15) | 0.0247 | |
N7 | 0.4436 (4) | 0.91275 (16) | 0.62475 (14) | 0.0317 | |
N8 | 0.3742 (4) | 0.90581 (16) | 0.55031 (15) | 0.0313 | |
N9 | 0.2976 (4) | 0.90888 (18) | 0.48383 (15) | 0.0443 | |
C10 | 0.4914 (4) | 0.73333 (18) | 0.65603 (15) | 0.0243 | |
O11 | 0.3123 (3) | 0.71606 (13) | 0.62348 (11) | 0.0323 | |
O12 | 0.5913 (3) | 0.66364 (12) | 0.70449 (11) | 0.0256 | |
C13 | 0.8169 (4) | 0.68186 (17) | 0.73740 (16) | 0.0250 | |
C14 | 0.8716 (5) | 0.59403 (17) | 0.79413 (17) | 0.0309 | |
O15 | 0.8866 (3) | 0.50433 (11) | 0.74599 (11) | 0.0351 | |
C16 | 0.8056 (4) | 0.83600 (19) | 0.58502 (16) | 0.0303 | |
C17 | 0.6857 (5) | 0.9437 (2) | 0.91665 (18) | 0.0385 | |
C18 | 0.3762 (5) | 0.8142 (2) | 0.92680 (19) | 0.0459 | |
H41 | 0.9905 | 0.8032 | 0.7872 | 0.0311* | |
H51 | 0.7740 | 0.9284 | 0.7350 | 0.0310* | |
H131 | 0.9235 | 0.6813 | 0.6888 | 0.0288* | |
H141 | 1.0180 | 0.6075 | 0.8209 | 0.0398* | |
H142 | 0.7552 | 0.5873 | 0.8388 | 0.0391* | |
H161 | 0.7461 | 0.8167 | 0.5292 | 0.0461* | |
H162 | 0.8707 | 0.9027 | 0.5818 | 0.0463* | |
H163 | 0.9219 | 0.7893 | 0.6024 | 0.0460* | |
H172 | 0.7391 | 0.9258 | 0.9730 | 0.0598* | |
H171 | 0.5743 | 0.9972 | 0.9206 | 0.0603* | |
H173 | 0.8113 | 0.9635 | 0.8797 | 0.0603* | |
H182 | 0.4260 | 0.7957 | 0.9845 | 0.0690* | |
H181 | 0.2604 | 0.8655 | 0.9297 | 0.0694* | |
H183 | 0.3174 | 0.7559 | 0.8975 | 0.0688* | |
H151 | 0.7591 | 0.4778 | 0.7453 | 0.0532* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0272 (9) | 0.0348 (9) | 0.0207 (8) | 0.0036 (8) | −0.0008 (8) | 0.0009 (7) |
C2 | 0.0358 (14) | 0.0323 (13) | 0.0209 (12) | 0.0025 (12) | −0.0027 (11) | −0.0011 (12) |
O3 | 0.0480 (11) | 0.0305 (9) | 0.0217 (9) | 0.0089 (9) | −0.0031 (8) | 0.0004 (8) |
C4 | 0.0254 (13) | 0.0278 (12) | 0.0241 (13) | −0.0041 (11) | −0.0031 (10) | 0.0007 (11) |
C5 | 0.0249 (12) | 0.0250 (12) | 0.0252 (12) | 0.0006 (10) | −0.0006 (11) | 0.0016 (11) |
C6 | 0.0253 (12) | 0.0255 (12) | 0.0233 (13) | 0.0057 (11) | −0.0011 (11) | 0.0031 (10) |
N7 | 0.0361 (12) | 0.0337 (11) | 0.0253 (11) | 0.0090 (10) | −0.0035 (10) | −0.0003 (10) |
N8 | 0.0309 (12) | 0.0300 (11) | 0.0330 (13) | 0.0066 (10) | 0.0013 (11) | 0.0030 (11) |
N9 | 0.0446 (14) | 0.0544 (16) | 0.0340 (14) | 0.0089 (13) | −0.0105 (12) | 0.0052 (12) |
C10 | 0.0210 (12) | 0.0297 (13) | 0.0221 (11) | 0.0039 (11) | 0.0023 (11) | −0.0047 (11) |
O11 | 0.0255 (9) | 0.0391 (10) | 0.0322 (10) | −0.0029 (9) | −0.0047 (8) | −0.0022 (9) |
O12 | 0.0228 (8) | 0.0246 (8) | 0.0293 (9) | −0.0005 (7) | −0.0023 (7) | 0.0012 (8) |
C13 | 0.0192 (11) | 0.0267 (12) | 0.0292 (14) | 0.0008 (10) | −0.0021 (11) | 0.0020 (11) |
C14 | 0.0327 (14) | 0.0247 (12) | 0.0351 (14) | 0.0018 (12) | −0.0044 (12) | 0.0045 (12) |
O15 | 0.0297 (9) | 0.0248 (9) | 0.0509 (12) | 0.0035 (8) | 0.0037 (9) | 0.0003 (9) |
C16 | 0.0318 (13) | 0.0317 (13) | 0.0274 (13) | 0.0010 (12) | 0.0036 (11) | 0.0049 (11) |
C17 | 0.0484 (17) | 0.0374 (15) | 0.0297 (14) | 0.0015 (14) | −0.0060 (14) | −0.0059 (12) |
C18 | 0.0446 (17) | 0.063 (2) | 0.0300 (16) | −0.0052 (15) | 0.0033 (13) | 0.0041 (15) |
O1—C2 | 1.442 (3) | C10—O12 | 1.338 (3) |
O1—C5 | 1.431 (3) | O12—C13 | 1.458 (3) |
C2—O3 | 1.428 (3) | C13—C14 | 1.505 (3) |
C2—C17 | 1.508 (4) | C13—H131 | 0.989 |
C2—C18 | 1.496 (4) | C14—O15 | 1.417 (3) |
O3—C4 | 1.433 (3) | C14—H141 | 0.983 |
C4—C5 | 1.544 (3) | C14—H142 | 0.987 |
C4—C13 | 1.518 (3) | O15—H151 | 0.837 |
C4—H41 | 0.993 | C16—H161 | 0.977 |
C5—C6 | 1.512 (3) | C16—H162 | 0.972 |
C5—H51 | 0.985 | C16—H163 | 0.969 |
C6—N7 | 1.486 (3) | C17—H172 | 0.967 |
C6—C10 | 1.538 (3) | C17—H171 | 0.976 |
C6—C16 | 1.533 (3) | C17—H173 | 0.981 |
N7—N8 | 1.238 (3) | C18—H182 | 0.981 |
N8—N9 | 1.136 (3) | C18—H181 | 0.972 |
C10—O11 | 1.203 (3) | C18—H183 | 0.969 |
C2—O1—C5 | 106.47 (18) | C4—C13—O12 | 111.08 (19) |
O1—C2—O3 | 103.17 (18) | C4—C13—C14 | 114.0 (2) |
O1—C2—C17 | 110.9 (2) | O12—C13—C14 | 106.09 (19) |
O3—C2—C17 | 110.6 (2) | C4—C13—H131 | 109.0 |
O1—C2—C18 | 107.4 (2) | O12—C13—H131 | 108.6 |
O3—C2—C18 | 109.4 (2) | C14—C13—H131 | 108.0 |
C17—C2—C18 | 114.7 (2) | C13—C14—O15 | 111.0 (2) |
C2—O3—C4 | 109.49 (17) | C13—C14—H141 | 107.5 |
O3—C4—C5 | 104.14 (19) | O15—C14—H141 | 109.0 |
O3—C4—C13 | 109.17 (18) | C13—C14—H142 | 109.6 |
C5—C4—C13 | 113.14 (19) | O15—C14—H142 | 110.1 |
O3—C4—H41 | 109.8 | H141—C14—H142 | 109.7 |
C5—C4—H41 | 111.0 | C14—O15—H151 | 107.9 |
C13—C4—H41 | 109.5 | C6—C16—H161 | 108.1 |
C4—C5—O1 | 103.26 (17) | C6—C16—H162 | 110.0 |
C4—C5—C6 | 113.20 (19) | H161—C16—H162 | 109.8 |
O1—C5—C6 | 108.46 (18) | C6—C16—H163 | 110.5 |
C4—C5—H51 | 110.9 | H161—C16—H163 | 109.9 |
O1—C5—H51 | 110.7 | H162—C16—H163 | 108.6 |
C6—C5—H51 | 110.1 | C2—C17—H172 | 108.4 |
C5—C6—N7 | 105.21 (19) | C2—C17—H171 | 108.1 |
C5—C6—C10 | 108.20 (19) | H172—C17—H171 | 110.3 |
N7—C6—C10 | 108.84 (18) | C2—C17—H173 | 108.3 |
C5—C6—C16 | 111.2 (2) | H172—C17—H173 | 110.7 |
N7—C6—C16 | 109.39 (19) | H171—C17—H173 | 111.0 |
C10—C6—C16 | 113.6 (2) | C2—C18—H182 | 108.8 |
C6—N7—N8 | 114.5 (2) | C2—C18—H181 | 109.6 |
N7—N8—N9 | 172.4 (3) | H182—C18—H181 | 110.4 |
C6—C10—O11 | 123.4 (2) | C2—C18—H183 | 108.6 |
C6—C10—O12 | 116.6 (2) | H182—C18—H183 | 110.0 |
O11—C10—O12 | 120.0 (2) | H181—C18—H183 | 109.4 |
C10—O12—C13 | 119.50 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H51···O15i | 0.99 | 2.28 | 3.141 (4) | 146 |
C13—H131···O11ii | 0.99 | 2.57 | 3.473 (4) | 152 |
C16—H161···O11iii | 0.98 | 2.46 | 3.333 (4) | 149 |
C16—H163···O11ii | 0.97 | 2.54 | 3.465 (4) | 159 |
O15—H151···O1iv | 0.84 | 2.14 | 2.930 (4) | 157 |
O15—H151···N7iv | 0.84 | 2.52 | 3.072 (4) | 125 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) x+1/2, −y+3/2, −z+1; (iv) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C10H15N3O5 |
Mr | 257.25 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 5.9481 (3), 13.3427 (7), 15.6351 (9) |
V (Å3) | 1240.86 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.20 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.89, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10775, 1647, 1170 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.087, 0.88 |
No. of reflections | 1647 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.45 |
Computer programs: COLLECT (Nonius, 2001)., DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O15—H151···O1i | 0.84 | 2.14 | 2.930 (4) | 157 |
O15—H151···N7i | 0.84 | 2.52 | 3.072 (4) | 125 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Baird, P. D., Dho, J. C., Fleet, G. W. J., Peach, J. M., Prout, K. & Smith, P. W. (1987). J. Chem. Soc. Perkin Trans. 1, pp. 1785–1791. CSD CrossRef Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Booth, K. V., da Cruz, F. P., Hotchkiss, D. J., Jenkinson, S. F., Jones, N. A., Weymouth-Wilson, A. C., Clarkson, R., Heinz, T. & Fleet, G. W. J. (2008). Tetrahedron: Asymmetry, 19, 2417–2424. Web of Science CrossRef CAS Google Scholar
Booth, K. V., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2007). Acta Cryst. E63, o1759–o1760. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. & Watkin, D. J. (1990). Tetrahedron, 46, 19–32. CSD CrossRef CAS Web of Science Google Scholar
Chesterton, A. K. S., Jenkinson, S. F., Jones, N. A., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o2983–o2985. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cruz, F. P. da, Horne, G. & Fleet, G. W. J. (2008). Tetrahedron Lett. 49, 6812–6815. Google Scholar
Fechter, M. H., Stutz, A. E. & Tauss, A. (1999). Curr. Org. Chem. 3, 269–285. CAS Google Scholar
Fleet, G. W. J. (1989). Chem. Br. 25, 287–291. CAS Google Scholar
Hotchkiss, D. J., Jenkinson, S. F., Booth, K. V., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o2168–o2170. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hotchkiss, D. J., Kato, A., Odell, B., Claridge, T. D. W. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry, 18, 500–512. Web of Science CrossRef CAS Google Scholar
Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). Tetrahedron Asymmetry, 19, 1904–1918. Web of Science CrossRef CAS Google Scholar
Larson, A. C. (1970). Crystallographic Computing, Edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90. Web of Science CrossRef CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Punzo, F., Watkin, D. J., Jenkinson, S. F., Cruz, F. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o511–o512. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., da Cruz, F. P., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Lett. 49, 3316–3121. Web of Science CrossRef CAS Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbohydrates are a diverse set of chirons for the synthesis of complex amino acids and iminosugars (Lichtenthaler & Peters, 2004; Fechter et al., 1999; Fleet, 1989). 2-C-Methyl branched sugars constitute a class of rare sugars with chemotherapeutic potential (Rao et al., 2008; Jones et al., 2008; Booth et al., 2008) and can be used as building blocks in the synthesis of biologically active compounds (da Cruz et al., 2008; Hotchkiss, Kato et al., 2007; Soengas et al., 2005).
The azidolactone 3 (Fig. 1) would be a key intermediate for the synethsis of branched pyrrolidines, piperidines and prolines derived from D-lyxonolactone. Nucleophilic displacement of a triflate leaving group at the tertiary centre by azide was confirmed by X-ray crystallography to have proceeded with overall inversion of configuration (Booth et al. 2007; Hotchkiss, Jenkinson et al. 2007). The 6-membered lactone ring adopts a boat conformation, as is common with 3,4-O-isopropylidene-1,5-lactones (Baird et al., 1987; Bruce et al., 1990; Punzo et al., 2005), with the larger azide group, rather than the methyl, in the bowsprit position (Fig. 2). The absolute configuration was determined from the use of D-lyxonolactone as the starting material. As is common with these materials the azide is non linear [N7 - N8 - N9 = 172.4 (3) °] (Chesterton et al., 2006), with the anisotropic atomic displacement parameter of the central atom lowered with respect to its neighbours. The compound exists as hydrogen bonded chains of molecules running parallel to the b-axis (Fig. 3). The hydrogen bond is bifurcated. Only classical hydrogen bonding is considered.