organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Di-1-naphthyl-2,4,8,10-tetra­oxa­spiro­[5.5]undeca­ne

aHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China, and bKey Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213162, People's Republic of China
*Correspondence e-mail: ycui_rong@163.com

(Received 15 April 2010; accepted 22 April 2010; online 28 April 2010)

In the title compound, C27H24O4, the 1,3-dioxane rings have chair conformations. The mol­ecule has non-crystallographic twofold rotation symmetry. The dihedral angle between the naphthalene ring systems is 17.96(4)° In the crystal structure, weak inter­molecular C—H⋯π inter­actions contribute to the crystal packing.

Related literature

For a related 3,9-diphenyl structure, see: Wang et al. (2006[Wang, J.-K., Yan, D.-Y., Liu, L.-J., Liu, S. & Wang, J.-T. (2006). Acta Cryst. E62, o3062-o3063.]). For other oxaspiro structures, see: Mihis et al. (2008[Mihis, A., Condamine, E., Bogdan, E., Terec, A., Kurtan, T. & Grosu, I. (2008). Molecules, 13, 2848-2858.]); Shi et al. (2009[Shi, J.-H., Yuan, X.-Y., Zhang, M. & Ng, S. W. (2009). Acta Cryst. E65, o2712.]).

[Scheme 1]

Experimental

Crystal data
  • C27H24O4

  • Mr = 412.46

  • Monoclinic, P 21 /c

  • a = 14.9040 (15) Å

  • b = 5.7761 (6) Å

  • c = 24.238 (2) Å

  • β = 95.447 (2)°

  • V = 2077.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.22 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 11731 measured reflections

  • 4067 independent reflections

  • 2961 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.158

  • S = 1.03

  • 4067 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg6 are the centroids of the C18–C23 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16BCg5i 0.97 2.95 3.5827 (19) 124
C27—H27⋯Cg6ii 0.93 2.94 3.754 (2) 147
Symmetry codes: (i) x, y-1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is an important intermediate in the synthesis of pesticides. Several related structures were synthesized and reported (Wang et al.,2006; Mihis et al.,2008; Shi et al.,2009). The X-ray structural analysis confirmed the assignment of the structure of the title compound from spectroscopic data. The molecular structure is depicted in Fig. 1. The title molecule has a non-crystallographic twofold rotation symmetry. In the molecules, the naphthalene planes make a dihedral angle of 17.96 (4) °. Weak intermolecular C–H···π interactions contribute to the crystal packing (Table 1).

Related literature top

For a related 3,9-diphenyl structure, see: Wang et al. (2006). For other oxaspiro structures, see: Mihis et al. (2008); Shi et al. (2009).

Experimental top

Pentaerythritol (0.22 g, 1.6 mmol), α-naphthaldehyde (0.5 g, 3.2 mmol), p-toluene sulphonic acid (0.02 g, 0.12 mmol) and dimethylbenzene (10 ml) were heated for six hours. The mixture was cooled and then filtered. The organic phase was evaporated on a rotary evaporator and the resulting solid was recrystallized in ethyl acetate, yielding the title compound (0.53 g, 80%); m.p. 445-446 K.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H=0.93 Å, 0.97 Å or 0.98 Å, and Uiso(H)=1.2Ueq(C-methylene, C-aromatic).

Structure description top

The title compound is an important intermediate in the synthesis of pesticides. Several related structures were synthesized and reported (Wang et al.,2006; Mihis et al.,2008; Shi et al.,2009). The X-ray structural analysis confirmed the assignment of the structure of the title compound from spectroscopic data. The molecular structure is depicted in Fig. 1. The title molecule has a non-crystallographic twofold rotation symmetry. In the molecules, the naphthalene planes make a dihedral angle of 17.96 (4) °. Weak intermolecular C–H···π interactions contribute to the crystal packing (Table 1).

For a related 3,9-diphenyl structure, see: Wang et al. (2006). For other oxaspiro structures, see: Mihis et al. (2008); Shi et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.
3,9-Di-1-naphthyl-2,4,8,10-tetraoxaspiro[5.5]undecane top
Crystal data top
C27H24O4F(000) = 872
Mr = 412.46Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.9040 (15) ÅCell parameters from 4101 reflections
b = 5.7761 (6) Åθ = 2.8–28.9°
c = 24.238 (2) ŵ = 0.09 mm1
β = 95.447 (2)°T = 295 K
V = 2077.1 (4) Å3Block, colorless
Z = 40.22 × 0.21 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
4067 independent reflections
Radiation source: fine-focus sealed tube2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1816
Tmin = 0.981, Tmax = 0.984k = 67
11731 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1334P]
where P = (Fo2 + 2Fc2)/3
4067 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C27H24O4V = 2077.1 (4) Å3
Mr = 412.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9040 (15) ŵ = 0.09 mm1
b = 5.7761 (6) ÅT = 295 K
c = 24.238 (2) Å0.22 × 0.21 × 0.19 mm
β = 95.447 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4067 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2961 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.024
11731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
4067 reflectionsΔρmin = 0.17 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13414 (8)0.84377 (18)0.45655 (4)0.0446 (3)
O20.22638 (8)0.6064 (2)0.40974 (4)0.0515 (3)
O30.26584 (7)0.18521 (18)0.56082 (5)0.0480 (3)
O40.36401 (8)0.4833 (2)0.54471 (5)0.0547 (3)
C10.34069 (15)0.1745 (4)0.71697 (8)0.0678 (6)
H10.29420.17320.74000.081*
C20.40805 (16)0.3418 (4)0.72465 (9)0.0720 (6)
H20.40630.45130.75270.086*
C30.47631 (14)0.3452 (3)0.69128 (9)0.0650 (6)
H30.52070.45840.69650.078*
C40.48080 (12)0.1802 (3)0.64906 (8)0.0539 (5)
C50.55262 (13)0.1798 (4)0.61468 (9)0.0700 (6)
H50.59690.29340.61930.084*
C60.55731 (14)0.0168 (4)0.57552 (10)0.0790 (7)
H60.60620.01490.55430.095*
C70.48923 (13)0.1507 (4)0.56622 (9)0.0653 (5)
H70.49330.26110.53860.078*
C80.41737 (12)0.1540 (3)0.59693 (7)0.0488 (4)
C90.41222 (11)0.0103 (3)0.64054 (7)0.0463 (4)
C100.34223 (12)0.0132 (3)0.67623 (7)0.0556 (5)
H100.29660.09700.67170.067*
C110.34087 (11)0.3197 (3)0.58327 (7)0.0460 (4)
H110.32590.39800.61710.055*
C120.18859 (11)0.3248 (3)0.54602 (7)0.0488 (4)
H12A0.16790.39170.57930.059*
H12B0.14060.22830.52880.059*
C130.29204 (12)0.6434 (3)0.53143 (7)0.0523 (5)
H13A0.31040.75750.50540.063*
H13B0.27840.72390.56480.063*
C140.20848 (10)0.5180 (3)0.50633 (6)0.0406 (4)
C150.12684 (12)0.6778 (3)0.49917 (7)0.0495 (4)
H15A0.07290.58570.49040.059*
H15B0.12070.75760.53380.059*
C160.22281 (12)0.4224 (3)0.44935 (7)0.0506 (4)
H16A0.27870.33530.45150.061*
H16B0.17390.31790.43730.061*
C170.14617 (11)0.7325 (3)0.40554 (6)0.0413 (4)
H170.09540.62810.39560.050*
C180.14747 (11)0.9196 (3)0.36260 (6)0.0430 (4)
C190.22421 (13)0.9714 (3)0.33883 (7)0.0554 (5)
H190.27550.88130.34700.066*
C200.22692 (15)1.1598 (4)0.30208 (8)0.0674 (6)
H200.27961.19160.28580.081*
C210.15360 (16)1.2942 (4)0.29038 (7)0.0670 (6)
H210.15691.42060.26690.080*
C220.07234 (14)1.2462 (3)0.31316 (7)0.0535 (5)
C230.06793 (12)1.0532 (3)0.34917 (6)0.0442 (4)
C240.01615 (12)1.0029 (3)0.36927 (7)0.0543 (5)
H240.02070.87750.39290.065*
C250.09045 (14)1.1344 (4)0.35467 (8)0.0687 (6)
H250.14521.09510.36760.082*
C260.08524 (17)1.3280 (4)0.32048 (9)0.0761 (7)
H260.13591.41930.31140.091*
C270.00558 (17)1.3820 (4)0.30050 (8)0.0711 (6)
H270.00241.51140.27800.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0659 (7)0.0329 (6)0.0345 (6)0.0103 (5)0.0018 (5)0.0004 (4)
O20.0625 (8)0.0500 (7)0.0416 (6)0.0150 (6)0.0034 (5)0.0012 (5)
O30.0504 (7)0.0305 (6)0.0603 (7)0.0003 (5)0.0103 (5)0.0055 (5)
O40.0552 (7)0.0417 (7)0.0639 (8)0.0075 (5)0.0122 (6)0.0112 (6)
C10.0774 (14)0.0711 (14)0.0534 (11)0.0021 (11)0.0019 (9)0.0115 (10)
C20.0816 (15)0.0645 (14)0.0651 (12)0.0064 (11)0.0180 (11)0.0232 (10)
C30.0643 (12)0.0498 (11)0.0750 (13)0.0001 (9)0.0245 (10)0.0110 (9)
C40.0495 (10)0.0471 (10)0.0603 (10)0.0024 (8)0.0204 (8)0.0018 (8)
C50.0489 (11)0.0699 (14)0.0879 (15)0.0110 (10)0.0104 (10)0.0089 (12)
C60.0557 (12)0.0890 (17)0.0927 (16)0.0088 (12)0.0089 (11)0.0187 (14)
C70.0582 (12)0.0679 (13)0.0684 (12)0.0001 (10)0.0016 (9)0.0152 (10)
C80.0509 (10)0.0427 (9)0.0494 (9)0.0029 (8)0.0131 (7)0.0005 (7)
C90.0490 (9)0.0402 (9)0.0458 (9)0.0050 (7)0.0161 (7)0.0032 (7)
C100.0614 (11)0.0527 (11)0.0502 (10)0.0036 (9)0.0078 (8)0.0022 (8)
C110.0553 (10)0.0358 (9)0.0443 (8)0.0043 (7)0.0088 (7)0.0008 (7)
C120.0504 (10)0.0360 (9)0.0587 (10)0.0043 (7)0.0019 (8)0.0086 (7)
C130.0690 (12)0.0320 (9)0.0525 (10)0.0035 (8)0.0110 (8)0.0037 (7)
C140.0500 (9)0.0295 (8)0.0410 (8)0.0029 (7)0.0025 (7)0.0009 (6)
C150.0640 (11)0.0422 (9)0.0428 (9)0.0111 (8)0.0075 (8)0.0072 (7)
C160.0658 (11)0.0363 (9)0.0476 (9)0.0127 (8)0.0055 (8)0.0054 (7)
C170.0498 (9)0.0358 (8)0.0369 (8)0.0040 (7)0.0028 (6)0.0062 (6)
C180.0547 (10)0.0423 (9)0.0307 (7)0.0015 (8)0.0035 (6)0.0065 (7)
C190.0613 (11)0.0614 (12)0.0429 (9)0.0007 (9)0.0020 (8)0.0036 (8)
C200.0767 (14)0.0766 (15)0.0497 (11)0.0168 (12)0.0099 (10)0.0028 (10)
C210.1016 (17)0.0567 (12)0.0406 (9)0.0183 (12)0.0041 (10)0.0068 (8)
C220.0810 (13)0.0434 (9)0.0326 (8)0.0004 (9)0.0125 (8)0.0030 (7)
C230.0622 (10)0.0398 (9)0.0283 (7)0.0006 (8)0.0074 (7)0.0060 (6)
C240.0612 (11)0.0571 (11)0.0429 (9)0.0068 (9)0.0034 (8)0.0002 (8)
C250.0664 (13)0.0836 (15)0.0534 (11)0.0179 (11)0.0090 (9)0.0104 (10)
C260.0882 (16)0.0758 (16)0.0589 (12)0.0347 (13)0.0216 (11)0.0084 (11)
C270.1127 (19)0.0499 (11)0.0449 (10)0.0161 (12)0.0234 (11)0.0012 (9)
Geometric parameters (Å, º) top
O1—C171.4198 (18)C12—H12B0.9700
O1—C151.4211 (19)C13—C141.517 (2)
O2—C171.3954 (18)C13—H13A0.9700
O2—C161.437 (2)C13—H13B0.9700
O3—C121.4233 (18)C14—C161.521 (2)
O3—C111.4265 (19)C14—C151.524 (2)
O4—C111.395 (2)C15—H15A0.9700
O4—C131.429 (2)C15—H15B0.9700
C1—C101.360 (3)C16—H16A0.9700
C1—C21.393 (3)C16—H16B0.9700
C1—H10.9300C17—C181.502 (2)
C2—C31.359 (3)C17—H170.9800
C2—H20.9300C18—C191.362 (2)
C3—C41.404 (3)C18—C231.426 (2)
C3—H30.9300C19—C201.409 (3)
C4—C51.418 (3)C19—H190.9300
C4—C91.418 (2)C20—C211.349 (3)
C5—C61.343 (3)C20—H200.9300
C5—H50.9300C21—C221.406 (3)
C6—C71.405 (3)C21—H210.9300
C6—H60.9300C22—C271.411 (3)
C7—C81.361 (3)C22—C231.421 (2)
C7—H70.9300C23—C241.417 (2)
C8—C91.428 (2)C24—C251.362 (3)
C8—C111.502 (2)C24—H240.9300
C9—C101.417 (3)C25—C261.398 (3)
C10—H100.9300C25—H250.9300
C11—H110.9800C26—C271.360 (3)
C12—C141.521 (2)C26—H260.9300
C12—H12A0.9700C27—H270.9300
C17—O1—C15110.63 (12)C13—C14—C16110.89 (14)
C17—O2—C16110.43 (13)C12—C14—C16111.14 (13)
C12—O3—C11111.94 (13)C13—C14—C15111.88 (14)
C11—O4—C13111.16 (14)C12—C14—C15108.36 (13)
C10—C1—C2120.7 (2)C16—C14—C15107.20 (12)
C10—C1—H1119.6O1—C15—C14112.09 (13)
C2—C1—H1119.6O1—C15—H15A109.2
C3—C2—C1120.09 (19)C14—C15—H15A109.2
C3—C2—H2120.0O1—C15—H15B109.2
C1—C2—H2120.0C14—C15—H15B109.2
C2—C3—C4120.93 (19)H15A—C15—H15B107.9
C2—C3—H3119.5O2—C16—C14110.83 (13)
C4—C3—H3119.5O2—C16—H16A109.5
C3—C4—C5121.35 (18)C14—C16—H16A109.5
C3—C4—C9119.49 (19)O2—C16—H16B109.5
C5—C4—C9119.16 (17)C14—C16—H16B109.5
C6—C5—C4120.62 (19)H16A—C16—H16B108.1
C6—C5—H5119.7O2—C17—O1110.54 (11)
C4—C5—H5119.7O2—C17—C18111.03 (13)
C5—C6—C7120.7 (2)O1—C17—C18106.80 (12)
C5—C6—H6119.6O2—C17—H17109.5
C7—C6—H6119.6O1—C17—H17109.5
C8—C7—C6121.05 (19)C18—C17—H17109.5
C8—C7—H7119.5C19—C18—C23119.86 (16)
C6—C7—H7119.5C19—C18—C17121.19 (15)
C7—C8—C9119.73 (16)C23—C18—C17118.84 (14)
C7—C8—C11120.58 (16)C18—C19—C20120.83 (18)
C9—C8—C11119.59 (16)C18—C19—H19119.6
C10—C9—C4117.72 (16)C20—C19—H19119.6
C10—C9—C8123.65 (16)C21—C20—C19120.41 (19)
C4—C9—C8118.63 (17)C21—C20—H20119.8
C1—C10—C9121.03 (18)C19—C20—H20119.8
C1—C10—H10119.5C20—C21—C22121.00 (18)
C9—C10—H10119.5C20—C21—H21119.5
O4—C11—O3110.36 (12)C22—C21—H21119.5
O4—C11—C8110.41 (14)C21—C22—C27121.80 (19)
O3—C11—C8106.74 (13)C21—C22—C23119.21 (18)
O4—C11—H11109.8C27—C22—C23118.98 (19)
O3—C11—H11109.8C24—C23—C22117.77 (16)
C8—C11—H11109.8C24—C23—C18123.62 (15)
O3—C12—C14111.92 (13)C22—C23—C18118.60 (16)
O3—C12—H12A109.2C25—C24—C23121.35 (19)
C14—C12—H12A109.2C25—C24—H24119.3
O3—C12—H12B109.2C23—C24—H24119.3
C14—C12—H12B109.2C24—C25—C26120.7 (2)
H12A—C12—H12B107.9C24—C25—H25119.7
O4—C13—C14110.57 (13)C26—C25—H25119.7
O4—C13—H13A109.5C27—C26—C25119.58 (19)
C14—C13—H13A109.5C27—C26—H26120.2
O4—C13—H13B109.5C25—C26—H26120.2
C14—C13—H13B109.5C26—C27—C22121.57 (19)
H13A—C13—H13B108.1C26—C27—H27119.2
C13—C14—C12107.37 (13)C22—C27—H27119.2
C10—C1—C2—C30.0 (3)C17—O1—C15—C1456.96 (17)
C1—C2—C3—C40.6 (3)C13—C14—C15—O170.48 (17)
C2—C3—C4—C5178.8 (2)C12—C14—C15—O1171.34 (13)
C2—C3—C4—C91.1 (3)C16—C14—C15—O151.30 (18)
C3—C4—C5—C6178.1 (2)C17—O2—C16—C1459.81 (17)
C9—C4—C5—C61.9 (3)C13—C14—C16—O270.38 (17)
C4—C5—C6—C72.7 (4)C12—C14—C16—O2170.25 (13)
C5—C6—C7—C80.7 (3)C15—C14—C16—O252.01 (18)
C6—C7—C8—C92.1 (3)C16—O2—C17—O163.95 (16)
C6—C7—C8—C11174.38 (18)C16—O2—C17—C18177.72 (12)
C3—C4—C9—C101.0 (2)C15—O1—C17—O262.50 (17)
C5—C4—C9—C10178.95 (17)C15—O1—C17—C18176.62 (13)
C3—C4—C9—C8179.18 (15)O2—C17—C18—C199.1 (2)
C5—C4—C9—C80.9 (2)O1—C17—C18—C19111.48 (16)
C7—C8—C9—C10177.00 (17)O2—C17—C18—C23174.59 (12)
C11—C8—C9—C106.5 (2)O1—C17—C18—C2364.84 (17)
C7—C8—C9—C42.8 (2)C23—C18—C19—C201.7 (2)
C11—C8—C9—C4173.70 (14)C17—C18—C19—C20174.60 (15)
C2—C1—C10—C90.1 (3)C18—C19—C20—C210.9 (3)
C4—C9—C10—C10.4 (2)C19—C20—C21—C221.8 (3)
C8—C9—C10—C1179.76 (17)C20—C21—C22—C27178.67 (17)
C13—O4—C11—O362.51 (17)C20—C21—C22—C230.2 (3)
C13—O4—C11—C8179.72 (12)C21—C22—C23—C24176.99 (15)
C12—O3—C11—O459.83 (17)C27—C22—C23—C241.9 (2)
C12—O3—C11—C8179.84 (13)C21—C22—C23—C182.3 (2)
C7—C8—C11—O411.1 (2)C27—C22—C23—C18178.80 (14)
C9—C8—C11—O4172.40 (13)C19—C18—C23—C24176.01 (15)
C7—C8—C11—O3108.84 (19)C17—C18—C23—C247.6 (2)
C9—C8—C11—O367.62 (18)C19—C18—C23—C223.2 (2)
C11—O3—C12—C1455.23 (17)C17—C18—C23—C22173.15 (13)
C11—O4—C13—C1460.70 (17)C22—C23—C24—C250.0 (2)
O4—C13—C14—C1253.24 (18)C18—C23—C24—C25179.21 (16)
O4—C13—C14—C1668.36 (17)C23—C24—C25—C261.8 (3)
O4—C13—C14—C15172.01 (13)C24—C25—C26—C271.6 (3)
O3—C12—C14—C1351.13 (18)C25—C26—C27—C220.4 (3)
O3—C12—C14—C1670.32 (17)C21—C22—C27—C26176.72 (19)
O3—C12—C14—C15172.14 (13)C23—C22—C27—C262.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C18–C23 and C22–C27 naphthyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16B···Cg5i0.972.953.5827 (19)124
C27—H27···Cg6ii0.932.943.754 (2)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H24O4
Mr412.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.9040 (15), 5.7761 (6), 24.238 (2)
β (°) 95.447 (2)
V3)2077.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11731, 4067, 2961
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.158, 1.03
No. of reflections4067
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C18–C23 and C22–C27 naphthyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16B···Cg5i0.972.953.5827 (19)124
C27—H27···Cg6ii0.932.943.754 (2)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to Jiangsu Polytechnic University and the Natural Science Foundation of China (No.20872051) for financial support.

References

First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMihis, A., Condamine, E., Bogdan, E., Terec, A., Kurtan, T. & Grosu, I. (2008). Molecules, 13, 2848–2858.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J.-H., Yuan, X.-Y., Zhang, M. & Ng, S. W. (2009). Acta Cryst. E65, o2712.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-K., Yan, D.-Y., Liu, L.-J., Liu, S. & Wang, J.-T. (2006). Acta Cryst. E62, o3062–o3063.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds